ardupilot/ArduCopter/sensors.pde

114 lines
3.5 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// Sensors are not available in HIL_MODE_ATTITUDE
#if HIL_MODE != HIL_MODE_ATTITUDE
static void ReadSCP1000(void) {
}
#if CONFIG_SONAR == ENABLED
static void init_sonar(void)
{
#if CONFIG_SONAR_SOURCE == SONAR_SOURCE_ADC
sonar.calculate_scaler(g.sonar_type, 3.3);
#else
sonar.calculate_scaler(g.sonar_type, 5.0);
#endif
}
#endif
static void init_barometer(void)
{
barometer.calibrate(mavlink_delay);
ahrs.set_barometer(&barometer);
gcs_send_text_P(SEVERITY_LOW, PSTR("barometer calibration complete"));
}
// return barometric altitude in centimeters
static int32_t read_barometer(void)
{
barometer.read();
return baro_filter.apply(barometer.get_altitude() * 100.0);
}
#endif // HIL_MODE != HIL_MODE_ATTITUDE
static void init_compass()
{
compass.set_orientation(MAG_ORIENTATION); // set compass's orientation on aircraft
if (!compass.init() || !compass.read()) {
// make sure we don't pass a broken compass to DCM
Serial.println_P(PSTR("COMPASS INIT ERROR"));
return;
}
ahrs.set_compass(&compass);
#if SECONDARY_DMP_ENABLED == ENABLED
ahrs2.set_compass(&compass);
#endif
}
static void init_optflow()
{
#ifdef OPTFLOW_ENABLED
if( optflow.init(false, &timer_scheduler) == false ) {
g.optflow_enabled = false;
SendDebug("\nFailed to Init OptFlow ");
}
// suspend timer while we set-up SPI communication
timer_scheduler.suspend_timer();
optflow.set_orientation(OPTFLOW_ORIENTATION); // set optical flow sensor's orientation on aircraft
optflow.set_frame_rate(2000); // set minimum update rate (which should lead to maximum low light performance
optflow.set_resolution(OPTFLOW_RESOLUTION); // set optical flow sensor's resolution
optflow.set_field_of_view(OPTFLOW_FOV); // set optical flow sensor's field of view
// resume timer
timer_scheduler.resume_timer();
#endif
}
static void read_battery(void)
{
if(g.battery_monitoring == 0) {
battery_voltage1 = 0;
return;
}
if(g.battery_monitoring == 3 || g.battery_monitoring == 4) {
static AP_AnalogSource_Arduino bat_pin(g.battery_pin);
battery_voltage1 = BATTERY_VOLTAGE(bat_pin.read_average());
}
if(g.battery_monitoring == 4) {
static AP_AnalogSource_Arduino current_pin(g.battery_pin+1); // current is always read from one pin higher than battery voltage
current_amps1 = CURRENT_AMPS(current_pin.read_average());
current_total1 += current_amps1 * 0.02778; // called at 100ms on average, .0002778 is 1/3600 (conversion to hours)
}
#if BATTERY_EVENT == ENABLED
//if(battery_voltage < g.low_voltage)
// low_battery_event();
if((battery_voltage1 < g.low_voltage) || (g.battery_monitoring == 4 && current_total1 > g.pack_capacity)) {
low_battery_event();
#if COPTER_LEDS == ENABLED
if ( bitRead(g.copter_leds_mode, 3) ) { // Only Activate if a battery is connected to avoid alarm on USB only
if (battery_voltage1 > 1) {
piezo_on();
}else{
piezo_off();
}
}
}else if ( bitRead(g.copter_leds_mode, 3) ) {
piezo_off();
#endif // COPTER_LEDS
}
#endif //BATTERY_EVENT
}
//v: 10.9453, a: 17.4023, mah: 8.2