ardupilot/libraries/SITL/SIM_BalanceBot.cpp
Peter Barker 84b3c9e267 SITL: reset balancebot to vertical in a kinmetically consistent manner
The hard-reset of all state variables means we feed the EKF inconsistent gyro data.  Attempt to upright the vehicle with a simple p-gain when it is disarmed, as if someone is pushing the thing back upright
2023-08-21 22:09:04 +10:00

175 lines
5.8 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Balance Bot simulator class
*/
#include "SIM_BalanceBot.h"
#include <stdio.h>
extern const AP_HAL::HAL& hal;
namespace SITL {
BalanceBot::BalanceBot(const char *frame_str) :
Aircraft(frame_str),
skid_turn_rate(0.15708) // meters/sec
{
dcm.from_euler(0,0,0); // initial yaw, pitch and roll in radians
lock_step_scheduled = true;
printf("Balance Bot Simulation Started\n");
}
/*
return yaw rate in degrees/second given steering_angle
*/
float BalanceBot::calc_yaw_rate(float steering) const
{
float wheel_base_length = 0.15f;
return steering * degrees( skid_turn_rate/wheel_base_length );
}
/*
update the Balance Bot simulation by one time step
*/
/*
* The balance bot is physically modeled as an inverted pendulum(cuboid) on wheels
* Further details on the equations used can be found here:
* 1) http://robotics.ee.uwa.edu.au/theses/2003-Balance-Ooi.pdf page 33 onwards
* 2) http://journals.sagepub.com/doi/pdf/10.5772/63933
*/
void BalanceBot::update(const struct sitl_input &input)
{
// pendulum/chassis constants
const float m_p = 3.0f; //pendulum mass(kg)
// const float width = 0.0650f; //width(m)
// const float height = 0.240f; //height(m)
const float l = 0.10f; //height of center of mass from base(m)
const float i_p = 0.01250f; //Moment of inertia about pitch axis(SI units)
// wheel constants
const float r_w = 0.05f; //wheel radius(m)
const float m_w = 0.1130f; //wheel mass(kg)
const float i_w = 0.00015480f; // moment of inertia of wheel(SI units)
// motor constants
const float R = 3.0f; //Winding resistance(ohm)
const float k_e = 0.240f; //back-emf constant(SI units)
const float k_t = 0.240f; //torque constant(SI units)
const float v_max = 12.0f; //max input voltage(V)
const float gear_ratio = 50.0f;
// balance bot uses skid steering
const float motor1 = 2*((input.servos[0]-1000)/1000.0f - 0.5f);
const float motor2 = 2*((input.servos[2]-1000)/1000.0f - 0.5f);
const float steering = motor1 - motor2;
const float throttle = 0.5 * (motor1 + motor2);
// motor input voltage: (throttle/max_throttle)*v_max
const float v = throttle*v_max;
// how much time has passed?
const float delta_time = frame_time_us * 1.0e-6f;
// yaw rate in degrees/s
const float yaw_rate = calc_yaw_rate(steering);
// obtain roll, pitch, yaw from dcm
float r, p, y;
dcm.to_euler(&r, &p, &y);
float theta = p; //radians
float ang_vel = gyro.y; //radians/s
if (!hal.util->get_soft_armed()) {
// simulated fingers uprighting the vehicle
const float p_gain = 200;
const float pitch_response = -sin(p) * p_gain * delta_time;
ang_vel += pitch_response;
}
// t1,t2,t3 are terms in the equation to find vehicle frame x acceleration
const float t1 = ((2.0f*gear_ratio*k_t*v/(R*r_w)) - (2.0f*gear_ratio*k_t*k_e*velocity_vf_x/(R*r_w*r_w)) - (m_p*l*ang_vel*ang_vel*sin(theta))) * (i_p + m_p*l*l);
const float t2 = -m_p*l*cos(theta)*((2.0f*gear_ratio*k_t*k_e*velocity_vf_x/(R*r_w)) - (2.0f*gear_ratio*k_t*v/(R)) + (m_p*GRAVITY_MSS*l*sin(theta)));
const float t3 = ( ((2.0f*m_w + 2.0f*i_w/(r_w*r_w) + m_p) * (i_p + m_p*l*l)) - (m_p*m_p*l*l*cos(theta)*cos(theta)) );
//vehicle frame x acceleration
const float accel_vf_x = (t1-t2)/t3;
const float angular_accel_bf_y = ((2.0f*gear_ratio*k_t*k_e*velocity_vf_x/(R*r_w)) - (2.0f*gear_ratio*k_t*v/(R)) + m_p*l*accel_vf_x*cos(theta) + m_p*GRAVITY_MSS*l*sin(theta))
/ (i_p + m_p*l*l);
// accel in body frame due to motor
accel_body = Vector3f(accel_vf_x*cos(theta), 0, -accel_vf_x*sin(theta));
// update theta and angular velocity
ang_vel += angular_accel_bf_y * delta_time;
theta += ang_vel * delta_time;
theta = fmod(theta, radians(360));
gyro = Vector3f(0, ang_vel, radians(yaw_rate));
// update attitude
dcm.rotate(gyro * delta_time);
dcm.normalize();
// add in accel due to direction change
accel_body.y += radians(yaw_rate) * velocity_vf_x;
// update x velocity in vehicle frame
velocity_vf_x += accel_vf_x * delta_time;
// now in earth frame
Vector3f accel_earth = dcm * accel_body;
accel_earth += Vector3f(0, 0, GRAVITY_MSS);
// we are on the ground, so our vertical accel is zero
accel_earth.z = 0;
if (!hal.util->get_soft_armed() &&
p < radians(2)) {
// reset to vertical when not armed for faster testing
accel_earth.zero();
velocity_ef.zero();
dcm.identity();
gyro.zero();
velocity_vf_x =0;
}
// work out acceleration as seen by the accelerometers. It sees the kinematic
// acceleration (ie. real movement), plus gravity
accel_body += dcm.transposed() * (Vector3f(0, 0, -GRAVITY_MSS));
// new velocity vector
velocity_ef += accel_earth * delta_time;
// new position vector
position += (velocity_ef * delta_time).todouble();
// neglect roll
dcm.to_euler(&r, &p, &y);
dcm.from_euler(0.0f, p, y);
use_smoothing = true;
// update lat/lon/altitude
update_position();
time_advance();
// update magnetic field
update_mag_field_bf();
}
}// namespace SITL