mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-18 14:48:28 -04:00
d6c258e9d0
now using igrf13
193 lines
6.4 KiB
Python
Executable File
193 lines
6.4 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
'''
|
|
generate field tables from IGRF13. Note that this requires python3
|
|
'''
|
|
|
|
import igrf
|
|
import numpy as np
|
|
import datetime
|
|
from pathlib import Path
|
|
from pymavlink.rotmat import Vector3, Matrix3
|
|
import math
|
|
|
|
import argparse
|
|
parser = argparse.ArgumentParser(description='generate mag tables')
|
|
parser.add_argument('--sampling-res', type=int, default=10, help='sampling resolution, degrees')
|
|
parser.add_argument('--check-error', action='store_true', help='check max error')
|
|
parser.add_argument('--filename', type=str, default='tables.cpp', help='tables file')
|
|
|
|
args = parser.parse_args()
|
|
|
|
if not Path("AP_Declination.h").is_file():
|
|
raise OSError("Please run this tool from the AP_Declination directory")
|
|
|
|
|
|
def write_table(f,name, table):
|
|
'''write one table'''
|
|
f.write("const float AP_Declination::%s[%u][%u] = {\n" %
|
|
(name, NUM_LAT, NUM_LON))
|
|
for i in range(NUM_LAT):
|
|
f.write(" {")
|
|
for j in range(NUM_LON):
|
|
f.write("%.5ff" % table[i][j])
|
|
if j != NUM_LON-1:
|
|
f.write(",")
|
|
f.write("}")
|
|
if i != NUM_LAT-1:
|
|
f.write(",")
|
|
f.write("\n")
|
|
f.write("};\n\n")
|
|
|
|
date = datetime.datetime.now()
|
|
|
|
SAMPLING_RES = args.sampling_res
|
|
SAMPLING_MIN_LAT = -90
|
|
SAMPLING_MAX_LAT = 90
|
|
SAMPLING_MIN_LON = -180
|
|
SAMPLING_MAX_LON = 180
|
|
|
|
lats = np.arange(SAMPLING_MIN_LAT, SAMPLING_MAX_LAT+SAMPLING_RES, SAMPLING_RES)
|
|
lons = np.arange(SAMPLING_MIN_LON, SAMPLING_MAX_LON+SAMPLING_RES, SAMPLING_RES)
|
|
|
|
NUM_LAT = lats.size
|
|
NUM_LON = lons.size
|
|
|
|
intensity_table = np.empty((NUM_LAT, NUM_LON))
|
|
inclination_table = np.empty((NUM_LAT, NUM_LON))
|
|
declination_table = np.empty((NUM_LAT, NUM_LON))
|
|
|
|
max_error = 0
|
|
max_error_pos = None
|
|
max_error_field = None
|
|
|
|
def get_igrf(lat, lon):
|
|
'''return field as [declination_deg, inclination_deg, intensity_gauss]'''
|
|
mag = igrf.igrf(date, glat=lat, glon=lon, alt_km=0., isv=0, itype=1)
|
|
intensity = float(mag.total/1e5)
|
|
inclination = float(mag.incl)
|
|
declination = float(mag.decl)
|
|
return [declination, inclination, intensity]
|
|
|
|
def interpolate_table(table, latitude_deg, longitude_deg):
|
|
'''interpolate inside a table for a given lat/lon in degrees'''
|
|
# round down to nearest sampling resolution
|
|
min_lat = int(math.floor(latitude_deg / SAMPLING_RES) * SAMPLING_RES)
|
|
min_lon = int(math.floor(longitude_deg / SAMPLING_RES) * SAMPLING_RES)
|
|
|
|
# find index of nearest low sampling point
|
|
min_lat_index = int(math.floor(-(SAMPLING_MIN_LAT) + min_lat) / SAMPLING_RES)
|
|
min_lon_index = int(math.floor(-(SAMPLING_MIN_LON) + min_lon) / SAMPLING_RES)
|
|
|
|
# calculate intensity
|
|
data_sw = table[min_lat_index][min_lon_index]
|
|
data_se = table[min_lat_index][min_lon_index + 1]
|
|
data_ne = table[min_lat_index + 1][min_lon_index + 1]
|
|
data_nw = table[min_lat_index + 1][min_lon_index]
|
|
|
|
# perform bilinear interpolation on the four grid corners
|
|
data_min = ((longitude_deg - min_lon) / SAMPLING_RES) * (data_se - data_sw) + data_sw
|
|
data_max = ((longitude_deg - min_lon) / SAMPLING_RES) * (data_ne - data_nw) + data_nw
|
|
|
|
value = ((latitude_deg - min_lat) / SAMPLING_RES) * (data_max - data_min) + data_min
|
|
return value
|
|
|
|
|
|
'''
|
|
calculate magnetic field intensity and orientation, interpolating in tables
|
|
|
|
returns array [declination_deg, inclination_deg, intensity] or None
|
|
'''
|
|
def interpolate_field(latitude_deg, longitude_deg):
|
|
# limit to table bounds
|
|
if latitude_deg < SAMPLING_MIN_LAT:
|
|
return None
|
|
if latitude_deg >= SAMPLING_MAX_LAT:
|
|
return None
|
|
if longitude_deg < SAMPLING_MIN_LON:
|
|
return None
|
|
if longitude_deg >= SAMPLING_MAX_LON:
|
|
return None
|
|
|
|
intensity_gauss = interpolate_table(intensity_table, latitude_deg, longitude_deg)
|
|
declination_deg = interpolate_table(declination_table, latitude_deg, longitude_deg)
|
|
inclination_deg = interpolate_table(inclination_table, latitude_deg, longitude_deg)
|
|
|
|
return [declination_deg, inclination_deg, intensity_gauss]
|
|
|
|
def field_to_Vector3(mag):
|
|
'''return mGauss field from dec, inc and intensity'''
|
|
R = Matrix3()
|
|
mag_ef = Vector3(mag[2]*1000.0, 0.0, 0.0)
|
|
R.from_euler(0.0, -math.radians(mag[1]), math.radians(mag[0]))
|
|
return R * mag_ef
|
|
|
|
def test_error(lat, lon):
|
|
'''check for error from lat,lon'''
|
|
global max_error, max_error_pos, max_error_field
|
|
mag1 = get_igrf(lat, lon)
|
|
mag2 = interpolate_field(lat, lon)
|
|
ef1 = field_to_Vector3(mag1)
|
|
ef2 = field_to_Vector3(mag2)
|
|
err = (ef1 - ef2).length()
|
|
if err > max_error or err > 100:
|
|
print(lat, lon, err, ef1, ef2)
|
|
max_error = err
|
|
max_error_pos = (lat, lon)
|
|
max_error_field = ef1 - ef2
|
|
|
|
def test_max_error(lat, lon):
|
|
'''check for maximum error from lat,lon over SAMPLING_RES range'''
|
|
steps = 3
|
|
delta = SAMPLING_RES/steps
|
|
for i in range(steps):
|
|
for j in range(steps):
|
|
lat2 = lat + i * delta
|
|
lon2 = lon + j * delta
|
|
if lat2 >= SAMPLING_MAX_LAT or lon2 >= SAMPLING_MAX_LON:
|
|
continue
|
|
if lat2 <= SAMPLING_MIN_LAT or lon2 <= SAMPLING_MIN_LON:
|
|
continue
|
|
test_error(lat2, lon2)
|
|
|
|
for i,lat in enumerate(lats):
|
|
for j,lon in enumerate(lons):
|
|
mag = get_igrf(lat, lon)
|
|
declination_table[i][j] = mag[0]
|
|
inclination_table[i][j] = mag[1]
|
|
intensity_table[i][j] = mag[2]
|
|
|
|
with open(args.filename, 'w') as f:
|
|
f.write('''// this is an auto-generated file from the IGRF tables. Do not edit
|
|
// To re-generate run generate/generate.py
|
|
|
|
#include "AP_Declination.h"
|
|
|
|
''')
|
|
|
|
f.write('''const float AP_Declination::SAMPLING_RES = %u;
|
|
const float AP_Declination::SAMPLING_MIN_LAT = %u;
|
|
const float AP_Declination::SAMPLING_MAX_LAT = %u;
|
|
const float AP_Declination::SAMPLING_MIN_LON = %u;
|
|
const float AP_Declination::SAMPLING_MAX_LON = %u;
|
|
|
|
''' % (SAMPLING_RES,
|
|
SAMPLING_MIN_LAT,
|
|
SAMPLING_MAX_LAT,
|
|
SAMPLING_MIN_LON,
|
|
SAMPLING_MAX_LON))
|
|
|
|
|
|
write_table(f,'declination_table', declination_table)
|
|
write_table(f,'inclination_table', inclination_table)
|
|
write_table(f,'intensity_table', intensity_table)
|
|
|
|
if args.check_error:
|
|
print("Checking for maximum error")
|
|
for lat in range(-60,60,1):
|
|
for lon in range(-180,180,1):
|
|
test_max_error(lat, lon)
|
|
print("Generated with max error %.2f %s at (%.2f,%.2f)" % (
|
|
max_error, max_error_field, max_error_pos[0], max_error_pos[1]))
|
|
|
|
print("Table generated in %s" % args.filename)
|