ardupilot/libraries/AP_Terrain/AP_Terrain.cpp
2014-07-24 21:45:46 +10:00

326 lines
10 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_HAL.h>
#include <AP_Common.h>
#include <AP_Math.h>
#include <GCS_MAVLink.h>
#include <GCS.h>
#include "AP_Terrain.h"
#include <assert.h>
#include <stdio.h>
#if HAVE_AP_TERRAIN
extern const AP_HAL::HAL& hal;
// table of user settable parameters
const AP_Param::GroupInfo AP_Terrain::var_info[] PROGMEM = {
// @Param: ENABLE
// @DisplayName: Terrain following enable
// @Description: enable terrain following
// @Values: 0:Disable,1:Enable
AP_GROUPINFO("ENABLE", 0, AP_Terrain, enable, 0),
// @Param: SPACING
// @DisplayName: Terrain grid spacing
// @Description: distance between terrain grid points in meters
// @Units: meters
// @Increment: 1
AP_GROUPINFO("SPACING", 1, AP_Terrain, grid_spacing, 100),
AP_GROUPEND
};
// constructor
AP_Terrain::AP_Terrain(AP_AHRS &_ahrs) :
ahrs(_ahrs),
last_request_time_ms(0)
{
AP_Param::setup_object_defaults(this, var_info);
}
#define ASSERT_RANGE(v,minv,maxv) assert((v)<=(maxv)&&(v)>=(minv))
/*
calculate bit number in grid_block bitmap. This corresponds to a
bit representing a 4x4 mavlink transmitted block
*/
uint8_t AP_Terrain::grid_bitnum(uint8_t idx_x, uint8_t idx_y)
{
ASSERT_RANGE(idx_x,0,27);
ASSERT_RANGE(idx_y,0,31);
uint8_t subgrid_x = idx_x / TERRAIN_GRID_MAVLINK_SIZE;
uint8_t subgrid_y = idx_y / TERRAIN_GRID_MAVLINK_SIZE;
ASSERT_RANGE(subgrid_x,0,TERRAIN_GRID_BLOCK_MUL_X-1);
ASSERT_RANGE(subgrid_y,0,TERRAIN_GRID_BLOCK_MUL_Y-1);
return subgrid_y + TERRAIN_GRID_BLOCK_MUL_Y*subgrid_x;
}
/*
given a grid_info check that a given idx_x/idx_y is available (set
in the bitmap)
*/
bool AP_Terrain::check_bitmap(const struct grid_block &grid, uint8_t idx_x, uint8_t idx_y)
{
uint8_t bitnum = grid_bitnum(idx_x, idx_y);
return (grid.bitmap & (((uint64_t)1U)<<bitnum)) != 0;
}
/*
given a location, calculate the 32x28 grid SW corner, plus the
grid indices
*/
void AP_Terrain::calculate_grid_info(const Location &loc, struct grid_info &info) const
{
// grids start on integer degrees. This makes storing terrain data
// on the SD card a bit easier
info.lat_degrees = (loc.lat<0?(loc.lat-9999999L):loc.lat) / (10*1000*1000L);
info.lon_degrees = (loc.lng<0?(loc.lng-9999999L):loc.lng) / (10*1000*1000L);
// create reference position for this rounded degree position
Location ref;
ref.lat = info.lat_degrees*10*1000*1000L;
ref.lng = info.lon_degrees*10*1000*1000L;
// find offset from reference
Vector2f offset = location_diff(ref, loc);
// get indices in terms of grid_spacing elements
uint32_t idx_x = offset.x / grid_spacing;
uint32_t idx_y = offset.y / grid_spacing;
// find indexes into 32*28 grids for this degree reference. Note
// the use of TERRAIN_GRID_BLOCK_SPACING_{X,Y} which gives a one square
// overlap between grids
uint16_t grid_idx_x = idx_x / TERRAIN_GRID_BLOCK_SPACING_X;
uint16_t grid_idx_y = idx_y / TERRAIN_GRID_BLOCK_SPACING_Y;
// find the indices within the 32*28 grid
info.idx_x = idx_x % TERRAIN_GRID_BLOCK_SPACING_X;
info.idx_y = idx_y % TERRAIN_GRID_BLOCK_SPACING_Y;
// find the fraction (0..1) within the square
info.frac_x = (offset.x - idx_x * grid_spacing) / grid_spacing;
info.frac_y = (offset.y - idx_y * grid_spacing) / grid_spacing;
// calculate lat/lon of SW corner of 32*28 grid_block
location_offset(ref,
grid_idx_x * TERRAIN_GRID_BLOCK_SPACING_X * (float)grid_spacing,
grid_idx_y * TERRAIN_GRID_BLOCK_SPACING_Y * (float)grid_spacing);
info.grid_lat = ref.lat;
info.grid_lon = ref.lng;
ASSERT_RANGE(info.idx_x,0,TERRAIN_GRID_BLOCK_SPACING_X-1);
ASSERT_RANGE(info.idx_y,0,TERRAIN_GRID_BLOCK_SPACING_Y-1);
ASSERT_RANGE(info.frac_x,0,1);
ASSERT_RANGE(info.frac_y,0,1);
}
/*
find a grid structure given a grid_info
*/
AP_Terrain::grid_cache &AP_Terrain::find_grid(const struct grid_info &info)
{
uint16_t oldest_i = 0;
// see if we have that grid
for (uint16_t i=0; i<TERRAIN_GRID_BLOCK_CACHE_SIZE; i++) {
if (cache[i].grid.lat == info.grid_lat &&
cache[i].grid.lon == info.grid_lon) {
cache[i].last_access_ms = hal.scheduler->millis();
return cache[i];
}
if (cache[i].last_access_ms < cache[oldest_i].last_access_ms) {
oldest_i = i;
}
}
// Not found. Use the oldest grid and make it this grid,
// initially unpopulated
struct grid_cache &grid = cache[oldest_i];
memset(&grid, 0, sizeof(grid));
grid.grid.lat = info.grid_lat;
grid.grid.lon = info.grid_lon;
grid.grid.spacing = grid_spacing;
grid.last_access_ms = hal.scheduler->millis();
return grid;
}
/*
return terrain height in meters above average sea level (WGS84) for
a given position
*/
bool AP_Terrain::height_amsl(const Location &loc, float &height)
{
if (!enable) {
return false;
}
struct grid_info info;
calculate_grid_info(loc, info);
// find the grid
const struct grid_block &grid = find_grid(info).grid;
/*
note that we rely on the one square overlap to ensure these
calculations don't go past the end of the arrays
*/
ASSERT_RANGE(info.idx_x, 0, TERRAIN_GRID_BLOCK_SIZE_X-2);
ASSERT_RANGE(info.idx_y, 0, TERRAIN_GRID_BLOCK_SIZE_Y-2);
// check we have all 4 required heights
if (!check_bitmap(grid, info.idx_x, info.idx_y) ||
!check_bitmap(grid, info.idx_x, info.idx_y+1) ||
!check_bitmap(grid, info.idx_x+1, info.idx_y) ||
!check_bitmap(grid, info.idx_x+1, info.idx_y+1)) {
return false;
}
// hXY are the heights of the 4 surrounding grid points
int16_t h00, h01, h10, h11;
h00 = grid.height[info.idx_x+0][info.idx_y+0];
h01 = grid.height[info.idx_x+0][info.idx_y+1];
h10 = grid.height[info.idx_x+1][info.idx_y+0];
h11 = grid.height[info.idx_x+1][info.idx_y+1];
float avg1 = (1.0f-info.frac_x) * h00 + info.frac_x * h10;
float avg2 = (1.0f-info.frac_x) * h01 + info.frac_x * h11;
float avg = (1.0f-info.frac_y) * avg1 + info.frac_y * avg2;
height = avg;
return true;
}
/*
request any missing 4x4 grids from a block
*/
bool AP_Terrain::request_missing(mavlink_channel_t chan, const struct grid_info &info)
{
// find the grid
struct grid_block &grid = find_grid(info).grid;
// see if it is fully populated
const uint64_t mask = (((uint64_t)1U)<<(TERRAIN_GRID_BLOCK_MUL_X*TERRAIN_GRID_BLOCK_MUL_Y)) - 1;
if ((grid.bitmap & mask) == mask) {
// it is fully populated, nothing to do
return false;
}
/*
ask the GCS to send a set of 4x4 grids
*/
mavlink_msg_terrain_request_send(chan, grid.lat, grid.lon, grid_spacing, mask & ~grid.bitmap);
last_request_time_ms = hal.scheduler->millis();
return true;
}
/*
send any pending terrain request to the GCS
*/
void AP_Terrain::send_request(mavlink_channel_t chan)
{
if (enable == 0) {
// not enabled
return;
}
// did we request recently?
if (hal.scheduler->millis() - last_request_time_ms < 2000) {
// too soon to request again
return;
}
Location loc;
if (!ahrs.get_position(loc)) {
// we don't know where we are
return;
}
// request any missing 4x4 blocks in the current grid
struct grid_info info;
calculate_grid_info(loc, info);
if (request_missing(chan, info)) {
return;
}
}
/*
handle terrain data from GCS
*/
void AP_Terrain::handle_data(mavlink_message_t *msg)
{
mavlink_terrain_data_t packet;
mavlink_msg_terrain_data_decode(msg, &packet);
uint16_t i;
for (i=0; i<TERRAIN_GRID_BLOCK_CACHE_SIZE; i++) {
if (cache[i].grid.lat == packet.lat &&
cache[i].grid.lon == packet.lon &&
cache[i].grid.spacing == packet.grid_spacing &&
packet.gridbit < 56) {
break;
}
}
if (i == TERRAIN_GRID_BLOCK_CACHE_SIZE) {
// we don't have that grid, ignore data
return;
}
struct grid_cache &gcache = cache[i];
struct grid_block &grid = gcache.grid;
uint8_t idx_x = (packet.gridbit / TERRAIN_GRID_BLOCK_MUL_Y) * TERRAIN_GRID_MAVLINK_SIZE;
uint8_t idx_y = (packet.gridbit % TERRAIN_GRID_BLOCK_MUL_Y) * TERRAIN_GRID_MAVLINK_SIZE;
ASSERT_RANGE(idx_x,0,(TERRAIN_GRID_BLOCK_MUL_X-1)*TERRAIN_GRID_MAVLINK_SIZE);
ASSERT_RANGE(idx_y,0,(TERRAIN_GRID_BLOCK_MUL_Y-1)*TERRAIN_GRID_MAVLINK_SIZE);
for (uint8_t x=0; x<TERRAIN_GRID_MAVLINK_SIZE; x++) {
for (uint8_t y=0; y<TERRAIN_GRID_MAVLINK_SIZE; y++) {
grid.height[idx_x+x][idx_y+y] = packet.data[x*TERRAIN_GRID_MAVLINK_SIZE+y];
ASSERT_RANGE(grid.height[idx_x+x][idx_y+y], 1, 20000);
}
}
hal.console->printf("Filled bit %u idx_x=%u idx_y=%u\n",
(unsigned)packet.gridbit, (unsigned)idx_x, (unsigned)idx_y);
gcache.grid.bitmap |= ((uint64_t)1) << packet.gridbit;
}
/*
update terrain data. Check if we need to request more grids. This
should be called at 1Hz
*/
void AP_Terrain::update(void)
{
float height;
Location loc;
if (!ahrs.get_position(loc)) {
// we don't know where we are
return;
}
if (height_amsl(loc, height)) {
printf("height %.2f\n", height);
}
}
#endif // HAVE_AP_TERRAIN