ardupilot/libraries/AP_HAL_SITL/SITL_State.cpp

725 lines
21 KiB
C++

#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL && !defined(HAL_BUILD_AP_PERIPH)
#include "AP_HAL_SITL.h"
#include "AP_HAL_SITL_Namespace.h"
#include "HAL_SITL_Class.h"
#include "UARTDriver.h"
#include "Scheduler.h"
#include "CANSocketIface.h"
#include <stdio.h>
#include <signal.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <fcntl.h>
#include <AP_Param/AP_Param.h>
#include <SITL/SIM_JSBSim.h>
#include <AP_HAL/utility/Socket_native.h>
extern const AP_HAL::HAL& hal;
using namespace HALSITL;
void SITL_State::_set_param_default(const char *parm)
{
char *pdup = strdup(parm);
char *p = strchr(pdup, '=');
if (p == nullptr) {
printf("Please specify parameter as NAME=VALUE");
exit(1);
}
float value = strtof(p+1, nullptr);
*p = 0;
enum ap_var_type var_type;
AP_Param *vp = AP_Param::find(pdup, &var_type);
if (vp == nullptr) {
printf("Unknown parameter %s\n", pdup);
exit(1);
}
if (var_type == AP_PARAM_FLOAT) {
((AP_Float *)vp)->set_and_save(value);
} else if (var_type == AP_PARAM_INT32) {
((AP_Int32 *)vp)->set_and_save(value);
} else if (var_type == AP_PARAM_INT16) {
((AP_Int16 *)vp)->set_and_save(value);
} else if (var_type == AP_PARAM_INT8) {
((AP_Int8 *)vp)->set_and_save(value);
} else {
printf("Unable to set parameter %s\n", pdup);
exit(1);
}
printf("Set parameter %s to %f\n", pdup, value);
free(pdup);
}
/*
setup for SITL handling
*/
void SITL_State::_sitl_setup()
{
#if !defined(__CYGWIN__) && !defined(__CYGWIN64__)
_parent_pid = getppid();
#endif
_setup_fdm();
fprintf(stdout, "Starting SITL input\n");
// find the barometer object if it exists
_sitl = AP::sitl();
if (_sitl != nullptr) {
// setup some initial values
_update_airspeed(0);
if (enable_gimbal) {
gimbal = new SITL::Gimbal(_sitl->state);
}
sitl_model->set_buzzer(&_sitl->buzzer_sim);
sitl_model->set_sprayer(&_sitl->sprayer_sim);
sitl_model->set_gripper_servo(&_sitl->gripper_sim);
sitl_model->set_gripper_epm(&_sitl->gripper_epm_sim);
sitl_model->set_parachute(&_sitl->parachute_sim);
sitl_model->set_precland(&_sitl->precland_sim);
_sitl->i2c_sim.init();
sitl_model->set_i2c(&_sitl->i2c_sim);
#if AP_TEST_DRONECAN_DRIVERS
sitl_model->set_dronecan_device(&_sitl->dronecan_sim);
#endif
if (_use_fg_view) {
fg_socket.connect(_fg_address, _fg_view_port);
}
fprintf(stdout, "Using Irlock at port : %d\n", _irlock_port);
_sitl->irlock_port = _irlock_port;
}
if (_synthetic_clock_mode) {
// start with non-zero clock
hal.scheduler->stop_clock(1);
}
}
/*
setup a SITL FDM listening UDP port
*/
bool SITL_State::_setup_fdm(void)
{
if (_rc_in_started) {
return true;
}
if (!_sitl_rc_in.reuseaddress()) {
return false;
}
if (!_sitl_rc_in.bind("0.0.0.0", _rcin_port)) {
return false;
}
if (!_sitl_rc_in.set_blocking(false)) {
return false;
}
if (!_sitl_rc_in.set_cloexec()) {
return false;
}
_rc_in_started = true;
return true;
}
/*
step the FDM by one time step
*/
void SITL_State::_fdm_input_step(void)
{
static uint32_t last_pwm_input = 0;
_fdm_input_local();
/* make sure we die if our parent dies */
if (kill(_parent_pid, 0) != 0) {
exit(1);
}
if (_scheduler->interrupts_are_blocked() || _sitl == nullptr) {
return;
}
// simulate RC input at 50Hz
if (AP_HAL::millis() - last_pwm_input >= 20 && _sitl != nullptr && _sitl->rc_fail != SITL::SIM::SITL_RCFail_NoPulses) {
last_pwm_input = AP_HAL::millis();
new_rc_input = true;
}
_scheduler->sitl_begin_atomic();
if (_update_count == 0 && _sitl != nullptr) {
HALSITL::Scheduler::timer_event();
_scheduler->sitl_end_atomic();
return;
}
if (_sitl != nullptr) {
_update_airspeed(_sitl->state.airspeed);
_update_rangefinder();
}
// trigger all APM timers.
HALSITL::Scheduler::timer_event();
_scheduler->sitl_end_atomic();
}
void SITL_State::wait_clock(uint64_t wait_time_usec)
{
float speedup = sitl_model->get_speedup();
if (speedup < 1) {
// for purposes of sleeps treat low speedups as 1
speedup = 1.0;
}
while (AP_HAL::micros64() < wait_time_usec) {
if (hal.scheduler->in_main_thread() ||
Scheduler::from(hal.scheduler)->semaphore_wait_hack_required()) {
_fdm_input_step();
} else {
#ifdef CYGWIN_BUILD
if (speedup > 2 && hal.util->get_soft_armed()) {
const char *current_thread = Scheduler::from(hal.scheduler)->get_current_thread_name();
if (current_thread && strcmp(current_thread, "Scripting") == 0) {
// this effectively does a yield of the CPU. The
// granularity of sleeps on cygwin is very high,
// so this is needed for good thread performance
// in scripting. We don't do this at low speedups
// as it causes the cpu to run hot
// We also don't do it while disarmed, as lua performance is less
// critical while disarmed
usleep(0);
continue;
}
}
#endif
usleep(1000);
}
}
// check the outbound TCP queue size. If it is too long then
// MAVProxy/pymavlink take too long to process packets and it ends
// up seeing traffic well into our past and hits time-out
// conditions.
if (speedup > 1 && hal.scheduler->in_main_thread()) {
while (true) {
const int queue_length = ((HALSITL::UARTDriver*)hal.serial(0))->get_system_outqueue_length();
// ::fprintf(stderr, "queue_length=%d\n", (signed)queue_length);
if (queue_length < 1024) {
break;
}
usleep(1000);
}
}
}
/*
check for a SITL RC input packet
*/
void SITL_State::_check_rc_input(void)
{
uint32_t count = 0;
while (_read_rc_sitl_input()) {
count++;
}
if (count > 100) {
::fprintf(stderr, "Read %u rc inputs\n", count);
}
}
bool SITL_State::_read_rc_sitl_input()
{
struct pwm_packet {
uint16_t pwm[16];
} pwm_pkt;
if (!_setup_fdm()) {
return false;
}
const ssize_t size = _sitl_rc_in.recv(&pwm_pkt, sizeof(pwm_pkt), 0);
// if we are simulating no pulses RC failure, do not update pwm_input
if (_sitl->rc_fail == SITL::SIM::SITL_RCFail_NoPulses) {
return size != -1; // we must continue to drain _sitl_rc
}
if (_sitl->rc_fail == SITL::SIM::SITL_RCFail_Throttle950) {
// discard anything we just read from the "receiver" and set
// values to bind values:
for (uint8_t i=0; i<ARRAY_SIZE(pwm_input); i++) {
pwm_input[0] = 1500; // centre all inputs
}
pwm_input[2] = 950; // reset throttle (assumed to be on channel 3...)
return size != -1; // we must continue to drain _sitl_rc
}
switch (size) {
case -1:
return false;
case 8*2:
case 16*2: {
// a packet giving the receiver PWM inputs
for (uint8_t i=0; i<size/2; i++) {
// setup the pwm input for the RC channel inputs
if (i < _sitl->state.rcin_chan_count) {
// we're using rc from simulator
continue;
}
uint16_t pwm = pwm_pkt.pwm[i];
if (pwm != 0) {
pwm_input[i] = pwm;
}
}
return true;
}
default:
fprintf(stderr, "Malformed SITL RC input (%ld)", (long)size);
}
return false;
}
/*
output current state to flightgear
*/
void SITL_State::_output_to_flightgear(void)
{
SITL::FGNetFDM fdm {};
const SITL::sitl_fdm &sfdm = _sitl->state;
fdm.version = 0x18;
fdm.padding = 0;
fdm.longitude = DEG_TO_RAD_DOUBLE*sfdm.longitude;
fdm.latitude = DEG_TO_RAD_DOUBLE*sfdm.latitude;
fdm.altitude = sfdm.altitude;
fdm.agl = sfdm.altitude;
fdm.phi = radians(sfdm.rollDeg);
fdm.theta = radians(sfdm.pitchDeg);
fdm.psi = radians(sfdm.yawDeg);
fdm.vcas = sfdm.velocity_air_bf.length()/0.3048;
if (_vehicle == ArduCopter) {
fdm.num_engines = 4;
for (uint8_t i=0; i<4; i++) {
fdm.rpm[i] = constrain_float((pwm_output[i]-1000), 0, 1000);
}
} else {
fdm.num_engines = 4;
fdm.rpm[0] = constrain_float((pwm_output[2]-1000)*3, 0, 3000);
// for quadplane
fdm.rpm[1] = constrain_float((pwm_output[5]-1000)*12, 0, 12000);
fdm.rpm[2] = constrain_float((pwm_output[6]-1000)*12, 0, 12000);
fdm.rpm[3] = constrain_float((pwm_output[7]-1000)*12, 0, 12000);
}
fdm.ByteSwap();
fg_socket.send(&fdm, sizeof(fdm));
}
/*
get FDM input from a local model
*/
void SITL_State::_fdm_input_local(void)
{
if (_sitl == nullptr) {
return;
}
struct sitl_input input;
// check for direct RC input
_check_rc_input();
// construct servos structure for FDM
_simulator_servos(input);
#if HAL_SIM_JSON_MASTER_ENABLED
// read servo inputs from ride along flight controllers
ride_along.receive(input);
#endif
// replace outputs from multicast
multicast_servo_update(input);
// update the model
sitl_model->update_home();
sitl_model->update_model(input);
// get FDM output from the model
sitl_model->fill_fdm(_sitl->state);
#if HAL_NUM_CAN_IFACES
if (CANIface::num_interfaces() > 0) {
multicast_state_send();
}
#endif
if (_sitl->rc_fail == SITL::SIM::SITL_RCFail_None) {
for (uint8_t i=0; i< _sitl->state.rcin_chan_count; i++) {
pwm_input[i] = 1000 + _sitl->state.rcin[i]*1000;
}
}
#if HAL_SIM_JSON_MASTER_ENABLED
// output JSON state to ride along flight controllers
ride_along.send(_sitl->state,sitl_model->get_position_relhome());
#endif
sim_update();
if (_use_fg_view) {
_output_to_flightgear();
}
// update simulation time
hal.scheduler->stop_clock(_sitl->state.timestamp_us);
set_height_agl();
_synthetic_clock_mode = true;
_update_count++;
}
/*
create sitl_input structure for sending to FDM
*/
void SITL_State::_simulator_servos(struct sitl_input &input)
{
if (_sitl == nullptr) {
return;
}
static uint32_t last_update_usec;
/* this maps the registers used for PWM outputs. The RC
* driver updates these whenever it wants the channel output
* to change */
if (last_update_usec == 0 || !output_ready) {
for (uint8_t i=0; i<SITL_NUM_CHANNELS; i++) {
pwm_output[i] = 1000;
}
if (_vehicle == ArduPlane) {
pwm_output[0] = pwm_output[1] = pwm_output[3] = 1500;
}
if (_vehicle == Rover) {
pwm_output[0] = pwm_output[1] = pwm_output[2] = pwm_output[3] = 1500;
}
if (_vehicle == ArduSub) {
pwm_output[0] = pwm_output[1] = pwm_output[2] = pwm_output[3] =
pwm_output[4] = pwm_output[5] = pwm_output[6] = pwm_output[7] = 1500;
}
}
// output at chosen framerate
uint32_t now = AP_HAL::micros();
last_update_usec = now;
float altitude = AP::baro().get_altitude();
float wind_speed = 0;
float wind_direction = 0;
float wind_dir_z = 0;
// give 5 seconds to calibrate airspeed sensor at 0 wind speed
if (wind_start_delay_micros == 0) {
wind_start_delay_micros = now;
} else if (_sitl && (now - wind_start_delay_micros) > 5000000 ) {
// The EKF does not like step inputs so this LPF keeps it happy.
wind_speed = _sitl->wind_speed_active = (0.95f*_sitl->wind_speed_active) + (0.05f*_sitl->wind_speed);
wind_direction = _sitl->wind_direction_active = (0.95f*_sitl->wind_direction_active) + (0.05f*_sitl->wind_direction);
wind_dir_z = _sitl->wind_dir_z_active = (0.95f*_sitl->wind_dir_z_active) + (0.05f*_sitl->wind_dir_z);
// pass wind into simulators using different wind types via param SIM_WIND_T*.
switch (_sitl->wind_type) {
case SITL::SIM::WIND_TYPE_SQRT:
if (altitude < _sitl->wind_type_alt) {
wind_speed *= sqrtf(MAX(altitude / _sitl->wind_type_alt, 0));
}
break;
case SITL::SIM::WIND_TYPE_COEF:
wind_speed += (altitude - _sitl->wind_type_alt) * _sitl->wind_type_coef;
break;
case SITL::SIM::WIND_TYPE_NO_LIMIT:
default:
break;
}
// never allow negative wind velocity
wind_speed = MAX(wind_speed, 0);
}
input.wind.speed = wind_speed;
input.wind.direction = wind_direction;
input.wind.turbulence = _sitl?_sitl->wind_turbulance:0;
input.wind.dir_z = wind_dir_z;
for (uint8_t i=0; i<SITL_NUM_CHANNELS; i++) {
if (pwm_output[i] == 0xFFFF) {
input.servos[i] = 0;
} else {
input.servos[i] = pwm_output[i];
}
}
if (_sitl != nullptr) {
// FETtec ESC simulation support. Input signals of 1000-2000
// are positive thrust, 0 to 1000 are negative thrust. Deeper
// changes required to support negative thrust - potentially
// adding a field to input.
if (_sitl != nullptr) {
if (_sitl->fetteconewireesc_sim.enabled()) {
_sitl->fetteconewireesc_sim.update_sitl_input_pwm(input);
for (uint8_t i=0; i<ARRAY_SIZE(input.servos); i++) {
if (input.servos[i] != 0 && input.servos[i] < 1000) {
AP_HAL::panic("Bad input servo value (%u)", input.servos[i]);
}
}
}
}
}
float engine_mul = _sitl?_sitl->engine_mul.get():1;
uint8_t engine_fail = _sitl?_sitl->engine_fail.get():0;
float throttle = 0.0f;
if (engine_fail >= ARRAY_SIZE(input.servos)) {
engine_fail = 0;
}
// apply engine multiplier to motor defined by the SIM_ENGINE_FAIL parameter
if (_vehicle != Rover) {
input.servos[engine_fail] = ((input.servos[engine_fail]-1000) * engine_mul) + 1000;
} else {
input.servos[engine_fail] = static_cast<uint16_t>(((input.servos[engine_fail] - 1500) * engine_mul) + 1500);
}
if (_vehicle == ArduPlane) {
float forward_throttle = constrain_float((input.servos[2] - 1000) / 1000.0f, 0.0f, 1.0f);
// do a little quadplane dance
float hover_throttle = 0.0f;
uint8_t running_motors = 0;
uint32_t mask = _sitl->state.motor_mask;
uint8_t bit;
while ((bit = __builtin_ffs(mask)) != 0) {
uint8_t motor = bit-1;
mask &= ~(1U<<motor);
float motor_throttle = constrain_float((input.servos[motor] - 1000) / 1000.0f, 0.0f, 1.0f);
// update motor_on flag
if (!is_zero(motor_throttle)) {
hover_throttle += motor_throttle;
running_motors++;
}
}
if (running_motors > 0) {
hover_throttle /= running_motors;
}
if (!is_zero(forward_throttle)) {
throttle = forward_throttle;
} else {
throttle = hover_throttle;
}
} else if (_vehicle == Rover) {
input.servos[2] = static_cast<uint16_t>(constrain_int16(input.servos[2], 1000, 2000));
input.servos[0] = static_cast<uint16_t>(constrain_int16(input.servos[0], 1000, 2000));
throttle = fabsf((input.servos[2] - 1500) / 500.0f);
} else {
// run checks on each motor
uint8_t running_motors = 0;
uint32_t mask = _sitl->state.motor_mask;
uint8_t bit;
while ((bit = __builtin_ffs(mask)) != 0) {
const uint8_t motor = bit-1;
mask &= ~(1U<<motor);
float motor_throttle = constrain_float((input.servos[motor] - 1000) / 1000.0f, 0.0f, 1.0f);
// update motor_on flag
if (!is_zero(motor_throttle)) {
throttle += motor_throttle;
running_motors++;
}
}
if (running_motors > 0) {
throttle /= running_motors;
}
}
if (_sitl) {
_sitl->throttle = throttle;
}
update_voltage_current(input, throttle);
}
void SITL_State::init(int argc, char * const argv[])
{
pwm_input[0] = pwm_input[1] = pwm_input[3] = 1500;
pwm_input[4] = pwm_input[7] = 1800;
pwm_input[2] = pwm_input[5] = pwm_input[6] = 1000;
_scheduler = Scheduler::from(hal.scheduler);
_parse_command_line(argc, argv);
}
/*
set height above the ground in meters
*/
void SITL_State::set_height_agl(void)
{
static float home_alt = -1;
if (!_sitl) {
// in example program
return;
}
if (is_equal(home_alt, -1.0f) && _sitl->state.altitude > 0) {
// remember home altitude as first non-zero altitude
home_alt = _sitl->state.altitude;
}
#if AP_TERRAIN_AVAILABLE
if (_sitl != nullptr &&
_sitl->terrain_enable) {
// get height above terrain from AP_Terrain. This assumes
// AP_Terrain is working
float terrain_height_amsl;
Location location;
location.lat = _sitl->state.latitude*1.0e7;
location.lng = _sitl->state.longitude*1.0e7;
AP_Terrain *_terrain = AP_Terrain::get_singleton();
if (_terrain != nullptr &&
_terrain->height_amsl(location, terrain_height_amsl, false)) {
_sitl->height_agl = _sitl->state.altitude - terrain_height_amsl;
return;
}
}
#endif
if (_sitl != nullptr) {
// fall back to flat earth model
_sitl->height_agl = _sitl->state.altitude - home_alt;
}
}
/*
open multicast UDP
*/
void SITL_State::multicast_state_open(void)
{
struct sockaddr_in sockaddr {};
int ret;
#ifdef HAVE_SOCK_SIN_LEN
sockaddr.sin_len = sizeof(sockaddr);
#endif
sockaddr.sin_port = htons(SITL_MCAST_PORT);
sockaddr.sin_family = AF_INET;
sockaddr.sin_addr.s_addr = inet_addr(SITL_MCAST_IP);
mc_out_fd = socket(AF_INET, SOCK_DGRAM, 0);
if (mc_out_fd == -1) {
fprintf(stderr, "socket failed - %s\n", strerror(errno));
exit(1);
}
ret = fcntl(mc_out_fd, F_SETFD, FD_CLOEXEC);
if (ret == -1) {
fprintf(stderr, "fcntl failed on setting FD_CLOEXEC - %s\n", strerror(errno));
exit(1);
}
// try to setup for broadcast, this may fail if insufficient privileges
int one = 1;
setsockopt(mc_out_fd,SOL_SOCKET,SO_BROADCAST,(char *)&one,sizeof(one));
ret = connect(mc_out_fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
if (ret == -1) {
fprintf(stderr, "udp connect failed on port %u - %s\n",
(unsigned)ntohs(sockaddr.sin_port),
strerror(errno));
exit(1);
}
/*
open servo input socket
*/
servo_in_fd = socket(AF_INET, SOCK_DGRAM, 0);
if (servo_in_fd == -1) {
fprintf(stderr, "socket failed - %s\n", strerror(errno));
exit(1);
}
ret = fcntl(servo_in_fd, F_SETFD, FD_CLOEXEC);
if (ret == -1) {
fprintf(stderr, "fcntl failed on setting FD_CLOEXEC - %s\n", strerror(errno));
exit(1);
}
sockaddr.sin_addr.s_addr = htonl(INADDR_ANY);
sockaddr.sin_port = htons(SITL_SERVO_PORT);
ret = bind(servo_in_fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
if (ret == -1) {
fprintf(stderr, "udp servo connect failed\n");
exit(1);
}
::printf("multicast initialised\n");
}
/*
send out SITL state as multicast UDP
*/
void SITL_State::multicast_state_send(void)
{
if (_sitl == nullptr) {
return;
}
if (mc_out_fd == -1) {
multicast_state_open();
}
const auto &sfdm = _sitl->state;
send(mc_out_fd, (void*)&sfdm, sizeof(sfdm), 0);
check_servo_input();
}
/*
check for servo data from peripheral
*/
void SITL_State::check_servo_input(void)
{
// drain any pending packets
float mc_servo_float[SITL_NUM_CHANNELS];
// we loop to ensure we drain all packets from all nodes
while (recv(servo_in_fd, (void*)mc_servo_float, sizeof(mc_servo_float), MSG_DONTWAIT) == sizeof(mc_servo_float)) {
for (uint8_t i=0; i<SITL_NUM_CHANNELS; i++) {
// nan means that node is not outputting this channel
if (!isnan(mc_servo_float[i])) {
mc_servo[i] = uint16_t(mc_servo_float[i]);
}
}
}
}
/*
overwrite input structure with multicast values
*/
void SITL_State::multicast_servo_update(struct sitl_input &input)
{
for (uint8_t i=0; i<SITL_NUM_CHANNELS; i++) {
const uint32_t mask = (1U<<i);
const uint32_t can_mask = uint32_t(_sitl->can_servo_mask.get());
if (can_mask & mask) {
input.servos[i] = mc_servo[i];
}
}
}
#endif