ardupilot/ArduCopterMega/test.pde
tridge60@gmail.com d70703aa62 disabled tabs in emacs formatting markers
git-svn-id: https://arducopter.googlecode.com/svn/trunk@1790 f9c3cf11-9bcb-44bc-f272-b75c42450872
2011-03-19 10:20:11 +00:00

963 lines
21 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// These are function definitions so the Menu can be constructed before the functions
// are defined below. Order matters to the compiler.
static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv);
static int8_t test_radio(uint8_t argc, const Menu::arg *argv);
static int8_t test_failsafe(uint8_t argc, const Menu::arg *argv);
static int8_t test_stabilize(uint8_t argc, const Menu::arg *argv);
static int8_t test_fbw(uint8_t argc, const Menu::arg *argv);
static int8_t test_gps(uint8_t argc, const Menu::arg *argv);
static int8_t test_adc(uint8_t argc, const Menu::arg *argv);
static int8_t test_imu(uint8_t argc, const Menu::arg *argv);
//static int8_t test_dcm(uint8_t argc, const Menu::arg *argv);
//static int8_t test_omega(uint8_t argc, const Menu::arg *argv);
static int8_t test_battery(uint8_t argc, const Menu::arg *argv);
static int8_t test_current(uint8_t argc, const Menu::arg *argv);
static int8_t test_relay(uint8_t argc, const Menu::arg *argv);
static int8_t test_wp(uint8_t argc, const Menu::arg *argv);
static int8_t test_pressure(uint8_t argc, const Menu::arg *argv);
static int8_t test_mag(uint8_t argc, const Menu::arg *argv);
static int8_t test_sonar(uint8_t argc, const Menu::arg *argv);
static int8_t test_xbee(uint8_t argc, const Menu::arg *argv);
static int8_t test_eedump(uint8_t argc, const Menu::arg *argv);
static int8_t test_rawgps(uint8_t argc, const Menu::arg *argv);
// This is the help function
// PSTR is an AVR macro to read strings from flash memory
// printf_P is a version of printf that reads from flash memory
/*static int8_t help_test(uint8_t argc, const Menu::arg *argv)
{
Serial.printf_P(PSTR("\n"
"Commands:\n"
" radio\n"
" servos\n"
" g_gps\n"
" imu\n"
" battery\n"
"\n"));
}*/
// Creates a constant array of structs representing menu options
// and stores them in Flash memory, not RAM.
// User enters the string in the console to call the functions on the right.
// See class Menu in AP_Coommon for implementation details
const struct Menu::command test_menu_commands[] PROGMEM = {
{"pwm", test_radio_pwm},
{"radio", test_radio},
{"failsafe", test_failsafe},
{"stabilize", test_stabilize},
{"fbw", test_fbw},
{"gps", test_gps},
#if HIL_MODE != HIL_MODE_ATTITUDE
{"adc", test_adc},
#endif
{"imu", test_imu},
//{"dcm", test_dcm},
//{"omega", test_omega},
{"battery", test_battery},
{"current", test_current},
{"relay", test_relay},
{"waypoints", test_wp},
#if HIL_MODE != HIL_MODE_ATTITUDE
{"airpressure", test_pressure},
#endif
{"sonar", test_sonar},
{"compass", test_mag},
{"xbee", test_xbee},
{"eedump", test_eedump},
{"rawgps", test_rawgps},
};
// A Macro to create the Menu
MENU(test_menu, "test", test_menu_commands);
int8_t
test_mode(uint8_t argc, const Menu::arg *argv)
{
Serial.printf_P(PSTR("Test Mode\n\n"));
test_menu.run();
}
static int8_t
test_eedump(uint8_t argc, const Menu::arg *argv)
{
int i, j;
// hexdump the EEPROM
for (i = 0; i < EEPROM_MAX_ADDR; i += 16) {
Serial.printf_P(PSTR("%04x:"), i);
for (j = 0; j < 16; j++)
Serial.printf_P(PSTR(" %02x"), eeprom_read_byte((const uint8_t *)(i + j)));
Serial.println();
}
return(0);
}
static int8_t
test_radio_pwm(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
while(1){
delay(20);
// Filters radio input - adjust filters in the radio.pde file
// ----------------------------------------------------------
read_radio();
Serial.printf_P(PSTR("IN: 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"),
g.rc_1.radio_in,
g.rc_2.radio_in,
g.rc_3.radio_in,
g.rc_4.radio_in,
g.rc_5.radio_in,
g.rc_6.radio_in,
g.rc_7.radio_in,
g.rc_8.radio_in);
if(Serial.available() > 0){
return (0);
}
}
}
static int8_t
test_radio(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
// read the radio to set trims
// ---------------------------
trim_radio();
while(1){
delay(20);
read_radio();
output_manual_throttle();
g.rc_1.calc_pwm();
g.rc_2.calc_pwm();
g.rc_3.calc_pwm();
g.rc_4.calc_pwm();
Serial.printf_P(PSTR("IN 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\n"),
g.rc_1.control_in,
g.rc_2.control_in,
g.rc_3.control_in,
g.rc_4.control_in,
g.rc_5.control_in,
g.rc_6.control_in,
g.rc_7.control_in);
//Serial.printf_P(PSTR("OUT 1: %d\t2: %d\t3: %d\t4: %d\n"), (g.rc_1.servo_out / 100), (g.rc_2.servo_out / 100), g.rc_3.servo_out, (g.rc_4.servo_out / 100));
/*Serial.printf_P(PSTR( "min: %d"
"\t in: %d"
"\t pwm_in: %d"
"\t sout: %d"
"\t pwm_out %d\n"),
g.rc_3.radio_min,
g.rc_3.control_in,
g.rc_3.radio_in,
g.rc_3.servo_out,
g.rc_3.pwm_out
);
*/
if(Serial.available() > 0){
return (0);
}
}
}
static int8_t
test_failsafe(uint8_t argc, const Menu::arg *argv)
{
byte fail_test;
print_hit_enter();
for(int i = 0; i < 50; i++){
delay(20);
read_radio();
}
// read the radio to set trims
// ---------------------------
trim_radio();
oldSwitchPosition = readSwitch();
Serial.printf_P(PSTR("Unplug battery, throttle in neutral, turn off radio.\n"));
while(g.rc_3.control_in > 0){
delay(20);
read_radio();
}
while(1){
delay(20);
read_radio();
if(g.rc_3.control_in > 0){
Serial.printf_P(PSTR("THROTTLE CHANGED %d \n"), g.rc_3.control_in);
fail_test++;
}
if(oldSwitchPosition != readSwitch()){
Serial.printf_P(PSTR("CONTROL MODE CHANGED: "));
Serial.println(flight_mode_strings[readSwitch()]);
fail_test++;
}
if(g.throttle_fs_enabled && g.rc_3.get_failsafe()){
Serial.printf_P(PSTR("THROTTLE FAILSAFE ACTIVATED: %d, "), g.rc_3.radio_in);
Serial.println(flight_mode_strings[readSwitch()]);
fail_test++;
}
if(fail_test > 0){
return (0);
}
if(Serial.available() > 0){
Serial.printf_P(PSTR("LOS caused no change in ACM.\n"));
return (0);
}
}
}
static int8_t
test_stabilize(uint8_t argc, const Menu::arg *argv)
{
static byte ts_num;
print_hit_enter();
delay(1000);
// setup the radio
// ---------------
init_rc_in();
control_mode = STABILIZE;
Serial.printf_P(PSTR("g.pid_stabilize_roll.kP: %4.4f\n"), g.pid_stabilize_roll.kP());
Serial.printf_P(PSTR("max_stabilize_dampener:%d\n\n "), max_stabilize_dampener);
trim_radio();
motor_auto_safe = false;
motor_armed = true;
while(1){
// 50 hz
if (millis() - fast_loopTimer > 19) {
delta_ms_fast_loop = millis() - fast_loopTimer;
fast_loopTimer = millis();
G_Dt = (float)delta_ms_fast_loop / 1000.f;
if(g.compass_enabled){
medium_loopCounter++;
if(medium_loopCounter == 5){
compass.read(); // Read magnetometer
compass.calculate(dcm.roll, dcm.pitch); // Calculate heading
compass.null_offsets(dcm.get_dcm_matrix());
medium_loopCounter = 0;
}
}
// for trim features
read_trim_switch();
// Filters radio input - adjust filters in the radio.pde file
// ----------------------------------------------------------
read_radio();
// IMU
// ---
read_AHRS();
// allow us to zero out sensors with control switches
if(g.rc_5.control_in < 600){
dcm.roll_sensor = dcm.pitch_sensor = 0;
}
// custom code/exceptions for flight modes
// ---------------------------------------
update_current_flight_mode();
// write out the servo PWM values
// ------------------------------
set_servos_4();
ts_num++;
if (ts_num > 10){
ts_num = 0;
Serial.printf_P(PSTR("r: %d, p:%d, rc1:%d, "),
(int)(dcm.roll_sensor/100),
(int)(dcm.pitch_sensor/100),
g.rc_1.pwm_out);
print_motor_out();
}
// R: 1417, L: 1453 F: 1453 B: 1417
//Serial.printf_P(PSTR("timer: %d, r: %d\tp: %d\t y: %d\n"), (int)delta_ms_fast_loop, ((int)dcm.roll_sensor/100), ((int)dcm.pitch_sensor/100), ((uint16_t)dcm.yaw_sensor/100));
//Serial.printf_P(PSTR("timer: %d, r: %d\tp: %d\t y: %d\n"), (int)delta_ms_fast_loop, ((int)dcm.roll_sensor/100), ((int)dcm.pitch_sensor/100), ((uint16_t)dcm.yaw_sensor/100));
if(Serial.available() > 0){
if(g.compass_enabled){
compass.save_offsets();
}
report_compass();
return (0);
}
}
}
}
static int8_t
test_fbw(uint8_t argc, const Menu::arg *argv)
{
static byte ts_num;
print_hit_enter();
delay(1000);
// setup the radio
// ---------------
init_rc_in();
control_mode = FBW;
//Serial.printf_P(PSTR("g.pid_stabilize_roll.kP: %4.4f\n"), g.pid_stabilize_roll.kP());
//Serial.printf_P(PSTR("max_stabilize_dampener:%d\n\n "), max_stabilize_dampener);
motor_armed = true;
trim_radio();
nav_yaw = 8000;
scaleLongDown = 1;
while(1){
// 50 hz
if (millis() - fast_loopTimer > 19) {
delta_ms_fast_loop = millis() - fast_loopTimer;
fast_loopTimer = millis();
G_Dt = (float)delta_ms_fast_loop / 1000.f;
if(g.compass_enabled){
medium_loopCounter++;
if(medium_loopCounter == 5){
compass.read(); // Read magnetometer
compass.calculate(dcm.roll, dcm.pitch); // Calculate heading
medium_loopCounter = 0;
}
}
// for trim features
read_trim_switch();
// Filters radio input - adjust filters in the radio.pde file
// ----------------------------------------------------------
read_radio();
// IMU
// ---
read_AHRS();
update_trig();
// allow us to zero out sensors with control switches
if(g.rc_5.control_in < 600){
dcm.roll_sensor = dcm.pitch_sensor = 0;
}
// custom code/exceptions for flight modes
// ---------------------------------------
update_current_flight_mode();
// write out the servo PWM values
// ------------------------------
set_servos_4();
ts_num++;
if (ts_num == 5){
update_alt();
// 10 hz
ts_num = 0;
g_gps->longitude = 0;
g_gps->latitude = 0;
calc_loiter_nav();
Serial.printf_P(PSTR("ys:%ld, WP.lat:%ld, WP.lng:%ld, n_lat:%ld, n_lon:%ld, nroll:%ld, npitch:%ld, pmax:%ld, \t- "),
dcm.yaw_sensor,
next_WP.lat,
next_WP.lng,
nav_lat,
nav_lon,
nav_roll,
nav_pitch,
(long)g.pitch_max);
print_motor_out();
}
if(Serial.available() > 0){
return (0);
}
}
}
}
#if HIL_MODE != HIL_MODE_ATTITUDE
static int8_t
test_adc(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
adc.Init();
delay(1000);
Serial.printf_P(PSTR("ADC\n"));
delay(1000);
while(1){
for(int i = 0; i < 9; i++){
Serial.printf_P(PSTR("i:%d\t"),adc.Ch(i));
}
Serial.println();
delay(20);
if(Serial.available() > 0){
return (0);
}
}
}
#endif
static int8_t
test_imu(uint8_t argc, const Menu::arg *argv)
{
//Serial.printf_P(PSTR("Calibrating."));
report_imu();
imu.init_gyro();
report_imu();
print_hit_enter();
delay(1000);
//float cos_roll, sin_roll, cos_pitch, sin_pitch, cos_yaw, sin_yaw;
while(1){
delay(20);
if (millis() - fast_loopTimer > 19) {
delta_ms_fast_loop = millis() - fast_loopTimer;
G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator
fast_loopTimer = millis();
/*
Matrix3f temp = dcm.get_dcm_matrix();
sin_pitch = -temp.c.x;
cos_pitch = sqrt(1 - (temp.c.x * temp.c.x));
cos_roll = temp.c.z / cos_pitch;
sin_roll = temp.c.y / cos_pitch;
yawvector.x = temp.a.x; // sin
yawvector.y = temp.b.x; // cos
yawvector.normalize();
cos_yaw = yawvector.y; // 0 x = north
sin_yaw = yawvector.x; // 1 y
*/
// IMU
// ---
read_AHRS();
Vector3f accels = imu.get_accel();
Vector3f gyros = imu.get_gyro();
if(g.compass_enabled){
medium_loopCounter++;
if(medium_loopCounter == 5){
compass.read(); // Read magnetometer
compass.calculate(dcm.roll, dcm.pitch); // Calculate heading
medium_loopCounter = 0;
}
}
// We are using the IMU
// ---------------------
/*
Serial.printf_P(PSTR("A: %4.4f, %4.4f, %4.4f\t"
"G: %4.4f, %4.4f, %4.4f\t"),
accels.x, accels.y, accels.z,
gyros.x, gyros.y, gyros.z);
*/
Serial.printf_P(PSTR("r: %ld\tp: %ld\t y: %ld\n"),
dcm.roll_sensor,
dcm.pitch_sensor,
dcm.yaw_sensor);
/*
update_trig();
Serial.printf_P(PSTR("cp: %1.2f, sp: %1.2f, cr: %1.2f, sr: %1.2f, cy: %1.2f, sy: %1.2f,\n"),
cos_pitch_x,
sin_pitch_y,
cos_roll_x,
sin_roll_y,
cos_yaw_x, // x
sin_yaw_y); // y
//*/
}
if(Serial.available() > 0){
return (0);
}
}
}
static int8_t
test_gps(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
while(1){
delay(333);
// Blink GPS LED if we don't have a fix
// ------------------------------------
update_GPS_light();
g_gps->update();
if (g_gps->new_data){
Serial.printf_P(PSTR("Lat: %ld, Lon %ld, Alt: %ldm, #sats: %d\n"),
g_gps->latitude,
g_gps->longitude,
g_gps->altitude/100,
g_gps->num_sats);
}else{
Serial.print(".");
}
if(Serial.available() > 0){
return (0);
}
}
}
/*
static int8_t
test_dcm(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
Serial.printf_P(PSTR("Gyro | Accel\n"));
Vector3f _cam_vector;
Vector3f _out_vector;
G_Dt = .02;
while(1){
for(byte i = 0; i <= 50; i++){
delay(20);
// IMU
// ---
read_AHRS();
}
Matrix3f temp = dcm.get_dcm_matrix();
Matrix3f temp_t = dcm.get_dcm_transposed();
Serial.printf_P(PSTR("dcm\n"
"%4.4f \t %4.4f \t %4.4f \n"
"%4.4f \t %4.4f \t %4.4f \n"
"%4.4f \t %4.4f \t %4.4f \n\n"),
temp.a.x, temp.a.y, temp.a.z,
temp.b.x, temp.b.y, temp.b.z,
temp.c.x, temp.c.y, temp.c.z);
int _pitch = degrees(-asin(temp.c.x));
int _roll = degrees(atan2(temp.c.y, temp.c.z));
int _yaw = degrees(atan2(temp.b.x, temp.a.x));
Serial.printf_P(PSTR( "angles\n"
"%d \t %d \t %d\n\n"),
_pitch,
_roll,
_yaw);
//_out_vector = _cam_vector * temp;
//Serial.printf_P(PSTR( "cam\n"
// "%d \t %d \t %d\n\n"),
// (int)temp.a.x * 100, (int)temp.a.y * 100, (int)temp.a.x * 100);
if(Serial.available() > 0){
return (0);
}
}
}
*/
/*
static int8_t
test_dcm(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
Serial.printf_P(PSTR("Gyro | Accel\n"));
delay(1000);
while(1){
Vector3f accels = dcm.get_accel();
Serial.print("accels.z:");
Serial.print(accels.z);
Serial.print("omega.z:");
Serial.print(omega.z);
delay(100);
if(Serial.available() > 0){
return (0);
}
}
}
*/
/*static int8_t
test_omega(uint8_t argc, const Menu::arg *argv)
{
static byte ts_num;
float old_yaw;
print_hit_enter();
delay(1000);
Serial.printf_P(PSTR("Omega"));
delay(1000);
G_Dt = .02;
while(1){
delay(20);
// IMU
// ---
read_AHRS();
float my_oz = (dcm.yaw - old_yaw) * 50;
old_yaw = dcm.yaw;
ts_num++;
if (ts_num > 2){
ts_num = 0;
//Serial.printf_P(PSTR("R: %4.4f\tP: %4.4f\tY: %4.4f\tY: %4.4f\n"), omega.x, omega.y, omega.z, my_oz);
Serial.printf_P(PSTR(" Yaw: %ld\tY: %4.4f\tY: %4.4f\n"), dcm.yaw_sensor, omega.z, my_oz);
}
if(Serial.available() > 0){
return (0);
}
}
return (0);
}
//*/
static int8_t
test_battery(uint8_t argc, const Menu::arg *argv)
{
#if BATTERY_EVENT == 1
for (int i = 0; i < 20; i++){
delay(20);
read_battery();
}
Serial.printf_P(PSTR("Volts: 1:%2.2f, 2:%2.2f, 3:%2.2f, 4:%2.2f\n")
battery_voltage1,
battery_voltage2,
battery_voltage3,
battery_voltage4);
#else
Serial.printf_P(PSTR("Not enabled\n"));
#endif
return (0);
}
static int8_t
test_current(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delta_ms_medium_loop = 100;
while(1){
delay(100);
read_radio();
read_current();
Serial.printf_P(PSTR("V: %4.4f, A: %4.4f, mAh: %4.4f\n"),
current_voltage,
current_amps,
current_total);
//if(g.rc_3.control_in > 0){
APM_RC.OutputCh(CH_1, g.rc_3.radio_in);
APM_RC.OutputCh(CH_2, g.rc_3.radio_in);
APM_RC.OutputCh(CH_3, g.rc_3.radio_in);
APM_RC.OutputCh(CH_4, g.rc_3.radio_in);
//}
if(Serial.available() > 0){
return (0);
}
}
}
static int8_t
test_relay(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
while(1){
Serial.printf_P(PSTR("Relay on\n"));
relay_on();
delay(3000);
if(Serial.available() > 0){
return (0);
}
Serial.printf_P(PSTR("Relay off\n"));
relay_off();
delay(3000);
if(Serial.available() > 0){
return (0);
}
}
}
static int8_t
test_wp(uint8_t argc, const Menu::arg *argv)
{
delay(1000);
read_EEPROM_waypoint_info();
// save the alitude above home option
if(g.RTL_altitude < 0){
Serial.printf_P(PSTR("Hold current altitude\n"));
}else{
Serial.printf_P(PSTR("Hold altitude of %dm\n"), (int)g.RTL_altitude / 100);
}
Serial.printf_P(PSTR("%d waypoints\n"), (int)g.waypoint_total);
Serial.printf_P(PSTR("Hit radius: %d\n"), (int)g.waypoint_radius);
Serial.printf_P(PSTR("Loiter radius: %d\n\n"), (int)g.loiter_radius);
for(byte i = 0; i <= g.waypoint_total; i++){
struct Location temp = get_wp_with_index(i);
test_wp_print(&temp, i);
}
return (0);
}
void
test_wp_print(struct Location *cmd, byte index)
{
Serial.printf_P(PSTR("command #: %d id:%d p1:%d p2:%ld p3:%ld p4:%ld \n"),
(int)index,
(int)cmd->id,
(int)cmd->p1,
cmd->alt,
cmd->lat,
cmd->lng);
}
static int8_t
test_rawgps(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
while(1){
if (Serial3.available()){
digitalWrite(B_LED_PIN, HIGH); // Blink Yellow LED if we are sending data to GPS
Serial1.write(Serial3.read());
digitalWrite(B_LED_PIN, LOW);
}
if (Serial1.available()){
digitalWrite(C_LED_PIN, HIGH); // Blink Red LED if we are receiving data from GPS
Serial3.write(Serial1.read());
digitalWrite(C_LED_PIN, LOW);
}
if(Serial.available() > 0){
return (0);
}
}
}
static int8_t
test_xbee(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
Serial.printf_P(PSTR("Begin XBee X-CTU Range and RSSI Test:\n"));
while(1){
if (Serial3.available())
Serial3.write(Serial3.read());
if(Serial.available() > 0){
return (0);
}
}
}
#if HIL_MODE != HIL_MODE_ATTITUDE
static int8_t
test_pressure(uint8_t argc, const Menu::arg *argv)
{
Serial.printf_P(PSTR("Uncalibrated relative airpressure\n"));
print_hit_enter();
home.alt = 0;
wp_distance = 0;
init_barometer();
reset_I();
// to prevent boost from skewing results
cos_pitch_x = cos_roll_x = 1;
while(1){
if (millis() - fast_loopTimer > 100) {
delta_ms_fast_loop = millis() - fast_loopTimer;
G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator
fast_loopTimer = millis();
}
if (millis() - medium_loopTimer > 100) {
medium_loopTimer = millis();
read_radio(); // read the radio first
next_WP.alt = home.alt + g.rc_6.control_in; // 0 - 2000 (20 meters)
next_WP.alt = max(next_WP.alt, 30);
read_trim_switch();
update_alt();
output_auto_throttle();
Serial.printf_P(PSTR("B_alt: %ld, S_alt: %ld, \tnext_alt: %ld \terror: %ld, \tcruise: %d, \tint: %6.2f \tout:%d\n"),
baro_alt,
sonar_alt,
next_WP.alt,
altitude_error,
(int)g.throttle_cruise,
g.pid_baro_throttle.get_integrator(),
g.rc_3.servo_out);
/*
Serial.print("Altitude: ");
Serial.print((int)current_loc.alt,DEC);
Serial.print("\tnext_alt: ");
Serial.print((int)next_WP.alt,DEC);
Serial.print("\talt_err: ");
Serial.print((int)altitude_error,DEC);
Serial.print("\ttNom: ");
Serial.print(g.,DEC);
Serial.print("\ttOut: ");
Serial.println(g.rc_3.servo_out,DEC);
*/
//Serial.print(" Raw pressure value: ");
//Serial.println(abs_pressure);
}
if(Serial.available() > 0){
return (0);
}
}
}
#endif
static int8_t
test_mag(uint8_t argc, const Menu::arg *argv)
{
if(g.compass_enabled) {
//Serial.printf_P(PSTR("MAG_ORIENTATION: %d\n"), MAG_ORIENTATION);
print_hit_enter();
while(1){
delay(250);
compass.read();
compass.calculate(0,0);
Vector3f maggy = compass.get_offsets();
Serial.printf_P(PSTR("Heading: %ld, XYZ: %d, %d, %d,\tXYZoff: %6.2f, %6.2f, %6.2f\n"),
(wrap_360(ToDeg(compass.heading) * 100)) /100,
compass.mag_x,
compass.mag_y,
compass.mag_z,
maggy.x,
maggy.y,
maggy.z);
if(Serial.available() > 0){
return (0);
}
}
} else {
Serial.printf_P(PSTR("Compass: "));
print_enabled(false);
return (0);
}
}
/*
test the sonar
*/
static int8_t
test_sonar(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
while(1) {
Serial.printf_P(PSTR("%d cm\n"), sonar.read());
delay(100);
if(Serial.available() > 0){
return (0);
}
}
return (0);
}
void print_hit_enter()
{
Serial.printf_P(PSTR("Hit Enter to exit.\n\n"));
}
void fake_out_gps()
{
static float rads;
g_gps->new_data = true;
g_gps->fix = true;
int length = g.rc_6.control_in;
rads += .05;
if (rads > 6.28){
rads = 0;
}
g_gps->latitude = 377696000; // Y
g_gps->longitude = -1224319000; // X
g_gps->altitude = 9000; // meters * 100
//next_WP.lng = home.lng - length * sin(rads); // X
//next_WP.lat = home.lat + length * cos(rads); // Y
}
void print_motor_out(){
Serial.printf("out: R: %d, L: %d F: %d B: %d\n",
(motor_out[RIGHT] - g.rc_3.radio_min),
(motor_out[LEFT] - g.rc_3.radio_min),
(motor_out[FRONT] - g.rc_3.radio_min),
(motor_out[BACK] - g.rc_3.radio_min));
}