ardupilot/libraries/StorageManager/StorageManager.cpp
Andrew Tridgell 03a033c5c4 StorageManager: added support for 32k storage with param backup
when HAL_STORAGE_SIZE == 32768 then add:

 - 1280 more bytes for params
 - double waypoint space
 - add a parameter backup area
2021-01-16 06:47:10 +11:00

313 lines
8.4 KiB
C++

/*
Please contribute your ideas! See https://dev.ardupilot.org for details
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Management for hal.storage to allow for backwards compatible mapping
of storage offsets to available storage
*/
#include <AP_HAL/AP_HAL.h>
#include <AP_Vehicle/AP_Vehicle_Type.h>
#include <AP_Math/AP_Math.h>
#include "StorageManager.h"
#include <stdio.h>
extern const AP_HAL::HAL& hal;
/*
the layouts below are carefully designed to ensure backwards
compatibility with older firmwares
*/
#if STORAGE_NUM_AREAS == 1
/*
layout for peripherals
*/
const StorageManager::StorageArea StorageManager::layout[STORAGE_NUM_AREAS] = {
{ StorageParam, 0, HAL_STORAGE_SIZE}
};
#elif !APM_BUILD_TYPE(APM_BUILD_ArduCopter)
/*
layout for fixed wing and rovers
On PX4v1 this gives 309 waypoints, 30 rally points and 52 fence points
On Pixhawk this gives 724 waypoints, 50 rally points and 84 fence points
*/
const StorageManager::StorageArea StorageManager::layout[STORAGE_NUM_AREAS] = {
{ StorageParam, 0, 1280}, // 0x500 parameter bytes
{ StorageMission, 1280, 2506},
{ StorageRally, 3786, 150}, // 10 rally points
{ StorageFence, 3936, 160}, // 20 fence points
#if STORAGE_NUM_AREAS >= 8
{ StorageParam, 4096, 1280},
{ StorageRally, 5376, 300},
{ StorageFence, 5676, 256},
{ StorageMission, 5932, 2132},
{ StorageKeys, 8064, 64},
{ StorageBindInfo,8128, 56},
#endif
#if STORAGE_NUM_AREAS == 11
// optimised for lots of parameters for 15k boards with OSD
{ StorageParam, 8192, 7168},
#elif STORAGE_NUM_AREAS == 12
// optimised for lots of parameters for 15k boards with OSD, plus room for CAN DNA
{ StorageParam, 8192, 6144},
{ StorageCANDNA, 14336, 1024},
#endif
#if STORAGE_NUM_AREAS >= 13
{ StorageParam, 8192, 1280},
{ StorageRally, 9472, 300},
{ StorageFence, 9772, 256},
{ StorageMission, 10028, 5204}, // leave 128 byte gap for expansion
{ StorageCANDNA, 15232, 1024},
// 128 byte gap at end of first 16k
#endif
#if STORAGE_NUM_AREAS >= 19
{ StorageParam, 16384, 1280},
{ StorageMission, 17664, 9842},
{ StorageParamBak, 27506, 5376},
#endif
};
#else
/*
layout for copter.
On PX4v1 this gives 303 waypoints, 26 rally points and 38 fence points
On Pixhawk this gives 718 waypoints, 46 rally points and 70 fence points
*/
const StorageManager::StorageArea StorageManager::layout[STORAGE_NUM_AREAS] = {
{ StorageParam, 0, 1536}, // 0x600 param bytes
{ StorageMission, 1536, 2422},
{ StorageRally, 3958, 90}, // 6 rally points
{ StorageFence, 4048, 48}, // 6 fence points
#if STORAGE_NUM_AREAS >= 8
{ StorageParam, 4096, 1280},
{ StorageRally, 5376, 300},
{ StorageFence, 5676, 256},
{ StorageMission, 5932, 2132},
{ StorageKeys, 8064, 64},
{ StorageBindInfo,8128, 56},
#endif
#if STORAGE_NUM_AREAS == 11
// optimised for lots of parameters for 15k boards with OSD
{ StorageParam, 8192, 7168},
#elif STORAGE_NUM_AREAS == 12
// optimised for lots of parameters for 15k boards with OSD, plus room for CAN DNA
{ StorageParam, 8192, 6144},
{ StorageCANDNA, 14336, 1024},
#endif
#if STORAGE_NUM_AREAS >= 13
{ StorageParam, 8192, 1280},
{ StorageRally, 9472, 300},
{ StorageFence, 9772, 256},
{ StorageMission, 10028, 5204}, // leave 128 byte gap for expansion
{ StorageCANDNA, 15232, 1024},
// 128 byte gap at end of first 16k
#endif
#if STORAGE_NUM_AREAS >= 19
{ StorageParam, 16384, 1280},
{ StorageMission, 17664, 9842},
{ StorageParamBak, 27506, 5376},
#endif
};
#endif // STORAGE_NUM_AREAS == 1
/*
erase all storage
*/
void StorageManager::erase(void)
{
if (!hal.storage->erase()) {
::printf("StorageManager: erase failed\n");
}
}
/*
constructor for StorageAccess
*/
StorageAccess::StorageAccess(StorageManager::StorageType _type) :
type(_type)
{
// calculate available bytes
total_size = 0;
for (uint8_t i=0; i<STORAGE_NUM_AREAS; i++) {
const StorageManager::StorageArea &area = StorageManager::layout[i];
if (area.type == type) {
total_size += area.length;
}
}
}
/*
base read function. The src offset is within the bytes allocated
for the storage type of this StorageAccess object
*/
bool StorageAccess::read_block(void *data, uint16_t addr, size_t n) const
{
uint8_t *b = (uint8_t *)data;
for (uint8_t i=0; i<STORAGE_NUM_AREAS; i++) {
const StorageManager::StorageArea &area = StorageManager::layout[i];
uint16_t length = area.length;
uint16_t offset = area.offset;
if (area.type != type) {
continue;
}
if (addr >= length) {
// the data isn't in this area
addr -= length;
continue;
}
uint8_t count = n;
if (count+addr > length) {
// the data crosses a boundary between two areas
count = length - addr;
}
hal.storage->read_block(b, addr+offset, count);
n -= count;
if (n == 0) {
break;
}
// move pointer after written bytes
b += count;
// continue writing at the beginning of next valid area
addr = 0;
}
return (n == 0);
}
/*
base read function. The addr offset is within the bytes allocated
for the storage type of this StorageAccess object
*/
bool StorageAccess::write_block(uint16_t addr, const void *data, size_t n) const
{
const uint8_t *b = (const uint8_t *)data;
for (uint8_t i=0; i<STORAGE_NUM_AREAS; i++) {
const StorageManager::StorageArea &area = StorageManager::layout[i];
uint16_t length = area.length;
uint16_t offset = area.offset;
if (area.type != type) {
continue;
}
if (addr >= length) {
// the data isn't in this area
addr -= length;
continue;
}
uint8_t count = n;
if (count+addr > length) {
// the data crosses a boundary between two areas
count = length - addr;
}
hal.storage->write_block(addr+offset, b, count);
n -= count;
if (n == 0) {
break;
}
// move pointer after written bytes
b += count;
// continue writing at the beginning of next valid area
addr = 0;
}
return (n == 0);
}
/*
read a byte
*/
uint8_t StorageAccess::read_byte(uint16_t loc) const
{
uint8_t v;
read_block(&v, loc, sizeof(v));
return v;
}
/*
read 16 bit value
*/
uint16_t StorageAccess::read_uint16(uint16_t loc) const
{
uint16_t v;
read_block(&v, loc, sizeof(v));
return v;
}
/*
read 32 bit value
*/
uint32_t StorageAccess::read_uint32(uint16_t loc) const
{
uint32_t v;
read_block(&v, loc, sizeof(v));
return v;
}
/*
write a byte
*/
void StorageAccess::write_byte(uint16_t loc, uint8_t value) const
{
write_block(loc, &value, sizeof(value));
}
/*
write a uint16
*/
void StorageAccess::write_uint16(uint16_t loc, uint16_t value) const
{
write_block(loc, &value, sizeof(value));
}
/*
write a uint32
*/
void StorageAccess::write_uint32(uint16_t loc, uint32_t value) const
{
write_block(loc, &value, sizeof(value));
}
/*
copy one area to another
*/
bool StorageAccess::copy_area(const StorageAccess &source)
{
// we deliberately allow for copies from smaller areas. This
// allows for a partial backup region for parameters
uint16_t total = MIN(source.size(), size());
uint16_t ofs = 0;
while (total > 0) {
uint8_t block[32];
uint16_t n = MIN(sizeof(block), total);
if (!source.read_block(block, ofs, n) ||
!write_block(ofs, block, n)) {
return false;
}
total -= n;
ofs += n;
}
return true;
}