ardupilot/ArduCopter/motors_hexa.pde
Pat Hickey 0735c2b62f Arducopter Motors Hexa: Change ordering of MOT designations in Plus frame
* This will change the output order for APM2, but not APM1.
2012-01-31 18:18:13 -08:00

246 lines
6.7 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#if (FRAME_CONFIG == HEXA_X_FRAME) || (FRAME_CONFIG == HEXA_PLUS_FRAME)
static void init_motors_out()
{
#if INSTANT_PWM == 0
APM_RC.SetFastOutputChannels( _BV(MOT_1) | _BV(MOT_2) | _BV(MOT_3) | _BV(MOT_4)
| _BV(MOT_5) | _BV(MOT_6) );
#endif
}
static void motors_output_enable()
{
APM_RC.enable_out(MOT_1);
APM_RC.enable_out(MOT_2);
APM_RC.enable_out(MOT_3);
APM_RC.enable_out(MOT_4);
APM_RC.enable_out(MOT_5);
APM_RC.enable_out(MOT_6);
}
static void output_motors_armed()
{
int roll_out, pitch_out;
int out_min = g.rc_3.radio_min;
int out_max = g.rc_3.radio_max;
// Throttle is 0 to 1000 only
g.rc_3.servo_out = constrain(g.rc_3.servo_out, 0, MAXIMUM_THROTTLE);
if(g.rc_3.servo_out > 0)
out_min = g.rc_3.radio_min + MINIMUM_THROTTLE;
g.rc_1.calc_pwm();
g.rc_2.calc_pwm();
g.rc_3.calc_pwm();
g.rc_4.calc_pwm();
if(g.frame_orientation == X_FRAME){
roll_out = g.rc_1.pwm_out / 2;
pitch_out = (float)g.rc_2.pwm_out * .866;
//LEFT SIDE
motor_out[MOT_2] = g.rc_3.radio_out + roll_out + pitch_out; // FRONT CW
motor_out[MOT_3] = g.rc_3.radio_out + g.rc_1.pwm_out; // MIDDLE CCW
motor_out[MOT_4] = g.rc_3.radio_out + roll_out - pitch_out; // BACK CW
//RIGHT SIDE
motor_out[MOT_1] = g.rc_3.radio_out - roll_out + pitch_out; // FRONT CCW
motor_out[MOT_6] = g.rc_3.radio_out - g.rc_1.pwm_out; // MIDDLE CW
motor_out[MOT_5] = g.rc_3.radio_out - roll_out - pitch_out; // BACK CCW
} else {
roll_out = (float)g.rc_1.pwm_out * .866;
pitch_out = g.rc_2.pwm_out / 2;
//FRONT SIDE
motor_out[MOT_5] = g.rc_3.radio_out - roll_out + pitch_out; // FRONT RIGHT CCW
motor_out[MOT_6] = g.rc_3.radio_out + g.rc_2.pwm_out; // FRONT CW
motor_out[MOT_1] = g.rc_3.radio_out + roll_out + pitch_out; // FRONT LEFT CCW
//BACK SIDE
motor_out[MOT_2] = g.rc_3.radio_out + roll_out - pitch_out; // BACK LEFT CW
motor_out[MOT_3] = g.rc_3.radio_out - g.rc_2.pwm_out; // BACK CCW
motor_out[MOT_4] = g.rc_3.radio_out - roll_out - pitch_out; // BACK RIGHT CW
}
// Yaw
motor_out[MOT_1] += g.rc_4.pwm_out; // CCW
motor_out[MOT_3] += g.rc_4.pwm_out; // CCW
motor_out[MOT_5] += g.rc_4.pwm_out; // CCW
motor_out[MOT_2] -= g.rc_4.pwm_out; // CW
motor_out[MOT_4] -= g.rc_4.pwm_out; // CW
motor_out[MOT_6] -= g.rc_4.pwm_out; // CW
// Tridge's stability patch
for (int m = 0; m <= 6; m++) {
int c = ch_of_mot(m);
int c_opp = ch_of_mot(m^1); // m^1 is the opposite motor. c_opp is channel of opposite motor.
if (motor_out[c] > out_max) {
motor_out[c_opp] -= motor_out[c] - out_max;
motor_out[c] = out_max;
}
}
// limit output so motors don't stop
motor_out[MOT_1] = max(motor_out[MOT_1], out_min);
motor_out[MOT_2] = max(motor_out[MOT_2], out_min);
motor_out[MOT_3] = max(motor_out[MOT_3], out_min);
motor_out[MOT_4] = max(motor_out[MOT_4], out_min);
motor_out[MOT_5] = max(motor_out[MOT_5], out_min);
motor_out[MOT_6] = max(motor_out[MOT_6], out_min);
#if CUT_MOTORS == ENABLED
// if we are not sending a throttle output, we cut the motors
if(g.rc_3.servo_out == 0){
motor_out[MOT_1] = g.rc_3.radio_min;
motor_out[MOT_2] = g.rc_3.radio_min;
motor_out[MOT_3] = g.rc_3.radio_min;
motor_out[MOT_4] = g.rc_3.radio_min;
motor_out[MOT_5] = g.rc_3.radio_min;
motor_out[MOT_6] = g.rc_3.radio_min;
}
#endif
// this filter slows the acceleration of motors vs the deceleration
// Idea by Denny Rowland to help with his Yaw issue
for(int8_t m = 0; m <= 6; m++ ) {
int c = ch_of_mot(m);
if(motor_filtered[c] < motor_out[c]){
motor_filtered[c] = (motor_out[c] + motor_filtered[c]) / 2;
}else{
// don't filter
motor_filtered[c] = motor_out[c];
}
}
APM_RC.OutputCh(MOT_1, motor_filtered[MOT_1]);
APM_RC.OutputCh(MOT_2, motor_filtered[MOT_2]);
APM_RC.OutputCh(MOT_3, motor_filtered[MOT_3]);
APM_RC.OutputCh(MOT_4, motor_filtered[MOT_4]);
APM_RC.OutputCh(MOT_5, motor_filtered[MOT_5]);
APM_RC.OutputCh(MOT_6, motor_filtered[MOT_6]);
#if INSTANT_PWM == 1
// InstantPWM
APM_RC.Force_Out0_Out1();
APM_RC.Force_Out2_Out3();
APM_RC.Force_Out6_Out7();
#endif
}
static void output_motors_disarmed()
{
if(g.rc_3.control_in > 0){
// we have pushed up the throttle
// remove safety
motor_auto_armed = true;
}
// fill the motor_out[] array for HIL use
for (unsigned char i = 0; i < 8; i++) {
motor_out[i] = g.rc_3.radio_min;
}
// Send commands to motors
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_2, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_3, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_4, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_5, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_6, g.rc_3.radio_min);
}
static void output_motor_test()
{
motor_out[MOT_1] = g.rc_3.radio_min;
motor_out[MOT_2] = g.rc_3.radio_min;
motor_out[MOT_3] = g.rc_3.radio_min;
motor_out[MOT_4] = g.rc_3.radio_min;
motor_out[MOT_5] = g.rc_3.radio_min;
motor_out[MOT_6] = g.rc_3.radio_min;
if(g.frame_orientation == X_FRAME){
if(g.rc_1.control_in > 3000){ // right
motor_out[MOT_6] += 100;
}
if(g.rc_1.control_in < -3000){ // left
motor_out[MOT_3] += 100;
}
if(g.rc_2.control_in > 3000){ // back
motor_out[MOT_5] += 100;
motor_out[MOT_4] += 100;
}
if(g.rc_2.control_in < -3000){ // front
motor_out[MOT_1] += 100;
motor_out[MOT_2] += 100;
}
}else{
if(g.rc_1.control_in > 3000){ // right
motor_out[MOT_1] += 100;
motor_out[MOT_6] += 100;
}
if(g.rc_1.control_in < -3000){ // left
motor_out[MOT_3] += 100;
motor_out[MOT_4] += 100;
}
if(g.rc_2.control_in > 3000){ // back
motor_out[MOT_5] += 100;
}
if(g.rc_2.control_in < -3000){ // front
motor_out[MOT_2] += 100;
}
}
APM_RC.OutputCh(MOT_1, motor_out[MOT_1]);
APM_RC.OutputCh(MOT_2, motor_out[MOT_2]);
APM_RC.OutputCh(MOT_3, motor_out[MOT_3]);
APM_RC.OutputCh(MOT_4, motor_out[MOT_4]);
APM_RC.OutputCh(MOT_5, motor_out[MOT_5]);
APM_RC.OutputCh(MOT_6, motor_out[MOT_6]);
}
/*
APM_RC.OutputCh(MOT_2, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_3, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(MOT_3, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_5, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(MOT_5, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_4, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(MOT_4, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_6, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(MOT_6, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_2, g.rc_3.radio_min + 100);
delay(1000);
}
*/
#endif