ardupilot/libraries/AP_Param/AP_Param.h
Andrew Tridgell 26b7de668a AP_Param: fixed parameter save bug
This bug affected parameters where the defaults are overridden in the
object constructor. For example, a PID object may have a default value
for PID_D of 0.0, but have a constructor based default of 0.2. If the
user tries to set the value to exactly 0.0, then the set wouldn't happen,
as the value matches the value in the object default var_info[]
table. 

This change ensures we force a save to eeprom if the value is changing
from the current value, regardless of the var_info[] default.

Thanks to Tom Coyle for finding this bug!
2013-06-02 14:49:34 +10:00

579 lines
19 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
//
// This is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License as published by the
// Free Software Foundation; either version 2.1 of the License, or (at
// your option) any later version.
//
/// @file AP_Param.h
/// @brief A system for managing and storing variables that are of
/// general interest to the system.
#ifndef AP_PARAM_H
#define AP_PARAM_H
#include <AP_HAL.h>
#include <stddef.h>
#include <string.h>
#include <stdint.h>
#include <AP_Progmem.h>
#define AP_MAX_NAME_SIZE 16
#define AP_NESTED_GROUPS_ENABLED
// a variant of offsetof() to work around C++ restrictions.
// this can only be used when the offset of a variable in a object
// is constant and known at compile time
#define AP_VAROFFSET(type, element) (((uintptr_t)(&((const type *)1)->element))-1)
// find the type of a variable given the class and element
#define AP_CLASSTYPE(class, element) (((const class *) 1)->element.vtype)
// declare a group var_info line
#define AP_GROUPINFO(name, idx, class, element, def) { AP_CLASSTYPE(class, element), idx, name, AP_VAROFFSET(class, element), {def_value : def} }
// declare a nested group entry in a group var_info
#ifdef AP_NESTED_GROUPS_ENABLED
#define AP_NESTEDGROUPINFO(class, idx) { AP_PARAM_GROUP, idx, "", 0, { group_info : class::var_info } }
#endif
#define AP_GROUPEND { AP_PARAM_NONE, 0xFF, "", 0, { group_info : NULL } }
#define AP_VAREND { AP_PARAM_NONE, "", 0, NULL, { group_info : NULL } }
enum ap_var_type {
AP_PARAM_NONE = 0,
AP_PARAM_INT8,
AP_PARAM_INT16,
AP_PARAM_INT32,
AP_PARAM_FLOAT,
AP_PARAM_VECTOR3F,
AP_PARAM_VECTOR6F,
AP_PARAM_MATRIX3F,
AP_PARAM_GROUP
};
/// Base class for variables.
///
/// Provides naming and lookup services for variables.
///
class AP_Param
{
public:
// the Info and GroupInfo structures are passed by the main
// program in setup() to give information on how variables are
// named and their location in memory
struct GroupInfo {
uint8_t type; // AP_PARAM_*
uint8_t idx; // identifier within the group
const char name[AP_MAX_NAME_SIZE+1];
uintptr_t offset; // offset within the object
union {
const struct GroupInfo *group_info;
const float def_value;
};
};
struct Info {
uint8_t type; // AP_PARAM_*
const char name[AP_MAX_NAME_SIZE+1];
uint8_t key; // k_param_*
void *ptr; // pointer to the variable in memory
union {
const struct GroupInfo *group_info;
const float def_value;
};
};
struct ConversionInfo {
uint8_t old_key; // k_param_*
uint8_t old_group_element; // index in old object
enum ap_var_type type; // AP_PARAM_*
const char new_name[AP_MAX_NAME_SIZE+1];
};
// called once at startup to setup the _var_info[] table. This
// will also check the EEPROM header and re-initialise it if the
// wrong version is found
static bool setup();
// constructor with var_info
AP_Param(const struct Info *info, uint16_t eeprom_size) {
_eeprom_size = eeprom_size;
_var_info = info;
uint16_t i;
for (i=0; pgm_read_byte(&info[i].type) != AP_PARAM_NONE; i++) ;
_num_vars = i;
check_var_info();
}
// empty constructor
AP_Param() {}
// a token used for first()/next() state
typedef struct {
uint32_t key : 8;
uint32_t idx : 6; // offset into array types
uint32_t group_element : 18;
} ParamToken;
// return true if AP_Param has been initialised via setup()
static bool initialised(void);
/// Copy the variable's name, prefixed by any containing group name, to a
/// buffer.
///
/// If the variable has no name, the buffer will contain an empty string.
///
/// Note that if the combination of names is larger than the buffer, the
/// result in the buffer will be truncated.
///
/// @param token token giving current variable
/// @param buffer The destination buffer
/// @param bufferSize Total size of the destination buffer.
///
void copy_name_token(const ParamToken &token, char *buffer, size_t bufferSize, bool force_scalar=false) const;
/// Find a variable by name.
///
/// If the variable has no name, it cannot be found by this interface.
///
/// @param name The full name of the variable to be found.
/// @return A pointer to the variable, or NULL if
/// it does not exist.
///
static AP_Param * find(const char *name, enum ap_var_type *ptype);
static AP_Param * find_P(const prog_char_t *name, enum ap_var_type *ptype);
/// Find a variable by index.
///
///
/// @param idx The index of the variable
/// @return A pointer to the variable, or NULL if
/// it does not exist.
///
static AP_Param * find_by_index(uint16_t idx, enum ap_var_type *ptype, ParamToken *token);
/// Find a object in the top level var_info table
///
/// If the variable has no name, it cannot be found by this interface.
///
/// @param name The full name of the variable to be found.
///
static AP_Param * find_object(const char *name);
/// Save the current value of the variable to EEPROM.
///
/// @param force_save If true then force save even if default
///
/// @return True if the variable was saved successfully.
///
bool save(bool force_save=false);
/// Load the variable from EEPROM.
///
/// @return True if the variable was loaded successfully.
///
bool load(void);
/// Load all variables from EEPROM
///
/// This function performs a best-efforts attempt to load all
/// of the variables from EEPROM. If some fail to load, their
/// values will remain as they are.
///
/// @return False if any variable failed to load
///
static bool load_all(void);
// set a AP_Param variable to a specified value
static void set_value(enum ap_var_type type, void *ptr, float def_value);
// load default values for scalars in a group
static void setup_object_defaults(const void *object_pointer, const struct GroupInfo *group_info);
// load default values for all scalars in the main sketch. This
// does not recurse into the sub-objects
static void setup_sketch_defaults(void);
// convert old vehicle parameters to new object parameters
static void convert_old_parameters(const struct ConversionInfo *conversion_table, uint8_t table_size);
/// Erase all variables in EEPROM.
///
static void erase_all(void);
/// print the value of all variables
static void show_all(AP_HAL::BetterStream *port);
/// print the value of one variable
static void show(const AP_Param *param,
const char *name,
enum ap_var_type ptype,
AP_HAL::BetterStream *port);
/// print the value of one variable
static void show(const AP_Param *param,
const ParamToken &token,
enum ap_var_type ptype,
AP_HAL::BetterStream *port);
/// Returns the first variable
///
/// @return The first variable in _var_info, or NULL if
/// there are none.
///
static AP_Param * first(ParamToken *token, enum ap_var_type *ptype);
/// Returns the next variable in _var_info, recursing into groups
/// as needed
static AP_Param * next(ParamToken *token, enum ap_var_type *ptype);
/// Returns the next scalar variable in _var_info, recursing into groups
/// as needed
static AP_Param * next_scalar(ParamToken *token, enum ap_var_type *ptype);
/// cast a variable to a float given its type
float cast_to_float(enum ap_var_type type) const;
private:
/// EEPROM header
///
/// This structure is placed at the head of the EEPROM to indicate
/// that the ROM is formatted for AP_Param.
///
struct EEPROM_header {
uint8_t magic[2];
uint8_t revision;
uint8_t spare;
};
/* This header is prepended to a variable stored in EEPROM.
* The meaning is as follows:
*
* - key: the k_param enum value from Parameter.h in the sketch
*
* - group_element: This is zero for top level parameters. For
* parameters stored within an object this is divided
* into 3 lots of 6 bits, allowing for three levels
* of object to be stored in the eeprom
*
* - type: the ap_var_type value for the variable
*/
struct Param_header {
uint32_t key : 8;
uint32_t type : 6;
uint32_t group_element : 18;
};
// number of bits in each level of nesting of groups
static const uint8_t _group_level_shift = 6;
static const uint8_t _group_bits = 18;
static const uint8_t _sentinal_key = 0xFF;
static const uint8_t _sentinal_type = 0x3F;
static const uint8_t _sentinal_group = 0xFF;
static bool check_group_info(const struct GroupInfo *group_info, uint16_t *total_size, uint8_t max_bits);
static bool duplicate_key(uint8_t vindex, uint8_t key);
static bool check_var_info(void);
const struct Info * find_var_info_group(
const struct GroupInfo * group_info,
uint8_t vindex,
uint8_t group_base,
uint8_t group_shift,
uint32_t * group_element,
const struct GroupInfo ** group_ret,
uint8_t * idx) const;
const struct Info * find_var_info(
uint32_t * group_element,
const struct GroupInfo ** group_ret,
uint8_t * idx);
const struct Info * find_var_info_token(const ParamToken &token,
uint32_t * group_element,
const struct GroupInfo ** group_ret,
uint8_t * idx) const;
static const struct Info * find_by_header_group(
struct Param_header phdr, void **ptr,
uint8_t vindex,
const struct GroupInfo *group_info,
uint8_t group_base,
uint8_t group_shift);
static const struct Info * find_by_header(
struct Param_header phdr,
void **ptr);
void add_vector3f_suffix(
char *buffer,
size_t buffer_size,
uint8_t idx) const;
static AP_Param * find_group(
const char *name,
uint8_t vindex,
const struct GroupInfo *group_info,
enum ap_var_type *ptype);
static void write_sentinal(uint16_t ofs);
static bool scan(
const struct Param_header *phdr,
uint16_t *pofs);
static uint8_t type_size(enum ap_var_type type);
static void eeprom_write_check(
const void *ptr,
uint16_t ofs,
uint8_t size);
static AP_Param * next_group(
uint8_t vindex,
const struct GroupInfo *group_info,
bool *found_current,
uint8_t group_base,
uint8_t group_shift,
ParamToken *token,
enum ap_var_type *ptype);
static uint16_t _eeprom_size;
static uint8_t _num_vars;
static const struct Info * _var_info;
// values filled into the EEPROM header
static const uint8_t k_EEPROM_magic0 = 0x50;
static const uint8_t k_EEPROM_magic1 = 0x41; ///< "AP"
static const uint8_t k_EEPROM_revision = 6; ///< current format revision
// convert old vehicle parameters to new object parameters
static void convert_old_parameter(const struct ConversionInfo *info);
};
/// Template class for scalar variables.
///
/// Objects of this type have a value, and can be treated in many ways as though they
/// were the value.
///
/// @tparam T The scalar type of the variable
/// @tparam PT The AP_PARAM_* type
///
template<typename T, ap_var_type PT>
class AP_ParamT : public AP_Param
{
public:
static const ap_var_type vtype = PT;
/// Value getter
///
const T &get(void) const {
return _value;
}
/// Value setter
///
void set(const T &v) {
_value = v;
}
/// Combined set and save
///
bool set_and_save(const T &v) {
bool force = (_value != v);
set(v);
return save(force);
}
/// Combined set and save, but only does the save if the value if
/// different from the current ram value, thus saving us a
/// scan(). This should only be used where we have not set() the
/// value separately, as otherwise the value in EEPROM won't be
/// updated correctly.
bool set_and_save_ifchanged(const T &v) {
if (v == _value) {
return true;
}
set(v);
return save(true);
}
/// Conversion to T returns a reference to the value.
///
/// This allows the class to be used in many situations where the value would be legal.
///
operator const T &() const {
return _value;
}
/// Copy assignment from T is equivalent to ::set.
///
AP_ParamT<T,PT>& operator= (const T &v) {
_value = v;
return *this;
}
/// bit ops on parameters
///
AP_ParamT<T,PT>& operator |=(const T &v) {
_value |= v;
return *this;
}
AP_ParamT<T,PT>& operator &=(const T &v) {
_value &= v;
return *this;
}
AP_ParamT<T,PT>& operator +=(const T &v) {
_value += v;
return *this;
}
AP_ParamT<T,PT>& operator -=(const T &v) {
_value -= v;
return *this;
}
/// AP_ParamT types can implement AP_Param::cast_to_float
///
float cast_to_float(void) const {
return (float)_value;
}
protected:
T _value;
};
/// Template class for non-scalar variables.
///
/// Objects of this type have a value, and can be treated in many ways as though they
/// were the value.
///
/// @tparam T The scalar type of the variable
/// @tparam PT AP_PARAM_* type
///
template<typename T, ap_var_type PT>
class AP_ParamV : public AP_Param
{
public:
static const ap_var_type vtype = PT;
/// Value getter
///
const T &get(void) const {
return _value;
}
/// Value setter
///
void set(const T &v) {
_value = v;
}
/// Combined set and save
///
bool set_and_save(const T &v) {
bool force = (_value != v);
set(v);
return save(force);
}
/// Conversion to T returns a reference to the value.
///
/// This allows the class to be used in many situations where the value would be legal.
///
operator const T &() const {
return _value;
}
/// Copy assignment from T is equivalent to ::set.
///
AP_ParamV<T,PT>& operator=(const T &v) {
_value = v;
return *this;
}
protected:
T _value;
};
/// Template class for array variables.
///
/// Objects created using this template behave like arrays of the type T,
/// but are stored like single variables.
///
/// @tparam T The scalar type of the variable
/// @tparam N number of elements
/// @tparam PT the AP_PARAM_* type
///
template<typename T, uint8_t N, ap_var_type PT>
class AP_ParamA : public AP_Param
{
public:
static const ap_var_type vtype = PT;
/// Array operator accesses members.
///
/// @note It would be nice to range-check i here, but then what would we return?
///
const T & operator[](uint8_t i) {
return _value[i];
}
const T & operator[](int8_t i) {
return _value[(uint8_t)i];
}
/// Value getter
///
/// @note Returns zero for index values out of range.
///
T get(uint8_t i) const {
if (i < N) {
return _value[i];
} else {
return (T)0;
}
}
/// Value setter
///
/// @note Attempts to set an index out of range are discarded.
///
void set(uint8_t i, const T &v) {
if (i < N) {
_value[i] = v;
}
}
protected:
T _value[N];
};
/// Convenience macro for defining instances of the AP_ParamT template.
///
// declare a scalar type
// _t is the base type
// _suffix is the suffix on the AP_* type name
// _pt is the enum ap_var_type type
#define AP_PARAMDEF(_t, _suffix, _pt) typedef AP_ParamT<_t, _pt> AP_ ## _suffix;
AP_PARAMDEF(float, Float, AP_PARAM_FLOAT); // defines AP_Float
AP_PARAMDEF(int8_t, Int8, AP_PARAM_INT8); // defines AP_Int8
AP_PARAMDEF(int16_t, Int16, AP_PARAM_INT16); // defines AP_Int16
AP_PARAMDEF(int32_t, Int32, AP_PARAM_INT32); // defines AP_Int32
// declare an array type
// _t is the base type
// _suffix is the suffix on the AP_* type name
// _size is the size of the array
// _pt is the enum ap_var_type type
#define AP_PARAMDEFA(_t, _suffix, _size, _pt) typedef AP_ParamA<_t, _size, _pt> AP_ ## _suffix;
AP_PARAMDEFA(float, Vector6f, 6, AP_PARAM_VECTOR6F);
// declare a non-scalar type
// this is used in AP_Math.h
// _t is the base type
// _suffix is the suffix on the AP_* type name
// _pt is the enum ap_var_type type
#define AP_PARAMDEFV(_t, _suffix, _pt) typedef AP_ParamV<_t, _pt> AP_ ## _suffix;
#endif // AP_PARAM_H