ardupilot/libraries/AP_GPS/AP_GPS.h
Randy Mackay f630f9abc3 GPS: exclude SIRF and NMEA on APM copter build
This only works for the centralised builder, the modified Arduino IDE
will still include the NMEA and SIRF drivers meaning it will require
approximately 4k additional flash which may push us over the limit on
the APM2.  Users will instead need to exclude other features to get
below the APM1/2 flash limit.
2014-07-13 15:41:11 +09:00

374 lines
12 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __AP_GPS_H__
#define __AP_GPS_H__
#include <AP_HAL.h>
#include <inttypes.h>
#include <AP_Progmem.h>
#include <AP_Common.h>
#include <AP_Param.h>
#include <AP_Math.h>
#include <GCS_MAVLink.h>
#include <AP_Vehicle.h>
#include "GPS_detect_state.h"
/**
maximum number of GPS instances available on this platform. If more
than 1 then redundent sensors may be available
*/
#if HAL_CPU_CLASS > HAL_CPU_CLASS_16
#define GPS_MAX_INSTANCES 2
#else
#define GPS_MAX_INSTANCES 1
#endif
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_75
#define GPS_RTK_AVAILABLE 1
#else
#define GPS_RTK_AVAILABLE 0
#endif
/**
* save flash by skipping NMEA and SIRF support on ArduCopter on APM1/2 or any frame type on AVR1280 CPUs
*/
#if HAL_CPU_CLASS < HAL_CPU_CLASS_75 && defined(APM_BUILD_DIRECTORY)
#if (APM_BUILD_TYPE(APM_BUILD_ArduCopter) || defined(__AVR_ATmega1280__))
#define GPS_SKIP_SIRF_NMEA
#endif
#endif
class DataFlash_Class;
class AP_GPS_Backend;
/// @class AP_GPS
/// GPS driver main class
class AP_GPS
{
public:
// constructor
AP_GPS() {
AP_Param::setup_object_defaults(this, var_info);
}
/// Startup initialisation.
void init(DataFlash_Class *dataflash);
/// Update GPS state based on possible bytes received from the module.
/// This routine must be called periodically (typically at 10Hz or
/// more) to process incoming data.
void update(void);
//True if any of the underlying GPS Drivers are ready to enter
//a dgps-based fix beyond 3D lock, such as RTK mode.
bool can_calculate_base_pos(void);
//Allows the underlying GPS Drivers to enter a differential lock
//Might cause a position jump, thus only do this on the ground.
void calculate_base_pos(void);
// GPS driver types
enum GPS_Type {
GPS_TYPE_NONE = 0,
GPS_TYPE_AUTO = 1,
GPS_TYPE_UBLOX = 2,
GPS_TYPE_MTK = 3,
GPS_TYPE_MTK19 = 4,
GPS_TYPE_NMEA = 5,
GPS_TYPE_SIRF = 6,
GPS_TYPE_HIL = 7,
GPS_TYPE_SBP = 8
};
/// GPS status codes
enum GPS_Status {
NO_GPS = 0, ///< No GPS connected/detected
NO_FIX = 1, ///< Receiving valid GPS messages but no lock
GPS_OK_FIX_2D = 2, ///< Receiving valid messages and 2D lock
GPS_OK_FIX_3D = 3, ///< Receiving valid messages and 3D lock
GPS_OK_FIX_3D_DGPS = 4, ///< Receiving valid messages and 3D lock with differential improvements
GPS_OK_FIX_3D_RTK = 5, ///< Receiving valid messages and 3D lock, with relative-positioning improvements
};
// GPS navigation engine settings. Not all GPS receivers support
// this
enum GPS_Engine_Setting {
GPS_ENGINE_NONE = -1,
GPS_ENGINE_PORTABLE = 0,
GPS_ENGINE_STATIONARY = 2,
GPS_ENGINE_PEDESTRIAN = 3,
GPS_ENGINE_AUTOMOTIVE = 4,
GPS_ENGINE_SEA = 5,
GPS_ENGINE_AIRBORNE_1G = 6,
GPS_ENGINE_AIRBORNE_2G = 7,
GPS_ENGINE_AIRBORNE_4G = 8
};
/*
The GPS_State structure is filled in by the backend driver as it
parses each message from the GPS.
*/
struct GPS_State {
uint8_t instance; // the instance number of this GPS
// all the following fields must all be filled by the backend driver
GPS_Status status; ///< driver fix status
uint32_t time_week_ms; ///< GPS time (milliseconds from start of GPS week)
uint16_t time_week; ///< GPS week number
Location location; ///< last fix location
float ground_speed; ///< ground speed in m/sec
int32_t ground_course_cd; ///< ground course in 100ths of a degree
uint16_t hdop; ///< horizontal dilution of precision in cm
uint8_t num_sats; ///< Number of visible satelites
Vector3f velocity; ///< 3D velocitiy in m/s, in NED format
bool have_vertical_velocity:1; ///< does this GPS give vertical velocity?
uint32_t last_gps_time_ms; ///< the system time we got the last GPS timestamp, milliseconds
};
// Accessor functions
// return number of active GPS sensors. Note that if the first GPS
// is not present but the 2nd is then we return 2
uint8_t num_sensors(void) const {
return num_instances;
}
uint8_t primary_sensor(void) const {
return primary_instance;
}
// using these macros saves some code space on APM2
#if GPS_MAX_INSTANCES == 1
# define _GPS_STATE(instance) state[0]
# define _GPS_TIMING(instance) timing[0]
#else
# define _GPS_STATE(instance) state[instance]
# define _GPS_TIMING(instance) timing[instance]
#endif
/// Query GPS status
GPS_Status status(uint8_t instance) const {
return _GPS_STATE(instance).status;
}
GPS_Status status(void) const {
return status(primary_instance);
}
// Query the highest status this GPS supports
GPS_Status highest_supported_status(uint8_t instance) const;
GPS_Status highest_supported_status(void) const;
// location of last fix
const Location &location(uint8_t instance) const {
return _GPS_STATE(instance).location;
}
const Location &location() const {
return location(primary_instance);
}
// 3D velocity in NED format
const Vector3f &velocity(uint8_t instance) const {
return _GPS_STATE(instance).velocity;
}
const Vector3f &velocity() const {
return velocity(primary_instance);
}
// ground speed in m/s
float ground_speed(uint8_t instance) const {
return _GPS_STATE(instance).ground_speed;
}
float ground_speed() const {
return ground_speed(primary_instance);
}
// ground speed in cm/s
uint32_t ground_speed_cm(void) {
return ground_speed() * 100;
}
// ground course in centidegrees
int32_t ground_course_cd(uint8_t instance) const {
return _GPS_STATE(instance).ground_course_cd;
}
int32_t ground_course_cd() const {
return ground_course_cd(primary_instance);
}
// number of locked satellites
uint8_t num_sats(uint8_t instance) const {
return _GPS_STATE(instance).num_sats;
}
uint8_t num_sats() const {
return num_sats(primary_instance);
}
// GPS time of week in milliseconds
uint32_t time_week_ms(uint8_t instance) const {
return _GPS_STATE(instance).time_week_ms;
}
uint32_t time_week_ms() const {
return time_week_ms(primary_instance);
}
// GPS week
uint16_t time_week(uint8_t instance) const {
return _GPS_STATE(instance).time_week;
}
uint16_t time_week() const {
return time_week(primary_instance);
}
// horizontal dilution of precision
uint16_t get_hdop(uint8_t instance) const {
return _GPS_STATE(instance).hdop;
}
uint16_t get_hdop() const {
return get_hdop(primary_instance);
}
// the time we got our last fix in system milliseconds. This is
// used when calculating how far we might have moved since that fix
uint32_t last_fix_time_ms(uint8_t instance) const {
return _GPS_TIMING(instance).last_fix_time_ms;
}
uint32_t last_fix_time_ms(void) const {
return last_fix_time_ms(primary_instance);
}
// the time we last processed a message in milliseconds. This is
// used to indicate that we have new GPS data to process
uint32_t last_message_time_ms(uint8_t instance) const {
return _GPS_TIMING(instance).last_message_time_ms;
}
uint32_t last_message_time_ms(void) const {
return last_message_time_ms(primary_instance);
}
// return last fix time since the 1/1/1970 in microseconds
uint64_t time_epoch_usec(uint8_t instance);
uint64_t time_epoch_usec(void) {
return time_epoch_usec(primary_instance);
}
// return true if the GPS supports vertical velocity values
bool have_vertical_velocity(uint8_t instance) const {
return _GPS_STATE(instance).have_vertical_velocity;
}
bool have_vertical_velocity(void) const {
return have_vertical_velocity(primary_instance);
}
// the expected lag (in seconds) in the position and velocity readings from the gps
float get_lag() const { return 0.2f; }
// set position for HIL
void setHIL(uint8_t instance, GPS_Status status, uint64_t time_epoch_ms,
Location &location, Vector3f &velocity, uint8_t num_sats,
uint16_t hdop, bool _have_vertical_velocity);
static const struct AP_Param::GroupInfo var_info[];
// dataflash for logging, if available
DataFlash_Class *_DataFlash;
// configuration parameters
AP_Int8 _type[GPS_MAX_INSTANCES];
AP_Int8 _navfilter;
#if GPS_MAX_INSTANCES > 1
AP_Int8 _auto_switch;
AP_Int8 _min_dgps;
#endif
// handle sending of initialisation strings to the GPS
void send_blob_start(uint8_t instance, const prog_char *_blob, uint16_t size);
void send_blob_update(uint8_t instance);
// lock out a GPS port, allowing another application to use the port
void lock_port(uint8_t instance, bool locked);
//MAVLink Status Sending
void send_mavlink_gps_raw(mavlink_channel_t chan);
#if GPS_MAX_INSTANCES > 1
void send_mavlink_gps2_raw(mavlink_channel_t chan);
#endif
#if GPS_RTK_AVAILABLE
void send_mavlink_gps_rtk(mavlink_channel_t chan);
#if GPS_MAX_INSTANCES > 1
void send_mavlink_gps2_rtk(mavlink_channel_t chan);
#endif
#endif
private:
struct GPS_timing {
// the time we got our last fix in system milliseconds
uint32_t last_fix_time_ms;
// the time we got our last fix in system milliseconds
uint32_t last_message_time_ms;
};
GPS_timing timing[GPS_MAX_INSTANCES];
GPS_State state[GPS_MAX_INSTANCES];
AP_GPS_Backend *drivers[GPS_MAX_INSTANCES];
/// primary GPS instance
uint8_t primary_instance:2;
/// number of GPS instances present
uint8_t num_instances:2;
// which ports are locked
uint8_t locked_ports:2;
// state of auto-detection process, per instance
struct detect_state {
uint32_t detect_started_ms;
uint32_t last_baud_change_ms;
uint8_t last_baud;
struct UBLOX_detect_state ublox_detect_state;
struct MTK_detect_state mtk_detect_state;
struct MTK19_detect_state mtk19_detect_state;
struct SIRF_detect_state sirf_detect_state;
struct NMEA_detect_state nmea_detect_state;
#if GPS_RTK_AVAILABLE
struct SBP_detect_state sbp_detect_state;
#endif
} detect_state[GPS_MAX_INSTANCES];
struct {
const prog_char *blob;
uint16_t remaining;
} initblob_state[GPS_MAX_INSTANCES];
static const uint32_t _baudrates[];
static const prog_char _initialisation_blob[];
void detect_instance(uint8_t instance);
void update_instance(uint8_t instance);
};
#include <GPS_Backend.h>
#include <AP_GPS_UBLOX.h>
#include <AP_GPS_MTK.h>
#include <AP_GPS_MTK19.h>
#include <AP_GPS_NMEA.h>
#include <AP_GPS_SIRF.h>
#include <AP_GPS_SBP.h>
#endif // __AP_GPS_H__