mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-12 02:48:28 -04:00
4354072d34
Signed-off-by: Rhys Mainwaring <rhys.mainwaring@me.com>
264 lines
8.1 KiB
C++
264 lines
8.1 KiB
C++
/*
|
||
This program is free software: you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation, either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
*/
|
||
/*
|
||
rover simulator class
|
||
*/
|
||
|
||
#include "SIM_Rover.h"
|
||
|
||
#include <string.h>
|
||
#include <stdio.h>
|
||
|
||
#include <AP_Math/AP_Math.h>
|
||
|
||
namespace SITL {
|
||
|
||
SimRover::SimRover(const char *frame_str) :
|
||
Aircraft(frame_str)
|
||
{
|
||
skid_steering = strstr(frame_str, "skid") != nullptr;
|
||
|
||
if (skid_steering) {
|
||
printf("SKID Steering Rover Simulation Started\n");
|
||
// these are taken from a 6V wild thumper with skid steering,
|
||
// with a sabertooth controller
|
||
max_accel = 14;
|
||
max_speed = 4;
|
||
return;
|
||
}
|
||
|
||
vectored_thrust = strstr(frame_str, "vector") != nullptr;
|
||
if (vectored_thrust) {
|
||
printf("Vectored Thrust Rover Simulation Started\n");
|
||
}
|
||
|
||
omni3 = strstr(frame_str, "omni3mecanum") != nullptr;
|
||
if (omni3) {
|
||
printf("Omni3 Mecanum Rover Simulation Started\n");
|
||
}
|
||
|
||
lock_step_scheduled = true;
|
||
}
|
||
|
||
/*
|
||
return turning circle (diameter) in meters for steering angle proportion in degrees
|
||
*/
|
||
float SimRover::turn_circle(float steering) const
|
||
{
|
||
if (fabsf(steering) < 1.0e-6) {
|
||
return 0;
|
||
}
|
||
return turning_circle * sinf(radians(max_wheel_turn)) / sinf(radians(steering*max_wheel_turn));
|
||
}
|
||
|
||
/*
|
||
return yaw rate in degrees/second given steering_angle and speed
|
||
*/
|
||
float SimRover::calc_yaw_rate(float steering, float speed)
|
||
{
|
||
if (skid_steering) {
|
||
return constrain_float(steering * skid_turn_rate, -MAX_YAW_RATE, MAX_YAW_RATE);
|
||
}
|
||
if (vectored_thrust) {
|
||
return constrain_float(steering * vectored_turn_rate_max, -MAX_YAW_RATE, MAX_YAW_RATE);
|
||
}
|
||
if (fabsf(steering) < 1.0e-6 or fabsf(speed) < 1.0e-6) {
|
||
return 0;
|
||
}
|
||
float d = turn_circle(steering);
|
||
float c = M_PI * d;
|
||
float t = c / speed;
|
||
float rate = constrain_float(360.0f / t, -MAX_YAW_RATE, MAX_YAW_RATE);
|
||
return rate;
|
||
}
|
||
|
||
/*
|
||
return lateral acceleration in m/s/s
|
||
*/
|
||
float SimRover::calc_lat_accel(float steering_angle, float speed)
|
||
{
|
||
float yaw_rate = calc_yaw_rate(steering_angle, speed);
|
||
float accel = radians(yaw_rate) * speed;
|
||
return accel;
|
||
}
|
||
|
||
/*
|
||
update the rover simulation by one time step
|
||
*/
|
||
void SimRover::update(const struct sitl_input &input)
|
||
{
|
||
// how much time has passed?
|
||
float delta_time = frame_time_us * 1.0e-6f;
|
||
|
||
// update gyro and accel_body according to frame type
|
||
if (omni3) {
|
||
update_omni3(input, delta_time);
|
||
} else {
|
||
update_ackermann_or_skid(input, delta_time);
|
||
}
|
||
|
||
// common to all rovers
|
||
|
||
// now in earth frame
|
||
Vector3f accel_earth = dcm * accel_body;
|
||
accel_earth += Vector3f(0, 0, GRAVITY_MSS);
|
||
|
||
// we are on the ground, so our vertical accel is zero
|
||
accel_earth.z = 0;
|
||
|
||
// work out acceleration as seen by the accelerometers. It sees the kinematic
|
||
// acceleration (ie. real movement), plus gravity
|
||
accel_body = dcm.transposed() * (accel_earth + Vector3f(0, 0, -GRAVITY_MSS));
|
||
|
||
// new velocity vector
|
||
velocity_ef += accel_earth * delta_time;
|
||
|
||
// new position vector
|
||
position += (velocity_ef * delta_time).todouble();
|
||
|
||
update_external_payload(input);
|
||
|
||
// update lat/lon/altitude
|
||
update_position();
|
||
time_advance();
|
||
|
||
// update magnetic field
|
||
update_mag_field_bf();
|
||
}
|
||
|
||
/*
|
||
update the ackermann or skid rover simulation by one time step
|
||
*/
|
||
void SimRover::update_ackermann_or_skid(const struct sitl_input &input, float delta_time)
|
||
{
|
||
float steering, throttle;
|
||
|
||
// if in skid steering mode the steering and throttle values are used for motor1 and motor2
|
||
if (skid_steering) {
|
||
float motor1 = 2*((input.servos[0]-1000)/1000.0f - 0.5f);
|
||
float motor2 = 2*((input.servos[2]-1000)/1000.0f - 0.5f);
|
||
steering = motor1 - motor2;
|
||
throttle = 0.5*(motor1 + motor2);
|
||
} else {
|
||
steering = 2*((input.servos[0]-1000)/1000.0f - 0.5f);
|
||
throttle = 2*((input.servos[2]-1000)/1000.0f - 0.5f);
|
||
|
||
// vectored thrust conversion
|
||
if (vectored_thrust) {
|
||
const float steering_angle_rad = radians(steering * vectored_angle_max);
|
||
steering = sinf(steering_angle_rad) * throttle;
|
||
throttle *= cosf(steering_angle_rad);
|
||
}
|
||
}
|
||
|
||
// speed in m/s in body frame
|
||
Vector3f velocity_body = dcm.transposed() * velocity_ef;
|
||
|
||
// speed along x axis, +ve is forward
|
||
float speed = velocity_body.x;
|
||
|
||
// yaw rate in degrees/s
|
||
float yaw_rate = calc_yaw_rate(steering, speed);
|
||
|
||
// target speed with current throttle
|
||
float target_speed = throttle * max_speed;
|
||
|
||
// linear acceleration in m/s/s - very crude model
|
||
float accel = max_accel * (target_speed - speed) / max_speed;
|
||
|
||
gyro = Vector3f(0,0,radians(yaw_rate));
|
||
|
||
// update attitude
|
||
dcm.rotate(gyro * delta_time);
|
||
dcm.normalize();
|
||
|
||
// accel in body frame due to motor (excluding gravity)
|
||
accel_body = Vector3f(accel, 0, 0);
|
||
|
||
// add in accel due to direction change
|
||
accel_body.y += radians(yaw_rate) * speed;
|
||
}
|
||
|
||
/*
|
||
update the omni3 rover simulation by one time step
|
||
*/
|
||
void SimRover::update_omni3(const struct sitl_input &input, float delta_time)
|
||
{
|
||
// in omni3 mode the first three servos are motor speeds
|
||
float motor1 = 2*((input.servos[0]-1000)/1000.0f - 0.5f);
|
||
float motor2 = 2*((input.servos[1]-1000)/1000.0f - 0.5f);
|
||
float motor3 = 2*((input.servos[2]-1000)/1000.0f - 0.5f);
|
||
|
||
// use forward kinematics to calculate body frame velocity
|
||
Vector3f wheel_ang_vel(
|
||
motor1 * omni3_wheel_max_ang_vel,
|
||
motor2 * omni3_wheel_max_ang_vel,
|
||
motor3 * omni3_wheel_max_ang_vel
|
||
);
|
||
|
||
// derivation of forward kinematics for an Omni3Mecanum rover
|
||
// A. Gfrerrer. "Geometry and kinematics of the Mecanum wheel",
|
||
// Computer Aided Geometric Design 25 (2008) 784–791.
|
||
// Retrieved from https://www.geometrie.tugraz.at/gfrerrer/publications/MecanumWheel.pdf.
|
||
//
|
||
// the frame is equilateral triangle
|
||
//
|
||
// d[i] = 0.18 m is distance from frame centre to each wheel
|
||
// r_w = 0.04725 m is the wheel radius.
|
||
// delta = radians(-45) is angle of the roller to the direction of forward rotation
|
||
// alpha[i] is the angle the wheel axis is rotated about the body z-axis
|
||
// c[i] = cos(alpha[i] + delta)
|
||
// s[i] = sin(alpha[i] + delta)
|
||
//
|
||
// wheel d[i] alpha[i] a_x[i] a_y[i] c[i] s[i]
|
||
// 1 0.18 1.04719 0.09 0.15588 0.965925 0.258819
|
||
// 2 0.18 3.14159 -0.18 0.0 -0.707106 0.707106
|
||
// 3 0.18 5.23598 0.09 -0.15588 -0.258819 -0.965925
|
||
//
|
||
// k = 1/(r_w * sin(delta)) = -29.930445 is a scale factor
|
||
//
|
||
// inverse kinematic matrix
|
||
// M[i, 0] = k * c[i]
|
||
// M[i, 1] = k * s[i]
|
||
// M[i, 2] = k * (a_x[i] s[i] - a_y[i] c[i])
|
||
//
|
||
// forward kinematics matrix: Minv = M^-1
|
||
constexpr Matrix3f Minv(
|
||
-0.0215149, 0.01575, 0.0057649,
|
||
-0.0057649, -0.01575, 0.0215149,
|
||
0.0875, 0.0875, 0.0875);
|
||
|
||
// twist - this is the target linear and angular velocity
|
||
Vector3f twist = Minv * wheel_ang_vel;
|
||
|
||
// speed in m/s in body frame
|
||
Vector3f velocity_body = dcm.transposed() * velocity_ef;
|
||
|
||
// linear acceleration in m/s/s - very crude model
|
||
float accel_x = omni3_max_accel * (twist.x - velocity_body.x) / omni3_max_speed;
|
||
float accel_y = omni3_max_accel * (twist.y - velocity_body.y) / omni3_max_speed;
|
||
|
||
gyro = Vector3f(0, 0, twist.z);
|
||
|
||
// update attitude
|
||
dcm.rotate(gyro * delta_time);
|
||
dcm.normalize();
|
||
|
||
// accel in body frame due to motors (excluding gravity)
|
||
accel_body = Vector3f(accel_x, accel_y, 0);
|
||
}
|
||
|
||
} // namespace SITL
|