mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-08 08:58:29 -04:00
186 lines
7.4 KiB
C++
186 lines
7.4 KiB
C++
/*
|
|
* AP_MotorsTri.cpp - ArduCopter motors library
|
|
* Code by RandyMackay. DIYDrones.com
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*/
|
|
#include <AP_HAL.h>
|
|
#include <AP_Math.h>
|
|
#include "AP_MotorsTri.h"
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
// init
|
|
void AP_MotorsTri::Init()
|
|
{
|
|
// call parent Init function to set-up throttle curve
|
|
AP_Motors::Init();
|
|
|
|
// set update rate for the 3 motors (but not the servo on channel 7)
|
|
set_update_rate(_speed_hz);
|
|
}
|
|
|
|
// set update rate to motors - a value in hertz
|
|
void AP_MotorsTri::set_update_rate( uint16_t speed_hz )
|
|
{
|
|
// record requested speed
|
|
_speed_hz = speed_hz;
|
|
|
|
// set update rate for the 3 motors (but not the servo on channel 7)
|
|
uint32_t mask =
|
|
1U << _motor_to_channel_map[AP_MOTORS_MOT_1] |
|
|
1U << _motor_to_channel_map[AP_MOTORS_MOT_2] |
|
|
1U << _motor_to_channel_map[AP_MOTORS_MOT_4];
|
|
hal.rcout->set_freq(mask, _speed_hz);
|
|
}
|
|
|
|
// enable - starts allowing signals to be sent to motors
|
|
void AP_MotorsTri::enable()
|
|
{
|
|
// enable output channels
|
|
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_1]);
|
|
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_2]);
|
|
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_4]);
|
|
hal.rcout->enable_ch(AP_MOTORS_CH_TRI_YAW);
|
|
}
|
|
|
|
// output_min - sends minimum values out to the motors
|
|
void AP_MotorsTri::output_min()
|
|
{
|
|
// fill the motor_out[] array for HIL use
|
|
motor_out[AP_MOTORS_MOT_1] = _rc_throttle->radio_min;
|
|
motor_out[AP_MOTORS_MOT_2] = _rc_throttle->radio_min;
|
|
motor_out[AP_MOTORS_MOT_4] = _rc_throttle->radio_min;
|
|
|
|
// send minimum value to each motor
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _rc_throttle->radio_min);
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _rc_throttle->radio_min);
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _rc_throttle->radio_min);
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_CH_TRI_YAW], _rc_yaw->radio_trim);
|
|
}
|
|
|
|
// output_armed - sends commands to the motors
|
|
void AP_MotorsTri::output_armed()
|
|
{
|
|
int16_t out_min = _rc_throttle->radio_min;
|
|
int16_t out_max = _rc_throttle->radio_max;
|
|
|
|
// Throttle is 0 to 1000 only
|
|
_rc_throttle->servo_out = constrain_int16(_rc_throttle->servo_out, 0, _max_throttle);
|
|
|
|
if(_rc_throttle->servo_out > 0)
|
|
out_min = _rc_throttle->radio_min + _min_throttle;
|
|
|
|
// capture desired roll, pitch, yaw and throttle from receiver
|
|
_rc_roll->calc_pwm();
|
|
_rc_pitch->calc_pwm();
|
|
_rc_throttle->calc_pwm();
|
|
_rc_yaw->calc_pwm();
|
|
|
|
int roll_out = (float)_rc_roll->pwm_out * 0.866f;
|
|
int pitch_out = _rc_pitch->pwm_out / 2;
|
|
|
|
//left front
|
|
motor_out[AP_MOTORS_MOT_2] = _rc_throttle->radio_out + roll_out + pitch_out;
|
|
//right front
|
|
motor_out[AP_MOTORS_MOT_1] = _rc_throttle->radio_out - roll_out + pitch_out;
|
|
// rear
|
|
motor_out[AP_MOTORS_MOT_4] = _rc_throttle->radio_out - _rc_pitch->pwm_out;
|
|
|
|
// Tridge's stability patch
|
|
if(motor_out[AP_MOTORS_MOT_1] > out_max) {
|
|
motor_out[AP_MOTORS_MOT_2] -= (motor_out[AP_MOTORS_MOT_1] - out_max) >> 1;
|
|
motor_out[AP_MOTORS_MOT_4] -= (motor_out[AP_MOTORS_MOT_1] - out_max) >> 1;
|
|
motor_out[AP_MOTORS_MOT_1] = out_max;
|
|
}
|
|
|
|
if(motor_out[AP_MOTORS_MOT_2] > out_max) {
|
|
motor_out[AP_MOTORS_MOT_1] -= (motor_out[AP_MOTORS_MOT_2] - out_max) >> 1;
|
|
motor_out[AP_MOTORS_MOT_4] -= (motor_out[AP_MOTORS_MOT_2] - out_max) >> 1;
|
|
motor_out[AP_MOTORS_MOT_2] = out_max;
|
|
}
|
|
|
|
if(motor_out[AP_MOTORS_MOT_4] > out_max) {
|
|
motor_out[AP_MOTORS_MOT_1] -= (motor_out[AP_MOTORS_MOT_4] - out_max) >> 1;
|
|
motor_out[AP_MOTORS_MOT_2] -= (motor_out[AP_MOTORS_MOT_4] - out_max) >> 1;
|
|
motor_out[AP_MOTORS_MOT_4] = out_max;
|
|
}
|
|
|
|
// adjust for throttle curve
|
|
if( _throttle_curve_enabled ) {
|
|
motor_out[AP_MOTORS_MOT_1] = _throttle_curve.get_y(motor_out[AP_MOTORS_MOT_1]);
|
|
motor_out[AP_MOTORS_MOT_2] = _throttle_curve.get_y(motor_out[AP_MOTORS_MOT_2]);
|
|
motor_out[AP_MOTORS_MOT_4] = _throttle_curve.get_y(motor_out[AP_MOTORS_MOT_4]);
|
|
}
|
|
|
|
// ensure motors don't drop below a minimum value and stop
|
|
motor_out[AP_MOTORS_MOT_1] = max(motor_out[AP_MOTORS_MOT_1], out_min);
|
|
motor_out[AP_MOTORS_MOT_2] = max(motor_out[AP_MOTORS_MOT_2], out_min);
|
|
motor_out[AP_MOTORS_MOT_4] = max(motor_out[AP_MOTORS_MOT_4], out_min);
|
|
|
|
#if CUT_MOTORS == ENABLED
|
|
// if we are not sending a throttle output, we cut the motors
|
|
if(_rc_throttle->servo_out == 0) {
|
|
motor_out[AP_MOTORS_MOT_1] = _rc_throttle->radio_min;
|
|
motor_out[AP_MOTORS_MOT_2] = _rc_throttle->radio_min;
|
|
motor_out[AP_MOTORS_MOT_4] = _rc_throttle->radio_min;
|
|
}
|
|
#endif
|
|
|
|
// send output to each motor
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], motor_out[AP_MOTORS_MOT_1]);
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], motor_out[AP_MOTORS_MOT_2]);
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], motor_out[AP_MOTORS_MOT_4]);
|
|
|
|
// also send out to tail command (we rely on any auto pilot to have updated the rc_yaw->radio_out to the correct value)
|
|
// note we do not save the radio_out to the motor_out array so it may not appear in the ch7out in the status screen of the mission planner
|
|
// note: we use _rc_tail's (aka channel 7's) REV parameter to control whether the servo is reversed or not but this is a bit nonsensical.
|
|
// a separate servo object (including min, max settings etc) would be better or at least a separate parameter to specify the direction of the tail servo
|
|
if( _rc_tail->get_reverse() == true ) {
|
|
hal.rcout->write(AP_MOTORS_CH_TRI_YAW, _rc_yaw->radio_trim - (_rc_yaw->radio_out - _rc_yaw->radio_trim));
|
|
}else{
|
|
hal.rcout->write(AP_MOTORS_CH_TRI_YAW, _rc_yaw->radio_out);
|
|
}
|
|
}
|
|
|
|
// output_disarmed - sends commands to the motors
|
|
void AP_MotorsTri::output_disarmed()
|
|
{
|
|
// fill the motor_out[] array for HIL use
|
|
for (unsigned char i = AP_MOTORS_MOT_1; i < AP_MOTORS_MOT_4; i++) {
|
|
motor_out[i] = _rc_throttle->radio_min;
|
|
}
|
|
|
|
// Send minimum values to all motors
|
|
output_min();
|
|
}
|
|
|
|
// output_disarmed - sends commands to the motors
|
|
void AP_MotorsTri::output_test()
|
|
{
|
|
// Send minimum values to all motors
|
|
output_min();
|
|
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _rc_throttle->radio_min);
|
|
hal.scheduler->delay(4000);
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _rc_throttle->radio_min + 100);
|
|
hal.scheduler->delay(300);
|
|
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _rc_throttle->radio_min);
|
|
hal.scheduler->delay(2000);
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _rc_throttle->radio_min + 100);
|
|
hal.scheduler->delay(300);
|
|
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _rc_throttle->radio_min);
|
|
hal.scheduler->delay(2000);
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _rc_throttle->radio_min + 100);
|
|
hal.scheduler->delay(300);
|
|
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], motor_out[AP_MOTORS_MOT_1]);
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], motor_out[AP_MOTORS_MOT_2]);
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], motor_out[AP_MOTORS_MOT_4]);
|
|
}
|