ardupilot/ArduSub/ArduSub.cpp

458 lines
13 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// ArduSub scheduling, originally copied from ArduCopter
#include "Sub.h"
#define SCHED_TASK(func, rate_hz, max_time_micros) SCHED_TASK_CLASS(Sub, &sub, func, rate_hz, max_time_micros)
/*
scheduler table for fast CPUs - all regular tasks apart from the fast_loop()
should be listed here, along with how often they should be called (in hz)
and the maximum time they are expected to take (in microseconds)
*/
const AP_Scheduler::Task Sub::scheduler_tasks[] = {
SCHED_TASK(fifty_hz_loop, 50, 75),
SCHED_TASK(update_GPS, 50, 200),
#if OPTFLOW == ENABLED
SCHED_TASK(update_optical_flow, 200, 160),
#endif
SCHED_TASK(update_batt_compass, 10, 120),
SCHED_TASK(read_rangefinder, 20, 100),
SCHED_TASK(update_altitude, 10, 100),
SCHED_TASK(three_hz_loop, 3, 75),
SCHED_TASK(update_turn_counter, 10, 50),
SCHED_TASK(compass_accumulate, 100, 100),
SCHED_TASK(barometer_accumulate, 50, 90),
SCHED_TASK(update_notify, 50, 90),
SCHED_TASK(one_hz_loop, 1, 100),
SCHED_TASK(gcs_check_input, 400, 180),
SCHED_TASK(gcs_send_heartbeat, 1, 110),
SCHED_TASK(gcs_send_deferred, 50, 550),
SCHED_TASK(gcs_data_stream_send, 50, 550),
SCHED_TASK(update_mount, 50, 75),
#if CAMERA == ENABLED
SCHED_TASK(update_trigger, 50, 75),
#endif
SCHED_TASK(ten_hz_logging_loop, 10, 350),
SCHED_TASK(twentyfive_hz_logging, 25, 110),
SCHED_TASK(dataflash_periodic, 400, 300),
SCHED_TASK(perf_update, 0.1, 75),
#if RPM_ENABLED == ENABLED
SCHED_TASK(rpm_update, 10, 200),
#endif
SCHED_TASK(compass_cal_update, 100, 100),
SCHED_TASK(accel_cal_update, 10, 100),
SCHED_TASK(terrain_update, 10, 100),
#if GRIPPER_ENABLED == ENABLED
SCHED_TASK(gripper_update, 10, 75),
#endif
#ifdef USERHOOK_FASTLOOP
SCHED_TASK(userhook_FastLoop, 100, 75),
#endif
#ifdef USERHOOK_50HZLOOP
SCHED_TASK(userhook_50Hz, 50, 75),
#endif
#ifdef USERHOOK_MEDIUMLOOP
SCHED_TASK(userhook_MediumLoop, 10, 75),
#endif
#ifdef USERHOOK_SLOWLOOP
SCHED_TASK(userhook_SlowLoop, 3.3, 75),
#endif
#ifdef USERHOOK_SUPERSLOWLOOP
SCHED_TASK(userhook_SuperSlowLoop, 1, 75),
#endif
};
void Sub::setup()
{
// Load the default values of variables listed in var_info[]s
AP_Param::setup_sketch_defaults();
init_ardupilot();
// initialise the main loop scheduler
scheduler.init(&scheduler_tasks[0], ARRAY_SIZE(scheduler_tasks));
// setup initial performance counters
perf_info_reset();
fast_loopTimer = AP_HAL::micros();
}
/*
if the compass is enabled then try to accumulate a reading
*/
void Sub::compass_accumulate(void)
{
if (g.compass_enabled) {
compass.accumulate();
}
}
/*
try to accumulate a baro reading
*/
void Sub::barometer_accumulate(void)
{
barometer.accumulate();
}
void Sub::perf_update(void)
{
if (should_log(MASK_LOG_PM)) {
Log_Write_Performance();
}
if (scheduler.debug()) {
gcs_send_text_fmt(MAV_SEVERITY_WARNING, "PERF: %u/%u %lu %lu\n",
(unsigned)perf_info_get_num_long_running(),
(unsigned)perf_info_get_num_loops(),
(unsigned long)perf_info_get_max_time(),
(unsigned long)perf_info_get_min_time());
}
perf_info_reset();
pmTest1 = 0;
}
void Sub::loop()
{
// wait for an INS sample
ins.wait_for_sample();
uint32_t timer = micros();
// check loop time
perf_info_check_loop_time(timer - fast_loopTimer);
// used by PI Loops
G_Dt = (float)(timer - fast_loopTimer) / 1000000.0f;
fast_loopTimer = timer;
// for mainloop failure monitoring
mainLoop_count++;
// Execute the fast loop
// ---------------------
fast_loop();
// tell the scheduler one tick has passed
scheduler.tick();
// run all the tasks that are due to run. Note that we only
// have to call this once per loop, as the tasks are scheduled
// in multiples of the main loop tick. So if they don't run on
// the first call to the scheduler they won't run on a later
// call until scheduler.tick() is called again
uint32_t time_available = (timer + MAIN_LOOP_MICROS) - micros();
scheduler.run(time_available);
}
// Main loop - 400hz
void Sub::fast_loop()
{
// update INS immediately to get current gyro data populated
ins.update();
if (control_mode != MANUAL) { //don't run rate controller in manual mode
// run low level rate controllers that only require IMU data
attitude_control.rate_controller_run();
}
// send outputs to the motors library
motors_output();
// run EKF state estimator (expensive)
// --------------------
read_AHRS();
// Inertial Nav
// --------------------
read_inertia();
// check if ekf has reset target heading
check_ekf_yaw_reset();
// run the attitude controllers
update_flight_mode();
// update home from EKF if necessary
update_home_from_EKF();
// check if we've reached the surface or bottom
update_surface_and_bottom_detector();
#if MOUNT == ENABLED
// camera mount's fast update
camera_mount.update_fast();
#endif
// log sensor health
if (should_log(MASK_LOG_ANY)) {
Log_Sensor_Health();
}
}
// 50 Hz tasks
void Sub::fifty_hz_loop()
{
// check pilot input failsafe
failsafe_pilot_input_check();
failsafe_crash_check();
failsafe_ekf_check();
failsafe_sensors_check();
// Update servo output
RC_Channels::set_pwm_all();
// wait for outputs to initialize: TODO find a better way to do this
if (millis() > 10000) {
SRV_Channels::limit_slew_rate(SRV_Channel::k_mount_tilt, g.cam_slew_limit, 0.02f);
}
SRV_Channels::output_ch_all();
}
// updates the status of notify
// should be called at 50hz
void Sub::update_notify()
{
notify.update();
}
// update_mount - update camera mount position
// should be run at 50hz
void Sub::update_mount()
{
#if MOUNT == ENABLED
// update camera mount's position
camera_mount.update();
#endif
}
#if CAMERA == ENABLED
// update camera trigger
void Sub::update_trigger(void)
{
camera.trigger_pic_cleanup();
if (camera.check_trigger_pin()) {
gcs_send_message(MSG_CAMERA_FEEDBACK);
if (should_log(MASK_LOG_CAMERA)) {
DataFlash.Log_Write_Camera(ahrs, gps, current_loc);
}
}
}
#endif
// update_batt_compass - read battery and compass
// should be called at 10hz
void Sub::update_batt_compass(void)
{
// read battery before compass because it may be used for motor interference compensation
read_battery();
if (g.compass_enabled) {
// update compass with throttle value - used for compassmot
compass.set_throttle(motors.get_throttle());
compass.read();
// log compass information
if (should_log(MASK_LOG_COMPASS) && !ahrs.have_ekf_logging()) {
DataFlash.Log_Write_Compass(compass);
}
}
}
// ten_hz_logging_loop
// should be run at 10hz
void Sub::ten_hz_logging_loop()
{
// log attitude data if we're not already logging at the higher rate
if (should_log(MASK_LOG_ATTITUDE_MED) && !should_log(MASK_LOG_ATTITUDE_FAST)) {
Log_Write_Attitude();
DataFlash.Log_Write_Rate(ahrs, motors, attitude_control, pos_control);
if (should_log(MASK_LOG_PID)) {
DataFlash.Log_Write_PID(LOG_PIDR_MSG, attitude_control.get_rate_roll_pid().get_pid_info());
DataFlash.Log_Write_PID(LOG_PIDP_MSG, attitude_control.get_rate_pitch_pid().get_pid_info());
DataFlash.Log_Write_PID(LOG_PIDY_MSG, attitude_control.get_rate_yaw_pid().get_pid_info());
DataFlash.Log_Write_PID(LOG_PIDA_MSG, g.pid_accel_z.get_pid_info());
}
}
if (should_log(MASK_LOG_MOTBATT)) {
Log_Write_MotBatt();
}
if (should_log(MASK_LOG_RCIN)) {
DataFlash.Log_Write_RCIN();
}
if (should_log(MASK_LOG_RCOUT)) {
DataFlash.Log_Write_RCOUT();
}
if (should_log(MASK_LOG_NTUN) && mode_requires_GPS(control_mode)) {
Log_Write_Nav_Tuning();
}
if (should_log(MASK_LOG_IMU) || should_log(MASK_LOG_IMU_FAST) || should_log(MASK_LOG_IMU_RAW)) {
DataFlash.Log_Write_Vibration(ins);
}
if (should_log(MASK_LOG_CTUN)) {
attitude_control.control_monitor_log();
}
}
// twentyfive_hz_logging_loop
// should be run at 25hz
void Sub::twentyfive_hz_logging()
{
if (should_log(MASK_LOG_ATTITUDE_FAST)) {
Log_Write_Attitude();
DataFlash.Log_Write_Rate(ahrs, motors, attitude_control, pos_control);
if (should_log(MASK_LOG_PID)) {
DataFlash.Log_Write_PID(LOG_PIDR_MSG, attitude_control.get_rate_roll_pid().get_pid_info());
DataFlash.Log_Write_PID(LOG_PIDP_MSG, attitude_control.get_rate_pitch_pid().get_pid_info());
DataFlash.Log_Write_PID(LOG_PIDY_MSG, attitude_control.get_rate_yaw_pid().get_pid_info());
DataFlash.Log_Write_PID(LOG_PIDA_MSG, g.pid_accel_z.get_pid_info());
}
}
// log IMU data if we're not already logging at the higher rate
if (should_log(MASK_LOG_IMU) && !should_log(MASK_LOG_IMU_RAW)) {
DataFlash.Log_Write_IMU(ins);
}
}
void Sub::dataflash_periodic(void)
{
DataFlash.periodic_tasks();
}
// three_hz_loop - 3.3hz loop
void Sub::three_hz_loop()
{
leak_detector.update();
failsafe_leak_check();
failsafe_internal_pressure_check();
failsafe_internal_temperature_check();
// check if we've lost contact with the ground station
failsafe_gcs_check();
// check if we've lost terrain data
failsafe_terrain_check();
#if AC_FENCE == ENABLED
// check if we have breached a fence
fence_check();
#endif // AC_FENCE_ENABLED
ServoRelayEvents.update_events();
}
// one_hz_loop - runs at 1Hz
void Sub::one_hz_loop()
{
bool arm_check = arming.pre_arm_checks(false);
ap.pre_arm_check = arm_check;
AP_Notify::flags.pre_arm_check = arm_check;
AP_Notify::flags.pre_arm_gps_check = position_ok();
if (should_log(MASK_LOG_ANY)) {
Log_Write_Data(DATA_AP_STATE, ap.value);
}
if (!motors.armed()) {
// make it possible to change ahrs orientation at runtime during initial config
ahrs.set_orientation();
// set all throttle channel settings
motors.set_throttle_range(channel_throttle->get_radio_min(), channel_throttle->get_radio_max());
}
// update assigned functions and enable auxiliary servos
SRV_Channels::enable_aux_servos();
// update position controller alt limits
update_poscon_alt_max();
// enable/disable raw gyro/accel logging
ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW));
// log terrain data
terrain_logging();
}
// called at 50hz
void Sub::update_GPS(void)
{
static uint32_t last_gps_reading[GPS_MAX_INSTANCES]; // time of last gps message
bool gps_updated = false;
gps.update();
// log after every gps message
for (uint8_t i=0; i<gps.num_sensors(); i++) {
if (gps.last_message_time_ms(i) != last_gps_reading[i]) {
last_gps_reading[i] = gps.last_message_time_ms(i);
// log GPS message
if (should_log(MASK_LOG_GPS) && !ahrs.have_ekf_logging()) {
DataFlash.Log_Write_GPS(gps, i);
}
gps_updated = true;
}
}
if (gps_updated) {
// set system time if necessary
set_system_time_from_GPS();
// checks to initialise home and take location based pictures
if (gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
#if CAMERA == ENABLED
if (camera.update_location(current_loc, sub.ahrs) == true) {
do_take_picture();
}
#endif
}
}
}
void Sub::read_AHRS(void)
{
// Perform IMU calculations and get attitude info
//-----------------------------------------------
// <true> tells AHRS to skip INS update as we have already done it in fast_loop()
ahrs.update(true);
ahrs_view.update(true);
}
// read baro and rangefinder altitude at 10hz
void Sub::update_altitude()
{
// read in baro altitude
read_barometer();
// write altitude info to dataflash logs
if (should_log(MASK_LOG_CTUN)) {
Log_Write_Control_Tuning();
}
}
AP_HAL_MAIN_CALLBACKS(&sub);