ardupilot/libraries/AP_InertialSensor/AP_InertialSensor_MPU6000.cpp
Lucas De Marchi 057822b51c AP_InertialSensor: AuxiliaryBus: fix return value
We should return the number of bytes written/read, not 0 on success.
This number may be useful in some cases so return it.

While at it fix a simple wrong space in the header.
2016-03-17 02:55:39 -03:00

851 lines
31 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <assert.h>
#include <utility>
#include <AP_HAL/AP_HAL.h>
#include "AP_InertialSensor_MPU6000.h"
extern const AP_HAL::HAL& hal;
// MPU6000 accelerometer scaling
#define MPU6000_ACCEL_SCALE_1G (GRAVITY_MSS / 4096.0f)
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX
#include <AP_HAL_Linux/GPIO.h>
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLEBOARD || CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXF
#define MPU6000_DRDY_PIN BBB_P8_14
#elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_RASPILOT
#define MPU6000_DRDY_PIN RPI_GPIO_24
#elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_MINLURE
#define MPU6000_DRDY_PIN MINNOW_GPIO_I2S_CLK
#endif
#endif
// MPU 6000 registers
#define MPUREG_XG_OFFS_TC 0x00
#define MPUREG_YG_OFFS_TC 0x01
#define MPUREG_ZG_OFFS_TC 0x02
#define MPUREG_X_FINE_GAIN 0x03
#define MPUREG_Y_FINE_GAIN 0x04
#define MPUREG_Z_FINE_GAIN 0x05
#define MPUREG_XA_OFFS_H 0x06 // X axis accelerometer offset (high byte)
#define MPUREG_XA_OFFS_L 0x07 // X axis accelerometer offset (low byte)
#define MPUREG_YA_OFFS_H 0x08 // Y axis accelerometer offset (high byte)
#define MPUREG_YA_OFFS_L 0x09 // Y axis accelerometer offset (low byte)
#define MPUREG_ZA_OFFS_H 0x0A // Z axis accelerometer offset (high byte)
#define MPUREG_ZA_OFFS_L 0x0B // Z axis accelerometer offset (low byte)
#define MPUREG_PRODUCT_ID 0x0C // Product ID Register
#define MPUREG_XG_OFFS_USRH 0x13 // X axis gyro offset (high byte)
#define MPUREG_XG_OFFS_USRL 0x14 // X axis gyro offset (low byte)
#define MPUREG_YG_OFFS_USRH 0x15 // Y axis gyro offset (high byte)
#define MPUREG_YG_OFFS_USRL 0x16 // Y axis gyro offset (low byte)
#define MPUREG_ZG_OFFS_USRH 0x17 // Z axis gyro offset (high byte)
#define MPUREG_ZG_OFFS_USRL 0x18 // Z axis gyro offset (low byte)
#define MPUREG_SMPLRT_DIV 0x19 // sample rate. Fsample= 1Khz/(<this value>+1) = 200Hz
# define MPUREG_SMPLRT_1000HZ 0x00
# define MPUREG_SMPLRT_500HZ 0x01
# define MPUREG_SMPLRT_250HZ 0x03
# define MPUREG_SMPLRT_200HZ 0x04
# define MPUREG_SMPLRT_100HZ 0x09
# define MPUREG_SMPLRT_50HZ 0x13
#define MPUREG_CONFIG 0x1A
#define MPUREG_GYRO_CONFIG 0x1B
// bit definitions for MPUREG_GYRO_CONFIG
# define BITS_GYRO_FS_250DPS 0x00
# define BITS_GYRO_FS_500DPS 0x08
# define BITS_GYRO_FS_1000DPS 0x10
# define BITS_GYRO_FS_2000DPS 0x18
# define BITS_GYRO_FS_MASK 0x18 // only bits 3 and 4 are used for gyro full scale so use this to mask off other bits
# define BITS_GYRO_ZGYRO_SELFTEST 0x20
# define BITS_GYRO_YGYRO_SELFTEST 0x40
# define BITS_GYRO_XGYRO_SELFTEST 0x80
#define MPUREG_ACCEL_CONFIG 0x1C
#define MPUREG_MOT_THR 0x1F // detection threshold for Motion interrupt generation. Motion is detected when the absolute value of any of the accelerometer measurements exceeds this
#define MPUREG_MOT_DUR 0x20 // duration counter threshold for Motion interrupt generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit of 1 LSB = 1 ms
#define MPUREG_ZRMOT_THR 0x21 // detection threshold for Zero Motion interrupt generation.
#define MPUREG_ZRMOT_DUR 0x22 // duration counter threshold for Zero Motion interrupt generation. The duration counter ticks at 16 Hz, therefore ZRMOT_DUR has a unit of 1 LSB = 64 ms.
#define MPUREG_FIFO_EN 0x23
# define BIT_TEMP_FIFO_EN 0x80
# define BIT_XG_FIFO_EN 0x40
# define BIT_YG_FIFO_EN 0x20
# define BIT_ZG_FIFO_EN 0x10
# define BIT_ACCEL_FIFO_EN 0x08
# define BIT_SLV2_FIFO_EN 0x04
# define BIT_SLV1_FIFO_EN 0x02
# define BIT_SLV0_FIFI_EN0 0x01
#define MPUREG_I2C_MST_CTRL 0x24
# define BIT_I2C_MST_P_NSR 0x10
# define BIT_I2C_MST_CLK_400KHZ 0x0D
#define MPUREG_I2C_SLV0_ADDR 0x25
#define MPUREG_I2C_SLV1_ADDR 0x28
#define MPUREG_I2C_SLV2_ADDR 0x2B
#define MPUREG_I2C_SLV3_ADDR 0x2E
#define MPUREG_INT_PIN_CFG 0x37
# define BIT_INT_RD_CLEAR 0x10 // clear the interrupt when any read occurs
# define BIT_LATCH_INT_EN 0x20 // latch data ready pin
#define MPUREG_I2C_SLV4_CTRL 0x34
#define MPUREG_INT_ENABLE 0x38
// bit definitions for MPUREG_INT_ENABLE
# define BIT_RAW_RDY_EN 0x01
# define BIT_DMP_INT_EN 0x02 // enabling this bit (DMP_INT_EN) also enables RAW_RDY_EN it seems
# define BIT_UNKNOWN_INT_EN 0x04
# define BIT_I2C_MST_INT_EN 0x08
# define BIT_FIFO_OFLOW_EN 0x10
# define BIT_ZMOT_EN 0x20
# define BIT_MOT_EN 0x40
# define BIT_FF_EN 0x80
#define MPUREG_INT_STATUS 0x3A
// bit definitions for MPUREG_INT_STATUS (same bit pattern as above because this register shows what interrupt actually fired)
# define BIT_RAW_RDY_INT 0x01
# define BIT_DMP_INT 0x02
# define BIT_UNKNOWN_INT 0x04
# define BIT_I2C_MST_INT 0x08
# define BIT_FIFO_OFLOW_INT 0x10
# define BIT_ZMOT_INT 0x20
# define BIT_MOT_INT 0x40
# define BIT_FF_INT 0x80
#define MPUREG_ACCEL_XOUT_H 0x3B
#define MPUREG_ACCEL_XOUT_L 0x3C
#define MPUREG_ACCEL_YOUT_H 0x3D
#define MPUREG_ACCEL_YOUT_L 0x3E
#define MPUREG_ACCEL_ZOUT_H 0x3F
#define MPUREG_ACCEL_ZOUT_L 0x40
#define MPUREG_TEMP_OUT_H 0x41
#define MPUREG_TEMP_OUT_L 0x42
#define MPUREG_GYRO_XOUT_H 0x43
#define MPUREG_GYRO_XOUT_L 0x44
#define MPUREG_GYRO_YOUT_H 0x45
#define MPUREG_GYRO_YOUT_L 0x46
#define MPUREG_GYRO_ZOUT_H 0x47
#define MPUREG_GYRO_ZOUT_L 0x48
#define MPUREG_EXT_SENS_DATA_00 0x49
#define MPUREG_I2C_SLV0_DO 0x63
#define MPUREG_I2C_MST_DELAY_CTRL 0x67
# define BIT_I2C_SLV0_DLY_EN 0x01
# define BIT_I2C_SLV1_DLY_EN 0x02
# define BIT_I2C_SLV2_DLY_EN 0x04
# define BIT_I2C_SLV3_DLY_EN 0x08
#define MPUREG_USER_CTRL 0x6A
// bit definitions for MPUREG_USER_CTRL
# define BIT_USER_CTRL_SIG_COND_RESET 0x01 // resets signal paths and results registers for all sensors (gyros, accel, temp)
# define BIT_USER_CTRL_I2C_MST_RESET 0x02 // reset I2C Master (only applicable if I2C_MST_EN bit is set)
# define BIT_USER_CTRL_FIFO_RESET 0x04 // Reset (i.e. clear) FIFO buffer
# define BIT_USER_CTRL_DMP_RESET 0x08 // Reset DMP
# define BIT_USER_CTRL_I2C_IF_DIS 0x10 // Disable primary I2C interface and enable hal.spi->interface
# define BIT_USER_CTRL_I2C_MST_EN 0x20 // Enable MPU to act as the I2C Master to external slave sensors
# define BIT_USER_CTRL_FIFO_EN 0x40 // Enable FIFO operations
# define BIT_USER_CTRL_DMP_EN 0x80 // Enable DMP operations
#define MPUREG_PWR_MGMT_1 0x6B
# define BIT_PWR_MGMT_1_CLK_INTERNAL 0x00 // clock set to internal 8Mhz oscillator
# define BIT_PWR_MGMT_1_CLK_XGYRO 0x01 // PLL with X axis gyroscope reference
# define BIT_PWR_MGMT_1_CLK_YGYRO 0x02 // PLL with Y axis gyroscope reference
# define BIT_PWR_MGMT_1_CLK_ZGYRO 0x03 // PLL with Z axis gyroscope reference
# define BIT_PWR_MGMT_1_CLK_EXT32KHZ 0x04 // PLL with external 32.768kHz reference
# define BIT_PWR_MGMT_1_CLK_EXT19MHZ 0x05 // PLL with external 19.2MHz reference
# define BIT_PWR_MGMT_1_CLK_STOP 0x07 // Stops the clock and keeps the timing generator in reset
# define BIT_PWR_MGMT_1_TEMP_DIS 0x08 // disable temperature sensor
# define BIT_PWR_MGMT_1_CYCLE 0x20 // put sensor into cycle mode. cycles between sleep mode and waking up to take a single sample of data from active sensors at a rate determined by LP_WAKE_CTRL
# define BIT_PWR_MGMT_1_SLEEP 0x40 // put sensor into low power sleep mode
# define BIT_PWR_MGMT_1_DEVICE_RESET 0x80 // reset entire device
#define MPUREG_PWR_MGMT_2 0x6C // allows the user to configure the frequency of wake-ups in Accelerometer Only Low Power Mode
#define MPUREG_BANK_SEL 0x6D // DMP bank selection register (used to indirectly access DMP registers)
#define MPUREG_MEM_START_ADDR 0x6E // DMP memory start address (used to indirectly write to dmp memory)
#define MPUREG_MEM_R_W 0x6F // DMP related register
#define MPUREG_DMP_CFG_1 0x70 // DMP related register
#define MPUREG_DMP_CFG_2 0x71 // DMP related register
#define MPUREG_FIFO_COUNTH 0x72
#define MPUREG_FIFO_COUNTL 0x73
#define MPUREG_FIFO_R_W 0x74
#define MPUREG_WHOAMI 0x75
#define BIT_READ_FLAG 0x80
#define BIT_I2C_SLVX_EN 0x80
// Configuration bits MPU 3000 and MPU 6000 (not revised)?
#define BITS_DLPF_CFG_256HZ_NOLPF2 0x00
#define BITS_DLPF_CFG_188HZ 0x01
#define BITS_DLPF_CFG_98HZ 0x02
#define BITS_DLPF_CFG_42HZ 0x03
#define BITS_DLPF_CFG_20HZ 0x04
#define BITS_DLPF_CFG_10HZ 0x05
#define BITS_DLPF_CFG_5HZ 0x06
#define BITS_DLPF_CFG_2100HZ_NOLPF 0x07
#define BITS_DLPF_CFG_MASK 0x07
// Product ID Description for MPU6000
// high 4 bits low 4 bits
// Product Name Product Revision
#define MPU6000ES_REV_C4 0x14 // 0001 0100
#define MPU6000ES_REV_C5 0x15 // 0001 0101
#define MPU6000ES_REV_D6 0x16 // 0001 0110
#define MPU6000ES_REV_D7 0x17 // 0001 0111
#define MPU6000ES_REV_D8 0x18 // 0001 1000
#define MPU6000_REV_C4 0x54 // 0101 0100
#define MPU6000_REV_C5 0x55 // 0101 0101
#define MPU6000_REV_D6 0x56 // 0101 0110
#define MPU6000_REV_D7 0x57 // 0101 0111
#define MPU6000_REV_D8 0x58 // 0101 1000
#define MPU6000_REV_D9 0x59 // 0101 1001
#define MPU6000_SAMPLE_SIZE 14
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BH
#define MPU6000_MAX_FIFO_SAMPLES 6
#else
#define MPU6000_MAX_FIFO_SAMPLES 3
#endif
#define MAX_DATA_READ (MPU6000_MAX_FIFO_SAMPLES * MPU6000_SAMPLE_SIZE)
#define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx] << 8) | v[2*idx+1]))
#define uint16_val(v, idx)(((uint16_t)v[2*idx] << 8) | v[2*idx+1])
/*
* RM-MPU-6000A-00.pdf, page 33, section 4.25 lists LSB sensitivity of
* gyro as 16.4 LSB/DPS at scale factor of +/- 2000dps (FS_SEL==3)
*/
static const float GYRO_SCALE = (0.0174532f / 16.4f);
/*
* RM-MPU-6000A-00.pdf, page 31, section 4.23 lists LSB sensitivity of
* accel as 4096 LSB/mg at scale factor of +/- 8g (AFS_SEL==2)
*
* See note below about accel scaling of engineering sample MPU6k
* variants however
*/
AP_InertialSensor_MPU6000::AP_InertialSensor_MPU6000(AP_InertialSensor &imu,
AP_HAL::OwnPtr<AP_HAL::Device> dev,
enum bus_type type,
bool use_fifo,
uint8_t read_flag)
: AP_InertialSensor_Backend(imu)
, _read_flag(read_flag)
, _use_fifo(use_fifo)
, _bus_type(type)
, _temp_filter(1000, 1)
, _dev(std::move(dev))
{
}
AP_InertialSensor_MPU6000::~AP_InertialSensor_MPU6000()
{
delete _auxiliary_bus;
}
AP_InertialSensor_Backend *AP_InertialSensor_MPU6000::probe(AP_InertialSensor &imu,
AP_HAL::OwnPtr<AP_HAL::I2CDevice> dev)
{
AP_InertialSensor_MPU6000 *sensor =
new AP_InertialSensor_MPU6000(imu, std::move(dev), BUS_TYPE_I2C, true, 0);
if (!sensor || !sensor->_init()) {
delete sensor;
return nullptr;
}
sensor->_id = HAL_INS_MPU60XX_I2C;
return sensor;
}
AP_InertialSensor_Backend *AP_InertialSensor_MPU6000::probe(AP_InertialSensor &imu,
AP_HAL::OwnPtr<AP_HAL::SPIDevice> dev)
{
AP_InertialSensor_MPU6000 *sensor =
new AP_InertialSensor_MPU6000(imu, std::move(dev), BUS_TYPE_SPI, false, 0x80);
if (!sensor || !sensor->_init()) {
delete sensor;
return nullptr;
}
sensor->_id = HAL_INS_MPU60XX_SPI;
return sensor;
}
bool AP_InertialSensor_MPU6000::_init()
{
#ifdef MPU6000_DRDY_PIN
_drdy_pin = hal.gpio->channel(MPU6000_DRDY_PIN);
_drdy_pin->mode(HAL_GPIO_INPUT);
#endif
hal.scheduler->suspend_timer_procs();
bool success = _hardware_init();
hal.scheduler->resume_timer_procs();
#if MPU6000_DEBUG
_dump_registers();
#endif
return success;
}
void AP_InertialSensor_MPU6000::_fifo_reset()
{
_register_write(MPUREG_USER_CTRL, 0);
_register_write(MPUREG_USER_CTRL, BIT_USER_CTRL_FIFO_RESET);
_register_write(MPUREG_USER_CTRL, BIT_USER_CTRL_FIFO_EN);
}
void AP_InertialSensor_MPU6000::_fifo_enable()
{
_register_write(MPUREG_FIFO_EN, BIT_XG_FIFO_EN | BIT_YG_FIFO_EN |
BIT_ZG_FIFO_EN | BIT_ACCEL_FIFO_EN | BIT_TEMP_FIFO_EN);
_fifo_reset();
hal.scheduler->delay(1);
}
bool AP_InertialSensor_MPU6000::_has_auxiliary_bus()
{
return _bus_type != BUS_TYPE_I2C;
}
void AP_InertialSensor_MPU6000::start()
{
hal.scheduler->suspend_timer_procs();
if (!_dev->get_semaphore()->take(100)) {
AP_HAL::panic("MPU6000: Unable to get semaphore");
}
// initially run the bus at low speed
_dev->set_speed(AP_HAL::Device::SPEED_LOW);
// only used for wake-up in accelerometer only low power mode
_register_write(MPUREG_PWR_MGMT_2, 0x00);
hal.scheduler->delay(1);
if (_use_fifo) {
_fifo_enable();
}
// disable sensor filtering
_set_filter_register(256);
// set sample rate to 1000Hz and apply a software filter
// In this configuration, the gyro sample rate is 8kHz
// Therefore the sample rate value is 8kHz/(SMPLRT_DIV + 1)
// So we have to set it to 7 to have a 1kHz sampling
// rate on the gyro
_register_write(MPUREG_SMPLRT_DIV, 7);
hal.scheduler->delay(1);
// Gyro scale 2000º/s
_register_write(MPUREG_GYRO_CONFIG, BITS_GYRO_FS_2000DPS);
hal.scheduler->delay(1);
// read the product ID rev c has 1/2 the sensitivity of rev d
_product_id = _register_read(MPUREG_PRODUCT_ID);
//Serial.printf("Product_ID= 0x%x\n", (unsigned) _mpu6000_product_id);
// TODO: should be changed to 16G once we have a way to override the
// previous offsets
if ((_product_id == MPU6000ES_REV_C4) ||
(_product_id == MPU6000ES_REV_C5) ||
(_product_id == MPU6000_REV_C4) ||
(_product_id == MPU6000_REV_C5)) {
// Accel scale 8g (4096 LSB/g)
// Rev C has different scaling than rev D
_register_write(MPUREG_ACCEL_CONFIG,1<<3);
} else {
// Accel scale 8g (4096 LSB/g)
_register_write(MPUREG_ACCEL_CONFIG,2<<3);
}
hal.scheduler->delay(1);
// configure interrupt to fire when new data arrives
_register_write(MPUREG_INT_ENABLE, BIT_RAW_RDY_EN);
hal.scheduler->delay(1);
// clear interrupt on any read, and hold the data ready pin high
// until we clear the interrupt
_register_write(MPUREG_INT_PIN_CFG, BIT_INT_RD_CLEAR | BIT_LATCH_INT_EN);
// now that we have initialised, we set the bus speed to high
_dev->set_speed(AP_HAL::Device::SPEED_HIGH);
_dev->get_semaphore()->give();
// grab the used instances
_gyro_instance = _imu.register_gyro(1000);
_accel_instance = _imu.register_accel(1000);
hal.scheduler->resume_timer_procs();
// start the timer process to read samples
hal.scheduler->register_timer_process(
FUNCTOR_BIND_MEMBER(&AP_InertialSensor_MPU6000::_poll_data, void));
}
/*
process any
*/
bool AP_InertialSensor_MPU6000::update()
{
update_accel(_accel_instance);
update_gyro(_gyro_instance);
_publish_temperature(_accel_instance, _temp_filtered);
/* give the temperature to the control loop in order to keep it constant*/
hal.util->set_imu_temp(_temp_filtered);
return true;
}
AuxiliaryBus *AP_InertialSensor_MPU6000::get_auxiliary_bus()
{
if (_auxiliary_bus) {
return _auxiliary_bus;
}
if (_has_auxiliary_bus()) {
_auxiliary_bus = new AP_MPU6000_AuxiliaryBus(*this);
}
return _auxiliary_bus;
}
/*
* Return true if the MPU6000 has new data available for reading.
*
* We use the data ready pin if it is available. Otherwise, read the
* status register.
*/
bool AP_InertialSensor_MPU6000::_data_ready()
{
if (_drdy_pin) {
return _drdy_pin->read() != 0;
}
uint8_t status = _register_read(MPUREG_INT_STATUS);
return (status & BIT_RAW_RDY_INT) != 0;
}
/*
* Timer process to poll for new data from the MPU6000.
*/
void AP_InertialSensor_MPU6000::_poll_data()
{
if (!_dev->get_semaphore()->take_nonblocking()) {
return;
}
if (_use_fifo) {
_read_fifo();
} else if (_data_ready()) {
_read_sample();
}
_dev->get_semaphore()->give();
}
void AP_InertialSensor_MPU6000::_accumulate(uint8_t *samples, uint8_t n_samples)
{
for (uint8_t i = 0; i < n_samples; i++) {
uint8_t *data = samples + MPU6000_SAMPLE_SIZE * i;
Vector3f accel, gyro;
float temp;
accel = Vector3f(int16_val(data, 1),
int16_val(data, 0),
-int16_val(data, 2));
accel *= MPU6000_ACCEL_SCALE_1G;
gyro = Vector3f(int16_val(data, 5),
int16_val(data, 4),
-int16_val(data, 6));
gyro *= GYRO_SCALE;
temp = int16_val(data, 3);
/* scaling/offset values from the datasheet */
temp = temp/340 + 36.53;
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXF
accel.rotate(ROTATION_PITCH_180_YAW_90);
gyro.rotate(ROTATION_PITCH_180_YAW_90);
#elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BEBOP
accel.rotate(ROTATION_YAW_270);
gyro.rotate(ROTATION_YAW_270);
#elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_MINLURE
accel.rotate(ROTATION_YAW_90);
gyro.rotate(ROTATION_YAW_90);
#endif
_rotate_and_correct_accel(_accel_instance, accel);
_rotate_and_correct_gyro(_gyro_instance, gyro);
_notify_new_accel_raw_sample(_accel_instance, accel);
_notify_new_gyro_raw_sample(_gyro_instance, gyro);
_temp_filtered = _temp_filter.apply(temp);
}
}
void AP_InertialSensor_MPU6000::_read_fifo()
{
uint8_t n_samples;
uint16_t bytes_read;
uint8_t rx[MAX_DATA_READ];
static_assert(MAX_DATA_READ <= 100, "Too big to keep on stack");
if (!_block_read(MPUREG_FIFO_COUNTH, rx, 2)) {
hal.console->printf("MPU60x0: error in fifo read\n");
return;
}
bytes_read = uint16_val(rx, 0);
n_samples = bytes_read / MPU6000_SAMPLE_SIZE;
if (n_samples == 0) {
/* Not enough data in FIFO */
return;
}
if (n_samples > MPU6000_MAX_FIFO_SAMPLES) {
hal.console->printf("bytes_read = %u, n_samples %u > %u, dropping samples\n",
bytes_read, n_samples, MPU6000_MAX_FIFO_SAMPLES);
/* Too many samples, do a FIFO RESET */
_fifo_reset();
return;
}
if (!_block_read(MPUREG_FIFO_R_W, rx, n_samples * MPU6000_SAMPLE_SIZE)) {
hal.console->printf("MPU60x0: error in fifo read %u bytes\n",
n_samples * MPU6000_SAMPLE_SIZE);
return;
}
_accumulate(rx, n_samples);
}
void AP_InertialSensor_MPU6000::_read_sample()
{
/* one register address followed by seven 2-byte registers */
struct PACKED {
uint8_t int_status;
uint8_t d[14];
} rx;
if (!_block_read(MPUREG_INT_STATUS, (uint8_t *) &rx, sizeof(rx))) {
if (++_error_count > 4) {
// TODO: set bus speed low for this (and only this) device
hal.console->printf("MPU60x0: error reading sample\n");
return;
}
}
_accumulate(rx.d, 1);
}
bool AP_InertialSensor_MPU6000::_block_read(uint8_t reg, uint8_t *buf,
uint32_t size)
{
reg |= _read_flag;
return _dev->read_registers(reg, buf, size);
}
uint8_t AP_InertialSensor_MPU6000::_register_read(uint8_t reg)
{
uint8_t val = 0;
reg |= _read_flag;
_dev->read_registers(reg, &val, 1);
return val;
}
void AP_InertialSensor_MPU6000::_register_write(uint8_t reg, uint8_t val)
{
_dev->write_register(reg, val);
}
/*
useful when debugging SPI bus errors
*/
void AP_InertialSensor_MPU6000::_register_write_check(uint8_t reg, uint8_t val)
{
uint8_t readed;
_register_write(reg, val);
readed = _register_read(reg);
if (readed != val){
hal.console->printf("Values doesn't match; written: %02x; read: %02x ", val, readed);
}
#if MPU6000_DEBUG
hal.console->printf("Values written: %02x; readed: %02x ", val, readed);
#endif
}
/*
set the DLPF filter frequency. Assumes caller has taken semaphore
*/
void AP_InertialSensor_MPU6000::_set_filter_register(uint16_t filter_hz)
{
uint8_t filter;
// choose filtering frequency
if (filter_hz == 0) {
filter = BITS_DLPF_CFG_256HZ_NOLPF2;
} else if (filter_hz <= 5) {
filter = BITS_DLPF_CFG_5HZ;
} else if (filter_hz <= 10) {
filter = BITS_DLPF_CFG_10HZ;
} else if (filter_hz <= 20) {
filter = BITS_DLPF_CFG_20HZ;
} else if (filter_hz <= 42) {
filter = BITS_DLPF_CFG_42HZ;
} else if (filter_hz <= 98) {
filter = BITS_DLPF_CFG_98HZ;
} else {
filter = BITS_DLPF_CFG_256HZ_NOLPF2;
}
_register_write(MPUREG_CONFIG, filter);
}
bool AP_InertialSensor_MPU6000::_hardware_init(void)
{
if (!_dev->get_semaphore()->take(100)) {
AP_HAL::panic("MPU6000: Unable to get semaphore");
}
// initially run the bus at low speed
_dev->set_speed(AP_HAL::Device::SPEED_LOW);
// Chip reset
uint8_t tries;
for (tries = 0; tries < 5; tries++) {
uint8_t user_ctrl = _register_read(MPUREG_USER_CTRL);
/* First disable the master I2C to avoid hanging the slaves on the
* aulixiliar I2C bus - it will be enabled again if the AuxiliaryBus
* is used */
if (user_ctrl & BIT_USER_CTRL_I2C_MST_EN) {
_register_write(MPUREG_USER_CTRL, user_ctrl & ~BIT_USER_CTRL_I2C_MST_EN);
hal.scheduler->delay(10);
}
/* reset device */
_register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_DEVICE_RESET);
hal.scheduler->delay(100);
/* bus-dependent initialization */
if (_bus_type == BUS_TYPE_SPI) {
/* Disable I2C bus if SPI selected (Recommended in Datasheet to be
* done just after the device is reset) */
_register_write(MPUREG_USER_CTRL, BIT_USER_CTRL_I2C_IF_DIS);
}
// Wake up device and select GyroZ clock. Note that the
// MPU6000 starts up in sleep mode, and it can take some time
// for it to come out of sleep
_register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_CLK_ZGYRO);
hal.scheduler->delay(5);
// check it has woken up
if (_register_read(MPUREG_PWR_MGMT_1) == BIT_PWR_MGMT_1_CLK_ZGYRO) {
break;
}
hal.scheduler->delay(10);
if (_data_ready()) {
break;
}
#if MPU6000_DEBUG
_dump_registers();
#endif
}
_dev->set_speed(AP_HAL::Device::SPEED_HIGH);
_dev->get_semaphore()->give();
if (tries == 5) {
hal.console->println("Failed to boot MPU6000 5 times");
return false;
}
return true;
}
#if MPU6000_DEBUG
// dump all config registers - used for debug
void AP_InertialSensor_MPU6000::_dump_registers(void)
{
hal.console->println("MPU6000 registers");
if (!_dev->get_semaphore()->take(100)) {
return;
}
for (uint8_t reg=MPUREG_PRODUCT_ID; reg<=108; reg++) {
uint8_t v = _register_read(reg);
hal.console->printf("%02x:%02x ", (unsigned)reg, (unsigned)v);
if ((reg - (MPUREG_PRODUCT_ID-1)) % 16 == 0) {
hal.console->println();
}
}
hal.console->println();
_dev->get_semaphore()->give();
}
#endif
AP_MPU6000_AuxiliaryBusSlave::AP_MPU6000_AuxiliaryBusSlave(AuxiliaryBus &bus, uint8_t addr,
uint8_t instance)
: AuxiliaryBusSlave(bus, addr, instance)
, _mpu6000_addr(MPUREG_I2C_SLV0_ADDR + _instance * 3)
, _mpu6000_reg(_mpu6000_addr + 1)
, _mpu6000_ctrl(_mpu6000_addr + 2)
, _mpu6000_do(MPUREG_I2C_SLV0_DO + _instance)
{
}
int AP_MPU6000_AuxiliaryBusSlave::_set_passthrough(uint8_t reg, uint8_t size,
uint8_t *out)
{
auto &backend = AP_InertialSensor_MPU6000::from(_bus.get_backend());
uint8_t addr;
/* Ensure the slave read/write is disabled before changing the registers */
backend._register_write(_mpu6000_ctrl, 0);
if (out) {
backend._register_write(_mpu6000_do, *out);
addr = _addr;
} else {
addr = _addr | BIT_READ_FLAG;
}
backend._register_write(_mpu6000_addr, addr);
backend._register_write(_mpu6000_reg, reg);
backend._register_write(_mpu6000_ctrl, BIT_I2C_SLVX_EN | size);
return 0;
}
int AP_MPU6000_AuxiliaryBusSlave::passthrough_read(uint8_t reg, uint8_t *buf,
uint8_t size)
{
assert(buf);
if (_registered) {
hal.console->println("Error: can't passthrough when slave is already configured");
return -1;
}
int r = _set_passthrough(reg, size);
if (r < 0) {
return r;
}
/* wait the value to be read from the slave and read it back */
hal.scheduler->delay(10);
auto &backend = AP_InertialSensor_MPU6000::from(_bus.get_backend());
backend._block_read(MPUREG_EXT_SENS_DATA_00 + _ext_sens_data, buf, size);
/* disable new reads */
backend._register_write(_mpu6000_ctrl, 0);
return size;
}
int AP_MPU6000_AuxiliaryBusSlave::passthrough_write(uint8_t reg, uint8_t val)
{
if (_registered) {
hal.console->println("Error: can't passthrough when slave is already configured");
return -1;
}
int r = _set_passthrough(reg, 1, &val);
if (r < 0) {
return r;
}
/* wait the value to be written to the slave */
hal.scheduler->delay(10);
auto &backend = AP_InertialSensor_MPU6000::from(_bus.get_backend());
/* disable new writes */
backend._register_write(_mpu6000_ctrl, 0);
return 1;
}
int AP_MPU6000_AuxiliaryBusSlave::read(uint8_t *buf)
{
if (!_registered) {
hal.console->println("Error: can't read before configuring slave");
return -1;
}
auto &backend = AP_InertialSensor_MPU6000::from(_bus.get_backend());
if (!backend._block_read(MPUREG_EXT_SENS_DATA_00 + _ext_sens_data, buf, _sample_size)) {
return -1;
}
return _sample_size;
}
/* MPU6000 provides up to 5 slave devices, but the 5th is way too different to
* configure and is seldom used */
AP_MPU6000_AuxiliaryBus::AP_MPU6000_AuxiliaryBus(AP_InertialSensor_MPU6000 &backend)
: AuxiliaryBus(backend, 4)
{
}
AP_HAL::Semaphore *AP_MPU6000_AuxiliaryBus::get_semaphore()
{
return static_cast<AP_InertialSensor_MPU6000&>(_ins_backend)._dev->get_semaphore();
}
AuxiliaryBusSlave *AP_MPU6000_AuxiliaryBus::_instantiate_slave(uint8_t addr, uint8_t instance)
{
/* Enable slaves on MPU6000 if this is the first time */
if (_ext_sens_data == 0) {
_configure_slaves();
}
return new AP_MPU6000_AuxiliaryBusSlave(*this, addr, instance);
}
void AP_MPU6000_AuxiliaryBus::_configure_slaves()
{
auto &backend = AP_InertialSensor_MPU6000::from(_ins_backend);
/* Enable the I2C master to slaves on the auxiliary I2C bus*/
uint8_t user_ctrl = backend._register_read(MPUREG_USER_CTRL);
backend._register_write(MPUREG_USER_CTRL, user_ctrl | BIT_USER_CTRL_I2C_MST_EN);
/* stop condition between reads; clock at 400kHz */
backend._register_write(MPUREG_I2C_MST_CTRL,
BIT_I2C_MST_P_NSR | BIT_I2C_MST_CLK_400KHZ);
/* Hard-code divider for internal sample rate, 1 kHz, resulting in a
* sample rate of 100Hz */
backend._register_write(MPUREG_I2C_SLV4_CTRL, 9);
/* All slaves are subject to the sample rate */
backend._register_write(MPUREG_I2C_MST_DELAY_CTRL,
BIT_I2C_SLV0_DLY_EN | BIT_I2C_SLV1_DLY_EN |
BIT_I2C_SLV2_DLY_EN | BIT_I2C_SLV3_DLY_EN);
}
int AP_MPU6000_AuxiliaryBus::_configure_periodic_read(AuxiliaryBusSlave *slave,
uint8_t reg, uint8_t size)
{
if (_ext_sens_data + size > MAX_EXT_SENS_DATA) {
return -1;
}
AP_MPU6000_AuxiliaryBusSlave *mpu_slave =
static_cast<AP_MPU6000_AuxiliaryBusSlave*>(slave);
mpu_slave->_set_passthrough(reg, size);
mpu_slave->_ext_sens_data = _ext_sens_data;
_ext_sens_data += size;
return 0;
}