mirror of https://github.com/ArduPilot/ardupilot
237 lines
11 KiB
C++
237 lines
11 KiB
C++
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
/// @file AP_MotorsHeli.h
|
|
/// @brief Motor control class for Traditional Heli
|
|
|
|
#ifndef __AP_MOTORS_HELI_H__
|
|
#define __AP_MOTORS_HELI_H__
|
|
|
|
#include <inttypes.h>
|
|
|
|
#include <AP_Common/AP_Common.h>
|
|
#include <AP_Math/AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
|
|
#include <RC_Channel/RC_Channel.h> // RC Channel Library
|
|
#include "AP_Motors_Class.h"
|
|
#include "AP_MotorsHeli_RSC.h"
|
|
|
|
// maximum number of swashplate servos
|
|
#define AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS 3
|
|
|
|
// servo output rates
|
|
#define AP_MOTORS_HELI_SPEED_DEFAULT 125 // default servo update rate for helicopters
|
|
#define AP_MOTORS_HELI_SPEED_DIGITAL_SERVOS 125 // update rate for digital servos
|
|
#define AP_MOTORS_HELI_SPEED_ANALOG_SERVOS 125 // update rate for analog servos
|
|
|
|
// default swash min and max angles and positions
|
|
#define AP_MOTORS_HELI_SWASH_ROLL_MAX 2500
|
|
#define AP_MOTORS_HELI_SWASH_PITCH_MAX 2500
|
|
#define AP_MOTORS_HELI_COLLECTIVE_MIN 1250
|
|
#define AP_MOTORS_HELI_COLLECTIVE_MAX 1750
|
|
#define AP_MOTORS_HELI_COLLECTIVE_MID 1500
|
|
|
|
// swash min and max position while in stabilize mode (as a number from 0 ~ 100)
|
|
#define AP_MOTORS_HELI_MANUAL_COLLECTIVE_MIN 0
|
|
#define AP_MOTORS_HELI_MANUAL_COLLECTIVE_MAX 100
|
|
|
|
// swash min while landed or landing (as a number from 0 ~ 1000
|
|
#define AP_MOTORS_HELI_LAND_COLLECTIVE_MIN 0
|
|
|
|
// default main rotor speed (ch8 out) as a number from 0 ~ 1000
|
|
#define AP_MOTORS_HELI_RSC_SETPOINT 700
|
|
|
|
// default main rotor critical speed
|
|
#define AP_MOTORS_HELI_RSC_CRITICAL 500
|
|
|
|
// RSC output defaults
|
|
#define AP_MOTORS_HELI_RSC_IDLE_DEFAULT 0
|
|
#define AP_MOTORS_HELI_RSC_POWER_LOW_DEFAULT 200
|
|
#define AP_MOTORS_HELI_RSC_POWER_HIGH_DEFAULT 700
|
|
|
|
// default main rotor ramp up time in seconds
|
|
#define AP_MOTORS_HELI_RSC_RAMP_TIME 1 // 1 second to ramp output to main rotor ESC to full power (most people use exterrnal govenors so we can ramp up quickly)
|
|
#define AP_MOTORS_HELI_RSC_RUNUP_TIME 10 // 10 seconds for rotor to reach full speed
|
|
|
|
// flybar types
|
|
#define AP_MOTORS_HELI_NOFLYBAR 0
|
|
#define AP_MOTORS_HELI_FLYBAR 1
|
|
|
|
class AP_HeliControls;
|
|
|
|
/// @class AP_MotorsHeli
|
|
class AP_MotorsHeli : public AP_Motors {
|
|
public:
|
|
|
|
/// Constructor
|
|
AP_MotorsHeli( uint16_t loop_rate,
|
|
uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT) :
|
|
AP_Motors(loop_rate, speed_hz)
|
|
{
|
|
AP_Param::setup_object_defaults(this, var_info);
|
|
|
|
// initialise flags
|
|
_heliflags.landing_collective = 0;
|
|
_heliflags.rotor_runup_complete = 0;
|
|
};
|
|
|
|
// init
|
|
void Init();
|
|
|
|
// set update rate to motors - a value in hertz
|
|
// you must have setup_motors before calling this
|
|
virtual void set_update_rate( uint16_t speed_hz ) = 0;
|
|
|
|
// enable - starts allowing signals to be sent to motors
|
|
virtual void enable() = 0;
|
|
|
|
// output_min - sets servos to neutral point with motors stopped
|
|
void output_min();
|
|
|
|
// output_test - spin a motor at the pwm value specified
|
|
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
|
|
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
|
|
virtual void output_test(uint8_t motor_seq, int16_t pwm) = 0;
|
|
|
|
// slow_start - ignored by helicopters
|
|
void slow_start(bool true_false) {};
|
|
|
|
//
|
|
// heli specific methods
|
|
//
|
|
|
|
// allow_arming - returns true if main rotor is spinning and it is ok to arm
|
|
virtual bool allow_arming() const = 0;
|
|
|
|
// parameter_check - returns true if helicopter specific parameters are sensible, used for pre-arm check
|
|
bool parameter_check() const;
|
|
|
|
// has_flybar - returns true if we have a mechical flybar
|
|
virtual bool has_flybar() const { return AP_MOTORS_HELI_NOFLYBAR; }
|
|
|
|
// get_collective_mid - returns collective mid position as a number from 0 ~ 1000
|
|
int16_t get_collective_mid() const { return _collective_mid; }
|
|
|
|
// get_collective_out - returns collective position from last output as a number from 0 ~ 1000
|
|
int16_t get_collective_out() const { return _collective_out; }
|
|
|
|
// set_collective_for_landing - limits collective from going too low if we know we are landed
|
|
void set_collective_for_landing(bool landing) { _heliflags.landing_collective = landing; }
|
|
|
|
// get_rsc_mode - gets the rotor speed control method (AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH or AP_MOTORS_HELI_RSC_MODE_SETPOINT)
|
|
uint8_t get_rsc_mode() const { return _rsc_mode; }
|
|
|
|
// get_rsc_setpoint - gets contents of _rsc_setpoint parameter (0~1000)
|
|
int16_t get_rsc_setpoint() const { return _rsc_setpoint; }
|
|
|
|
// set_desired_rotor_speed - sets target rotor speed as a number from 0 ~ 1000
|
|
virtual void set_desired_rotor_speed(int16_t desired_speed) = 0;
|
|
|
|
// get_desired_rotor_speed - gets target rotor speed as a number from 0 ~ 1000
|
|
virtual int16_t get_desired_rotor_speed() const = 0;
|
|
|
|
// get_main_rotor_speed - gets estimated or measured main rotor speed
|
|
virtual int16_t get_main_rotor_speed() const = 0;
|
|
|
|
// return true if the main rotor is up to speed
|
|
bool rotor_runup_complete() const { return _heliflags.rotor_runup_complete; }
|
|
|
|
// rotor_speed_above_critical - return true if rotor speed is above that critical for flight
|
|
virtual bool rotor_speed_above_critical() const = 0;
|
|
|
|
// calculate_scalars - must be implemented by child classes
|
|
virtual void calculate_scalars() = 0;
|
|
|
|
// var_info for holding Parameter information
|
|
static const struct AP_Param::GroupInfo var_info[];
|
|
|
|
// set_delta_phase_angle for setting variable phase angle compensation and force recalculation of collective factors
|
|
// ignored unless overloaded by child classes
|
|
virtual void set_delta_phase_angle(int16_t angle){};
|
|
|
|
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
|
|
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
|
|
virtual uint16_t get_motor_mask() = 0;
|
|
|
|
// set_radio_passthrough used to pass radio inputs directly to outputs
|
|
void set_radio_passthrough(int16_t radio_roll_input, int16_t radio_pitch_input, int16_t radio_throttle_input, int16_t radio_yaw_input);
|
|
|
|
// reset_radio_passthrough used to reset all radio inputs to center
|
|
void reset_radio_passthrough();
|
|
|
|
// output - sends commands to the motors
|
|
void output();
|
|
|
|
// supports_yaw_passthrough
|
|
virtual bool supports_yaw_passthrough() const { return false; }
|
|
|
|
protected:
|
|
|
|
// output - sends commands to the motors
|
|
void output_armed_stabilizing();
|
|
void output_armed_not_stabilizing();
|
|
void output_armed_zero_throttle();
|
|
void output_disarmed();
|
|
|
|
// update_motor_controls - sends commands to motor controllers
|
|
virtual void update_motor_control(RotorControlState state) = 0;
|
|
|
|
// reset_flight_controls - resets all controls and scalars to flight status
|
|
void reset_flight_controls();
|
|
|
|
// update the throttle input filter
|
|
void update_throttle_filter();
|
|
|
|
// move_actuators - moves swash plate and tail rotor
|
|
virtual void move_actuators(int16_t roll_out, int16_t pitch_out, int16_t coll_in, int16_t yaw_out) = 0;
|
|
|
|
// reset_swash_servo - free up swash servo for maximum movement
|
|
static void reset_swash_servo(RC_Channel& servo);
|
|
|
|
// init_outputs - initialise Servo/PWM ranges and endpoints
|
|
virtual void init_outputs() = 0;
|
|
|
|
// calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position
|
|
virtual void calculate_roll_pitch_collective_factors() = 0;
|
|
|
|
// flags bitmask
|
|
struct heliflags_type {
|
|
uint8_t landing_collective : 1; // true if collective is setup for landing which has much higher minimum
|
|
uint8_t rotor_runup_complete : 1; // true if the rotors have had enough time to wind up
|
|
} _heliflags;
|
|
|
|
// parameters
|
|
AP_Int16 _roll_max; // Maximum roll angle of the swash plate in centi-degrees
|
|
AP_Int16 _pitch_max; // Maximum pitch angle of the swash plate in centi-degrees
|
|
AP_Int16 _collective_min; // Lowest possible servo position for the swashplate
|
|
AP_Int16 _collective_max; // Highest possible servo position for the swashplate
|
|
AP_Int16 _collective_mid; // Swash servo position corresponding to zero collective pitch (or zero lift for Assymetrical blades)
|
|
AP_Int8 _servo_manual; // Pass radio inputs directly to servos during set-up through mission planner
|
|
AP_Int16 _rsc_setpoint; // rotor speed when RSC mode is set to is enabledv
|
|
AP_Int8 _rsc_mode; // Which main rotor ESC control mode is active
|
|
AP_Int8 _rsc_ramp_time; // Time in seconds for the output to the main rotor's ESC to reach full speed
|
|
AP_Int8 _rsc_runup_time; // Time in seconds for the main rotor to reach full speed. Must be longer than _rsc_ramp_time
|
|
AP_Int16 _land_collective_min; // Minimum collective when landed or landing
|
|
AP_Int16 _rsc_critical; // Rotor speed below which flight is not possible
|
|
AP_Int16 _rsc_idle_output; // Rotor control output while at idle
|
|
AP_Int16 _rsc_power_low; // throttle value sent to throttle servo at zero collective pitch
|
|
AP_Int16 _rsc_power_high; // throttle value sent to throttle servo at maximum collective pitch
|
|
|
|
// internal variables
|
|
float _rollFactor[AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS];
|
|
float _pitchFactor[AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS];
|
|
float _collectiveFactor[AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS];
|
|
float _roll_scaler = 1; // scaler to convert roll input from radio (i.e. -4500 ~ 4500) to max roll range
|
|
float _pitch_scaler = 1; // scaler to convert pitch input from radio (i.e. -4500 ~ 4500) to max pitch range
|
|
float _collective_scalar = 1; // collective scalar to convert pwm form (i.e. 0 ~ 1000) passed in to actual servo range (i.e 1250~1750 would be 500)
|
|
float _main_rotor_power = 0; // estimated main rotor power load, range 0-1.0f, used for RSC feedforward
|
|
int16_t _collective_out = 0; // actual collective pitch value. Required by the main code for calculating cruise throttle
|
|
int16_t _collective_mid_pwm = 0; // collective mid parameter value converted to pwm form (i.e. 0 ~ 1000)
|
|
int16_t _delta_phase_angle = 0; // phase angle dynamic compensation
|
|
int16_t _roll_radio_passthrough = 0; // roll control PWM direct from radio, used for manual control
|
|
int16_t _pitch_radio_passthrough = 0; // pitch control PWM direct from radio, used for manual control
|
|
int16_t _throttle_radio_passthrough = 0; // throttle control PWM direct from radio, used for manual control
|
|
int16_t _yaw_radio_passthrough = 0; // yaw control PWM direct from radio, used for manual control
|
|
int16_t _collective_range = 0; // maximum absolute collective pitch range (500 - 1000)
|
|
};
|
|
|
|
#endif // AP_MOTORSHELI
|