mirror of https://github.com/ArduPilot/ardupilot
1513 lines
54 KiB
C++
1513 lines
54 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
SITL.cpp - software in the loop state
|
|
*/
|
|
|
|
#include "SITL.h"
|
|
|
|
#if AP_SIM_ENABLED
|
|
|
|
#include <AP_Common/AP_Common.h>
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include <AP_Vehicle/AP_Vehicle_Type.h>
|
|
|
|
#include <GCS_MAVLink/GCS_MAVLink.h>
|
|
#include <AP_Logger/AP_Logger.h>
|
|
#include <AP_InertialSensor/AP_InertialSensor.h>
|
|
|
|
#ifdef SFML_JOYSTICK
|
|
#ifdef HAVE_SFML_GRAPHICS_HPP
|
|
#include <SFML/Window/Joystick.hpp>
|
|
#elif HAVE_SFML_GRAPHIC_H
|
|
#include <SFML/Window/Joystick.h>
|
|
#endif
|
|
#endif // SFML_JOYSTICK
|
|
|
|
#include "SIM_StratoBlimp.h"
|
|
#include "SIM_Glider.h"
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
#ifndef SIM_RATE_HZ_DEFAULT
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
#define SIM_RATE_HZ_DEFAULT 1200
|
|
#else
|
|
#define SIM_RATE_HZ_DEFAULT 400
|
|
#endif
|
|
#endif
|
|
|
|
#if (CONFIG_HAL_BOARD != HAL_BOARD_SITL)
|
|
// For on-hardware, set allowed relay channels to zero.
|
|
// Requires user to change the param to allow hadware access.
|
|
#define SIM_DEFAULT_ENABLED_RELAY_CHANNELS 0
|
|
#else
|
|
// For SITL, set allowed relay channels to the full mask.
|
|
#define SIM_DEFAULT_ENABLED_RELAY_CHANNELS UINT16_MAX
|
|
#endif
|
|
|
|
namespace SITL {
|
|
|
|
SIM *SIM::_singleton = nullptr;
|
|
|
|
// table of user settable parameters
|
|
const AP_Param::GroupInfo SIM::var_info[] = {
|
|
|
|
AP_GROUPINFO("DRIFT_SPEED", 5, SIM, drift_speed, 0.05f),
|
|
AP_GROUPINFO("DRIFT_TIME", 6, SIM, drift_time, 5),
|
|
AP_GROUPINFO("ENGINE_MUL", 8, SIM, engine_mul, 1),
|
|
// @Param: WIND_SPD
|
|
// @DisplayName: Simulated Wind speed
|
|
// @Description: Allows you to emulate wind in sim
|
|
// @Units: m/s
|
|
// @User: Advanced
|
|
AP_GROUPINFO("WIND_SPD", 9, SIM, wind_speed, 0),
|
|
// @Param: WIND_DIR
|
|
// @DisplayName: Simulated Wind direction
|
|
// @Description: Allows you to set wind direction (true deg) in sim
|
|
// @Units: deg
|
|
// @User: Advanced
|
|
AP_GROUPINFO("WIND_DIR", 10, SIM, wind_direction, 180),
|
|
|
|
// @Param: WIND_TURB
|
|
// @DisplayName: Simulated Wind variation
|
|
// @Description: Allows you to emulate random wind variations in sim
|
|
// @Units: m/s
|
|
// @User: Advanced
|
|
AP_GROUPINFO("WIND_TURB", 11, SIM, wind_turbulance, 0),
|
|
|
|
// @Param: WIND_TC
|
|
// @DisplayName: Wind variation time constant
|
|
// @Description: this controls the time over which wind changes take effect
|
|
// @Units: s
|
|
// @User: Advanced
|
|
AP_GROUPINFO("WIND_TC", 12, SIM, wind_change_tc, 5),
|
|
|
|
// @Group: SERVO_
|
|
// @Path: ./ServoModel.cpp
|
|
AP_SUBGROUPINFO(servo, "SERVO_", 16, SIM, ServoParams),
|
|
|
|
AP_GROUPINFO("SONAR_ROT", 17, SIM, sonar_rot, Rotation::ROTATION_PITCH_270),
|
|
// @Param: BATT_VOLTAGE
|
|
// @DisplayName: Simulated battery voltage
|
|
// @Description: Simulated battery (constant) voltage
|
|
// @Units: V
|
|
// @User: Advanced
|
|
AP_GROUPINFO("BATT_VOLTAGE", 19, SIM, batt_voltage, 12.6f),
|
|
AP_GROUPINFO("BATT_CAP_AH", 20, SIM, batt_capacity_ah, 0),
|
|
AP_GROUPINFO("SONAR_GLITCH", 23, SIM, sonar_glitch, 0),
|
|
AP_GROUPINFO("SONAR_RND", 24, SIM, sonar_noise, 0),
|
|
// @Param: RC_FAIL
|
|
// @DisplayName: Simulated RC signal failure
|
|
// @Description: Allows you to emulate rc failures in sim
|
|
// @Values: 0:Disabled,1:No RC pusles,2:All Channels neutral except Throttle is 950us
|
|
// @User: Advanced
|
|
AP_GROUPINFO("RC_FAIL", 25, SIM, rc_fail, 0),
|
|
// @Param: FLOAT_EXCEPT
|
|
// @DisplayName: Generate floating point exceptions
|
|
// @Description: If set, if a numerical error occurs SITL will die with a floating point exception.
|
|
// @User: Advanced
|
|
AP_GROUPINFO("FLOAT_EXCEPT", 28, SIM, float_exception, 1),
|
|
|
|
// @Param: CAN_SRV_MSK
|
|
// @DisplayName: Mask of CAN servos/ESCs
|
|
// @Description: The set of actuators controlled externally by CAN SITL AP_Periph
|
|
// @Bitmask: 0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15, 15: Servo 16, 16: Servo 17, 17: Servo 18, 18: Servo 19, 19: Servo 20, 20: Servo 21, 21: Servo 22, 22: Servo 23, 23: Servo 24, 24: Servo 25, 25: Servo 26, 26: Servo 27, 27: Servo 28, 28: Servo 29, 29: Servo 30, 30: Servo 31, 31: Servo 32
|
|
// @User: Advanced
|
|
AP_GROUPINFO("CAN_SRV_MSK", 29, SIM, can_servo_mask, 0),
|
|
|
|
#if HAL_NUM_CAN_IFACES > 0
|
|
// @Param: CAN_TYPE1
|
|
// @DisplayName: transport type for first CAN interface
|
|
// @Description: transport type for first CAN interface
|
|
// @Values: 0:MulticastUDP,1:SocketCAN
|
|
// @User: Advanced
|
|
AP_GROUPINFO("CAN_TYPE1", 30, SIM, can_transport[0], uint8_t(CANTransport::MulticastUDP)),
|
|
#endif
|
|
|
|
#if HAL_NUM_CAN_IFACES > 1
|
|
// @Param: CAN_TYPE2
|
|
// @DisplayName: transport type for second CAN interface
|
|
// @Description: transport type for second CAN interface
|
|
// @Values: 0:MulticastUDP,1:SocketCAN
|
|
// @User: Advanced
|
|
AP_GROUPINFO("CAN_TYPE2", 31, SIM, can_transport[1], uint8_t(CANTransport::MulticastUDP)),
|
|
#endif
|
|
|
|
AP_GROUPINFO("SONAR_SCALE", 32, SIM, sonar_scale, 12.1212f),
|
|
// @Param: FLOW_ENABLE
|
|
// @DisplayName: Opflow Enable
|
|
// @Description: Enable simulated Optical Flow sensor
|
|
// @Values: 0:Disable,1:Enabled
|
|
AP_GROUPINFO("FLOW_ENABLE", 33, SIM, flow_enable, 0),
|
|
AP_GROUPINFO("TERRAIN", 34, SIM, terrain_enable, 1),
|
|
// @Param: FLOW_RATE
|
|
// @DisplayName: Opflow Rate
|
|
// @Description: Opflow Data Rate
|
|
// @Units: Hz
|
|
AP_GROUPINFO("FLOW_RATE", 35, SIM, flow_rate, 10),
|
|
// @Param: FLOW_DELAY
|
|
// @DisplayName: Opflow Delay
|
|
// @Description: Opflow data delay
|
|
// @Units: ms
|
|
AP_GROUPINFO("FLOW_DELAY", 36, SIM, flow_delay, 0),
|
|
AP_GROUPINFO("ADSB_COUNT", 45, SIM, adsb_plane_count, -1),
|
|
AP_GROUPINFO("ADSB_RADIUS", 46, SIM, adsb_radius_m, 10000),
|
|
AP_GROUPINFO("ADSB_ALT", 47, SIM, adsb_altitude_m, 1000),
|
|
AP_GROUPINFO("PIN_MASK", 50, SIM, pin_mask, 0),
|
|
AP_GROUPINFO("ADSB_TX", 51, SIM, adsb_tx, 0),
|
|
// @Param: SPEEDUP
|
|
// @DisplayName: Sim Speedup
|
|
// @Description: Runs the simulation at multiples of normal speed. Do not use if realtime physics, like RealFlight, is being used
|
|
// @Range: 1 10
|
|
// @User: Advanced
|
|
AP_GROUPINFO("SPEEDUP", 52, SIM, speedup, -1),
|
|
// @Param: IMU_POS
|
|
// @DisplayName: IMU Offsets
|
|
// @Description: XYZ position of the IMU accelerometer relative to the body frame origin
|
|
// @Units: m
|
|
// @Vector3Parameter: 1
|
|
AP_GROUPINFO("IMU_POS", 53, SIM, imu_pos_offset, 0),
|
|
AP_SUBGROUPEXTENSION("", 54, SIM, var_ins),
|
|
AP_GROUPINFO("SONAR_POS", 55, SIM, rngfnd_pos_offset, 0),
|
|
// @Param: FLOW_POS
|
|
// @DisplayName: Opflow Pos
|
|
// @Description: XYZ position of the optical flow sensor focal point relative to the body frame origin
|
|
// @Units: m
|
|
// @Vector3Parameter: 1
|
|
AP_GROUPINFO("FLOW_POS", 56, SIM, optflow_pos_offset, 0),
|
|
AP_GROUPINFO("ENGINE_FAIL", 58, SIM, engine_fail, 0),
|
|
AP_SUBGROUPINFO(models, "", 59, SIM, SIM::ModelParm),
|
|
AP_SUBGROUPEXTENSION("", 60, SIM, var_mag),
|
|
#if HAL_SIM_GPS_ENABLED
|
|
AP_SUBGROUPEXTENSION("", 61, SIM, var_gps),
|
|
#endif
|
|
AP_SUBGROUPEXTENSION("", 62, SIM, var_info3),
|
|
AP_SUBGROUPEXTENSION("", 63, SIM, var_info2),
|
|
AP_GROUPEND
|
|
};
|
|
|
|
// second table of user settable parameters for SITL.
|
|
const AP_Param::GroupInfo SIM::var_info2[] = {
|
|
AP_GROUPINFO("TEMP_START", 1, SIM, temp_start, 25),
|
|
AP_GROUPINFO("TEMP_BRD_OFF", 2, SIM, temp_board_offset, 20),
|
|
AP_GROUPINFO("TEMP_TCONST", 3, SIM, temp_tconst, 30),
|
|
AP_GROUPINFO("TEMP_BFACTOR", 4, SIM, temp_baro_factor, 0),
|
|
|
|
AP_GROUPINFO("WIND_DIR_Z", 10, SIM, wind_dir_z, 0),
|
|
// @Param: WIND_T
|
|
// @DisplayName: Wind Profile Type
|
|
// @Description: Selects how wind varies from surface to WIND_T_ALT
|
|
// @Values: 0:square law,1: none, 2:linear-see WIND_T_COEF
|
|
// @User: Advanced
|
|
AP_GROUPINFO("WIND_T" ,15, SIM, wind_type, SIM::WIND_TYPE_SQRT),
|
|
// @Param: WIND_T_ALT
|
|
// @DisplayName: Full Wind Altitude
|
|
// @Description: Altitude at which wind reaches full strength, decaying from full strength as altitude lowers to ground level
|
|
// @Units: m
|
|
// @User: Advanced
|
|
AP_GROUPINFO("WIND_T_ALT" ,16, SIM, wind_type_alt, 60),
|
|
// @Param: WIND_T_COEF
|
|
// @DisplayName: Linear Wind Curve Coeff
|
|
// @Description: For linear wind profile,wind is reduced by (Altitude-WIND_T_ALT) x this value
|
|
// @User: Advanced
|
|
AP_GROUPINFO("WIND_T_COEF", 17, SIM, wind_type_coef, 0.01f),
|
|
AP_GROUPINFO("RC_CHANCOUNT",21, SIM, rc_chancount, 16),
|
|
// @Group: SPR_
|
|
// @Path: ./SIM_Sprayer.cpp
|
|
AP_SUBGROUPINFO(sprayer_sim, "SPR_", 22, SIM, Sprayer),
|
|
// @Group: GRPS_
|
|
// @Path: ./SIM_Gripper_Servo.cpp
|
|
AP_SUBGROUPINFO(gripper_sim, "GRPS_", 23, SIM, Gripper_Servo),
|
|
// @Group: GRPE_
|
|
// @Path: ./SIM_Gripper_EPM.cpp
|
|
AP_SUBGROUPINFO(gripper_epm_sim, "GRPE_", 24, SIM, Gripper_EPM),
|
|
|
|
// @Param: WOW_PIN
|
|
// @DisplayName: Weight on Wheels Pin
|
|
// @Description: SITL set this simulated pin to true if vehicle is on ground
|
|
// @User: Advanced
|
|
AP_GROUPINFO("WOW_PIN", 25, SIM, wow_pin, -1),
|
|
|
|
// vibration frequencies on each axis
|
|
AP_GROUPINFO("VIB_FREQ", 26, SIM, vibe_freq, 0),
|
|
|
|
// @Path: ./SIM_Parachute.cpp
|
|
AP_SUBGROUPINFO(parachute_sim, "PARA_", 27, SIM, Parachute),
|
|
|
|
// enable bandwidth limitting on telemetry ports:
|
|
AP_GROUPINFO("BAUDLIMIT_EN", 28, SIM, telem_baudlimit_enable, 0),
|
|
|
|
// @Group: PLD_
|
|
// @Path: ./SIM_Precland.cpp
|
|
AP_SUBGROUPINFO(precland_sim, "PLD_", 29, SIM, SIM_Precland),
|
|
|
|
// apply a force to the vehicle over a period of time:
|
|
AP_GROUPINFO("SHOVE_X", 30, SIM, shove.x, 0),
|
|
AP_GROUPINFO("SHOVE_Y", 31, SIM, shove.y, 0),
|
|
AP_GROUPINFO("SHOVE_Z", 32, SIM, shove.z, 0),
|
|
AP_GROUPINFO("SHOVE_TIME", 33, SIM, shove.t, 0),
|
|
|
|
// optical flow sensor measurement noise in rad/sec
|
|
// @Param: FLOW_RND
|
|
// @DisplayName: Opflow noise
|
|
// @Description: Optical Flow sensor measurement noise in rad/sec
|
|
AP_GROUPINFO("FLOW_RND", 34, SIM, flow_noise, 0.05f),
|
|
|
|
AP_GROUPINFO("TWIST_X", 37, SIM, twist.x, 0),
|
|
AP_GROUPINFO("TWIST_Y", 38, SIM, twist.y, 0),
|
|
AP_GROUPINFO("TWIST_Z", 39, SIM, twist.z, 0),
|
|
AP_GROUPINFO("TWIST_TIME", 40, SIM, twist.t, 0),
|
|
|
|
AP_GROUPINFO("GND_BEHAV", 41, SIM, gnd_behav, -1),
|
|
|
|
// sailboat wave and tide simulation parameters
|
|
AP_GROUPINFO("WAVE_ENABLE", 44, SIM, wave.enable, 0.0f),
|
|
AP_GROUPINFO("WAVE_LENGTH", 45, SIM, wave.length, 10.0f),
|
|
AP_GROUPINFO("WAVE_AMP", 46, SIM, wave.amp, 0.5f),
|
|
AP_GROUPINFO("WAVE_DIR", 47, SIM, wave.direction, 0.0f),
|
|
AP_GROUPINFO("WAVE_SPEED", 48, SIM, wave.speed, 0.5f),
|
|
AP_GROUPINFO("TIDE_DIR", 49, SIM, tide.direction, 0.0f),
|
|
AP_GROUPINFO("TIDE_SPEED", 50, SIM, tide.speed, 0.0f),
|
|
|
|
// the following coordinates are for CMAC, in Canberra
|
|
// @Param: OPOS_LAT
|
|
// @DisplayName: Original Position (Latitude)
|
|
// @Description: Specifies vehicle's startup latitude
|
|
// @User: Advanced
|
|
AP_GROUPINFO("OPOS_LAT", 51, SIM, opos.lat, -35.363261f),
|
|
// @Param: OPOS_LNG
|
|
// @DisplayName: Original Position (Longitude)
|
|
// @Description: Specifies vehicle's startup longitude
|
|
// @User: Advanced
|
|
AP_GROUPINFO("OPOS_LNG", 52, SIM, opos.lng, 149.165230f),
|
|
// @Param: OPOS_ALT
|
|
// @DisplayName: Original Position (Altitude)
|
|
// @Description: Specifies vehicle's startup altitude (AMSL)
|
|
// @User: Advanced
|
|
AP_GROUPINFO("OPOS_ALT", 53, SIM, opos.alt, 584.0f),
|
|
// @Param: OPOS_HDG
|
|
// @DisplayName: Original Position (Heading)
|
|
// @Description: Specifies vehicle's startup heading (0-360)
|
|
// @User: Advanced
|
|
AP_GROUPINFO("OPOS_HDG", 54, SIM, opos.hdg, 353.0f),
|
|
|
|
// extra delay per main loop
|
|
AP_GROUPINFO("LOOP_DELAY", 55, SIM, loop_delay, 0),
|
|
|
|
// @Path: ./SIM_Buzzer.cpp
|
|
AP_SUBGROUPINFO(buzzer_sim, "BZ_", 56, SIM, Buzzer),
|
|
|
|
// @Path: ./SIM_ToneAlarm.cpp
|
|
AP_SUBGROUPINFO(tonealarm_sim, "TA_", 57, SIM, ToneAlarm),
|
|
|
|
AP_GROUPINFO("EFI_TYPE", 58, SIM, efi_type, SIM::EFI_TYPE_NONE),
|
|
|
|
// 59 was SAFETY_STATE
|
|
|
|
// motor harmonics
|
|
AP_GROUPINFO("VIB_MOT_HMNC", 60, SIM, vibe_motor_harmonics, 1),
|
|
|
|
// motor mask, allowing external simulators to mark motors
|
|
AP_GROUPINFO("VIB_MOT_MASK", 5, SIM, vibe_motor_mask, 0),
|
|
|
|
// max motor vibration frequency
|
|
AP_GROUPINFO("VIB_MOT_MAX", 61, SIM, vibe_motor, 0.0f),
|
|
// minimum throttle for simulated ins noise
|
|
AP_GROUPINFO("INS_THR_MIN", 62, SIM, ins_noise_throttle_min, 0.1f),
|
|
// amplitude scaling of motor noise relative to gyro/accel noise
|
|
AP_GROUPINFO("VIB_MOT_MULT", 63, SIM, vibe_motor_scale, 1.0f),
|
|
|
|
|
|
AP_GROUPEND
|
|
|
|
};
|
|
|
|
// third table of user settable parameters for SITL.
|
|
const AP_Param::GroupInfo SIM::var_info3[] = {
|
|
AP_GROUPINFO("ODOM_ENABLE", 1, SIM, odom_enable, 0),
|
|
|
|
AP_GROUPINFO("LED_LAYOUT", 11, SIM, led_layout, 0),
|
|
|
|
// Scenario for thermalling simulation, for soaring
|
|
AP_GROUPINFO("THML_SCENARI", 12, SIM, thermal_scenario, 0),
|
|
|
|
// @Param: VICON_POS_X
|
|
// @DisplayName: SITL vicon position on vehicle in Forward direction
|
|
// @Description: SITL vicon position on vehicle in Forward direction
|
|
// @Units: m
|
|
// @Range: 0 10
|
|
// @User: Advanced
|
|
|
|
// @Param: VICON_POS_Y
|
|
// @DisplayName: SITL vicon position on vehicle in Right direction
|
|
// @Description: SITL vicon position on vehicle in Right direction
|
|
// @Units: m
|
|
// @Range: 0 10
|
|
// @User: Advanced
|
|
|
|
// @Param: VICON_POS_Z
|
|
// @DisplayName: SITL vicon position on vehicle in Down direction
|
|
// @Description: SITL vicon position on vehicle in Down direction
|
|
// @Units: m
|
|
// @Range: 0 10
|
|
// @User: Advanced
|
|
AP_GROUPINFO("VICON_POS", 14, SIM, vicon_pos_offset, 0),
|
|
|
|
// Buyoancy for submarines
|
|
AP_GROUPINFO_FRAME("BUOYANCY", 15, SIM, buoyancy, 1, AP_PARAM_FRAME_SUB),
|
|
|
|
// @Param: VICON_GLIT_X
|
|
// @DisplayName: SITL vicon position glitch North
|
|
// @Description: SITL vicon position glitch North
|
|
// @Units: m
|
|
// @User: Advanced
|
|
|
|
// @Param: VICON_GLIT_Y
|
|
// @DisplayName: SITL vicon position glitch East
|
|
// @Description: SITL vicon position glitch East
|
|
// @Units: m
|
|
// @User: Advanced
|
|
|
|
// @Param: VICON_GLIT_Z
|
|
// @DisplayName: SITL vicon position glitch Down
|
|
// @Description: SITL vicon position glitch Down
|
|
// @Units: m
|
|
// @User: Advanced
|
|
AP_GROUPINFO("VICON_GLIT", 16, SIM, vicon_glitch, 0),
|
|
|
|
// @Param: VICON_FAIL
|
|
// @DisplayName: SITL vicon failure
|
|
// @Description: SITL vicon failure
|
|
// @Values: 0:Vicon Healthy, 1:Vicon Failed
|
|
// @User: Advanced
|
|
AP_GROUPINFO("VICON_FAIL", 17, SIM, vicon_fail, 0),
|
|
|
|
// @Param: VICON_YAW
|
|
// @DisplayName: SITL vicon yaw angle in earth frame
|
|
// @Description: SITL vicon yaw angle in earth frame
|
|
// @Units: deg
|
|
// @Range: 0 360
|
|
// @User: Advanced
|
|
AP_GROUPINFO("VICON_YAW", 18, SIM, vicon_yaw, 0),
|
|
|
|
// @Param: VICON_YAWERR
|
|
// @DisplayName: SITL vicon yaw error
|
|
// @Description: SITL vicon yaw added to reported yaw sent to vehicle
|
|
// @Units: deg
|
|
// @Range: -180 180
|
|
// @User: Advanced
|
|
AP_GROUPINFO("VICON_YAWERR", 19, SIM, vicon_yaw_error, 0),
|
|
|
|
// @Param: VICON_TMASK
|
|
// @DisplayName: SITL vicon type mask
|
|
// @Description: SITL vicon messages sent
|
|
// @Bitmask: 0:VISION_POSITION_ESTIMATE, 1:VISION_SPEED_ESTIMATE, 2:VICON_POSITION_ESTIMATE, 3:VISION_POSITION_DELTA, 4:ODOMETRY
|
|
// @User: Advanced
|
|
AP_GROUPINFO("VICON_TMASK", 20, SIM, vicon_type_mask, 3),
|
|
|
|
// @Param: VICON_VGLI_X
|
|
// @DisplayName: SITL vicon velocity glitch North
|
|
// @Description: SITL vicon velocity glitch North
|
|
// @Units: m/s
|
|
// @User: Advanced
|
|
|
|
// @Param: VICON_VGLI_Y
|
|
// @DisplayName: SITL vicon velocity glitch East
|
|
// @Description: SITL vicon velocity glitch East
|
|
// @Units: m/s
|
|
// @User: Advanced
|
|
|
|
// @Param: VICON_VGLI_Z
|
|
// @DisplayName: SITL vicon velocity glitch Down
|
|
// @Description: SITL vicon velocity glitch Down
|
|
// @Units: m/s
|
|
// @User: Advanced
|
|
AP_GROUPINFO("VICON_VGLI", 21, SIM, vicon_vel_glitch, 0),
|
|
|
|
AP_GROUPINFO("RATE_HZ", 22, SIM, loop_rate_hz, SIM_RATE_HZ_DEFAULT),
|
|
|
|
// @Param: IMU_COUNT
|
|
// @DisplayName: IMU count
|
|
// @Description: Number of simulated IMUs to create
|
|
AP_GROUPINFO("IMU_COUNT", 23, SIM, imu_count, 2),
|
|
|
|
// @Path: ./SIM_FETtecOneWireESC.cpp
|
|
AP_SUBGROUPINFO(fetteconewireesc_sim, "FTOWESC_", 30, SIM, FETtecOneWireESC),
|
|
|
|
// @Path: ./SIM_RichenPower.cpp
|
|
AP_SUBGROUPINFO(richenpower_sim, "RICH_", 31, SIM, RichenPower),
|
|
|
|
// @Path: ./SIM_IntelligentEnergy24.cpp
|
|
AP_SUBGROUPINFO(ie24_sim, "IE24_", 32, SIM, IntelligentEnergy24),
|
|
|
|
// user settable barometer parameters
|
|
AP_GROUPINFO("BARO_COUNT", 33, SIM, baro_count, 2),
|
|
|
|
AP_SUBGROUPINFO(baro[0], "BARO_", 34, SIM, SIM::BaroParm),
|
|
#if BARO_MAX_INSTANCES > 1
|
|
AP_SUBGROUPINFO(baro[1], "BAR2_", 35, SIM, SIM::BaroParm),
|
|
#endif
|
|
#if BARO_MAX_INSTANCES > 2
|
|
AP_SUBGROUPINFO(baro[2], "BAR3_", 36, SIM, SIM::BaroParm),
|
|
#endif
|
|
|
|
AP_GROUPINFO("TIME_JITTER", 37, SIM, loop_time_jitter_us, 0),
|
|
|
|
// user settable parameters for the 1st barometer
|
|
// @Param: BARO_RND
|
|
// @DisplayName: Baro Noise
|
|
// @Description: Amount of (evenly-distributed) noise injected into the 1st baro
|
|
// @Units: m
|
|
// @User: Advanced
|
|
|
|
// @Param: BARO_GLITCH
|
|
// @DisplayName: Baro Glitch
|
|
// @Description: Glitch for 1st baro
|
|
// @Units: m
|
|
// @User: Advanced
|
|
|
|
// user settable parameters for the 2nd barometer
|
|
// @Param: BAR2_RND
|
|
// @DisplayName: Baro2 Noise
|
|
// @Description: Amount of (evenly-distributed) noise injected into the 2nd baro
|
|
// @Units: m
|
|
// @User: Advanced
|
|
|
|
// @Param: BAR2_GLITCH
|
|
// @DisplayName: Baro2 Glitch
|
|
// @Description: Glitch for 2nd baro
|
|
// @Units: m
|
|
// @User: Advanced
|
|
|
|
// user settable parameters for the 3rd barometer
|
|
// @Param: BAR3_RND
|
|
// @DisplayName: Baro3 Noise
|
|
// @Description: Amount of (evenly-distributed) noise injected into the 3rd baro
|
|
// @Units: m
|
|
// @User: Advanced
|
|
|
|
// @Param: BAR3_GLITCH
|
|
// @DisplayName: Baro3 Glitch
|
|
// @Description: Glitch for 2nd baro
|
|
// @Units: m
|
|
// @User: Advanced
|
|
|
|
// @Param: ESC_TELEM
|
|
// @DisplayName: Simulated ESC Telemetry
|
|
// @Description: enable perfect simulated ESC telemetry
|
|
// @User: Advanced
|
|
AP_GROUPINFO("ESC_TELEM", 40, SIM, esc_telem, 1),
|
|
|
|
AP_GROUPINFO("ESC_ARM_RPM", 41, SIM, esc_rpm_armed, 0.0f),
|
|
|
|
// @Param: UART_LOSS
|
|
// @DisplayName: UART byte loss percentage
|
|
// @Description: Sets percentage of outgoing byte loss on UARTs
|
|
// @Units: %
|
|
// @User: Advanced
|
|
AP_GROUPINFO("UART_LOSS", 42, SIM, uart_byte_loss_pct, 0),
|
|
|
|
// @Group: ARSPD_
|
|
// @Path: ./SITL_Airspeed.cpp
|
|
AP_SUBGROUPINFO(airspeed[0], "ARSPD_", 50, SIM, AirspeedParm),
|
|
#if AIRSPEED_MAX_SENSORS > 1
|
|
// @Group: ARSPD2_
|
|
// @Path: ./SITL_Airspeed.cpp
|
|
AP_SUBGROUPINFO(airspeed[1], "ARSPD2_", 51, SIM, AirspeedParm),
|
|
#endif
|
|
|
|
// @Param: ADSB_TYPES
|
|
// @DisplayName: Simulated ADSB Type mask
|
|
// @Description: specifies which simulated ADSB types are active
|
|
// @User: Advanced
|
|
// @Bitmask: 0:MAVLink,3:SageTechMXS
|
|
AP_GROUPINFO("ADSB_TYPES", 52, SIM, adsb_types, 1),
|
|
|
|
#ifdef WITH_SITL_OSD
|
|
// @Param: OSD_COLUMNS
|
|
// @DisplayName: Simulated OSD number of text columns
|
|
// @Description: Simulated OSD number of text columns
|
|
// @Range: 10 100
|
|
AP_GROUPINFO("OSD_COLUMNS", 53, SIM, osd_columns, 30),
|
|
|
|
// @Param: OSD_ROWS
|
|
// @DisplayName: Simulated OSD number of text rows
|
|
// @Description: Simulated OSD number of text rows
|
|
// @Range: 10 100
|
|
AP_GROUPINFO("OSD_ROWS", 54, SIM, osd_rows, 16),
|
|
#endif
|
|
|
|
#ifdef SFML_JOYSTICK
|
|
AP_SUBGROUPEXTENSION("", 63, SIM, var_sfml_joystick),
|
|
#endif // SFML_JOYSTICK
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
// user settable parameters for the barometers
|
|
const AP_Param::GroupInfo SIM::BaroParm::var_info[] = {
|
|
AP_GROUPINFO("RND", 1, SIM::BaroParm, noise, 0.2f),
|
|
// @Param: BARO_DRIFT
|
|
// @DisplayName: Baro altitude drift
|
|
// @Description: Barometer altitude drifts at this rate
|
|
// @Units: m/s
|
|
// @User: Advanced
|
|
AP_GROUPINFO("DRIFT", 2, SIM::BaroParm, drift, 0),
|
|
AP_GROUPINFO("DISABLE", 3, SIM::BaroParm, disable, 0),
|
|
AP_GROUPINFO("GLITCH", 4, SIM::BaroParm, glitch, 0),
|
|
AP_GROUPINFO("FREEZE", 5, SIM::BaroParm, freeze, 0),
|
|
AP_GROUPINFO("DELAY", 6, SIM::BaroParm, delay, 0),
|
|
|
|
// wind coeffients
|
|
AP_GROUPINFO("WCF_FWD", 7, SIM::BaroParm, wcof_xp, 0.0),
|
|
AP_GROUPINFO("WCF_BAK", 8, SIM::BaroParm, wcof_xn, 0.0),
|
|
AP_GROUPINFO("WCF_RGT", 9, SIM::BaroParm, wcof_yp, 0.0),
|
|
AP_GROUPINFO("WCF_LFT", 10, SIM::BaroParm, wcof_yn, 0.0),
|
|
AP_GROUPINFO("WCF_UP", 11, SIM::BaroParm, wcof_zp, 0.0),
|
|
AP_GROUPINFO("WCF_DN", 12, SIM::BaroParm, wcof_zn, 0.0),
|
|
AP_GROUPEND
|
|
};
|
|
|
|
#if HAL_SIM_GPS_ENABLED
|
|
// GPS SITL parameters
|
|
const AP_Param::GroupInfo SIM::var_gps[] = {
|
|
// @Param: GPS_DISABLE
|
|
// @DisplayName: GPS 1 disable
|
|
// @Description: Disables GPS 1
|
|
// @Values: 0:Enable, 1:GPS Disabled
|
|
// @User: Advanced
|
|
AP_GROUPINFO("GPS_DISABLE", 1, SIM, gps_disable[0], 0),
|
|
// @Param: GPS_LAG_MS
|
|
// @DisplayName: GPS 1 Lag
|
|
// @Description: GPS 1 lag
|
|
// @Units: ms
|
|
// @User: Advanced
|
|
AP_GROUPINFO("GPS_LAG_MS", 2, SIM, gps_delay_ms[0], 100),
|
|
// @Param: GPS_TYPE
|
|
// @DisplayName: GPS 1 type
|
|
// @Description: Sets the type of simulation used for GPS 1
|
|
// @Values: 0:None, 1:UBlox, 5:NMEA, 6:SBP, 7:File, 8:Nova, 9:SBP2, 11:Trimble, 19:MSP
|
|
// @User: Advanced
|
|
AP_GROUPINFO("GPS_TYPE", 3, SIM, gps_type[0], GPS::Type::UBLOX),
|
|
// @Param: GPS_BYTELOSS
|
|
// @DisplayName: GPS Byteloss
|
|
// @Description: Percent of bytes lost from GPS 1
|
|
// @Units: %
|
|
// @User: Advanced
|
|
AP_GROUPINFO("GPS_BYTELOSS", 4, SIM, gps_byteloss[0], 0),
|
|
// @Param: GPS_NUMSATS
|
|
// @DisplayName: GPS 1 Num Satellites
|
|
// @Description: Number of satellites GPS 1 has in view
|
|
AP_GROUPINFO("GPS_NUMSATS", 5, SIM, gps_numsats[0], 10),
|
|
// @Param: GPS_GLITCH
|
|
// @DisplayName: GPS 1 Glitch
|
|
// @Description: Glitch offsets of simulated GPS 1 sensor
|
|
// @Vector3Parameter: 1
|
|
// @User: Advanced
|
|
AP_GROUPINFO("GPS_GLITCH", 6, SIM, gps_glitch[0], 0),
|
|
// @Param: GPS_HZ
|
|
// @DisplayName: GPS 1 Hz
|
|
// @Description: GPS 1 Update rate
|
|
// @Units: Hz
|
|
AP_GROUPINFO("GPS_HZ", 7, SIM, gps_hertz[0], 5),
|
|
// @Param: GPS_DRIFTALT
|
|
// @DisplayName: GPS 1 Altitude Drift
|
|
// @Description: GPS 1 altitude drift error
|
|
// @Units: m
|
|
// @User: Advanced
|
|
AP_GROUPINFO("GPS_DRIFTALT", 8, SIM, gps_drift_alt[0], 0),
|
|
// @Param: GPS_POS
|
|
// @DisplayName: GPS 1 Position
|
|
// @Description: GPS 1 antenna phase center position relative to the body frame origin
|
|
// @Units: m
|
|
// @Vector3Parameter: 1
|
|
AP_GROUPINFO("GPS_POS", 9, SIM, gps_pos_offset[0], 0),
|
|
// @Param: GPS_NOISE
|
|
// @DisplayName: GPS 1 Noise
|
|
// @Description: Amplitude of the GPS1 altitude error
|
|
// @Units: m
|
|
// @User: Advanced
|
|
AP_GROUPINFO("GPS_NOISE", 10, SIM, gps_noise[0], 0),
|
|
// @Param: GPS_LOCKTIME
|
|
// @DisplayName: GPS 1 Lock Time
|
|
// @Description: Delay in seconds before GPS1 acquires lock
|
|
// @Units: s
|
|
// @User: Advanced
|
|
AP_GROUPINFO("GPS_LOCKTIME", 11, SIM, gps_lock_time[0], 0),
|
|
// @Param: GPS_ALT_OFS
|
|
// @DisplayName: GPS 1 Altitude Offset
|
|
// @Description: GPS 1 Altitude Error
|
|
// @Units: m
|
|
AP_GROUPINFO("GPS_ALT_OFS", 12, SIM, gps_alt_offset[0], 0),
|
|
// @Param: GPS_HDG
|
|
// @DisplayName: GPS 1 Heading
|
|
// @Description: Enable GPS1 output of NMEA heading HDT sentence or UBLOX_RELPOSNED
|
|
// @Values: 0:Disabled, 1:Enabled
|
|
// @User: Advanced
|
|
AP_GROUPINFO("GPS_HDG", 13, SIM, gps_hdg_enabled[0], SIM::GPS_HEADING_NONE),
|
|
// @Param: GPS_ACC
|
|
// @DisplayName: GPS 1 Accuracy
|
|
// @Description: GPS 1 Accuracy
|
|
// @User: Advanced
|
|
AP_GROUPINFO("GPS_ACC", 14, SIM, gps_accuracy[0], 0.3),
|
|
// @Param: GPS_VERR
|
|
// @DisplayName: GPS 1 Velocity Error
|
|
// @Description: GPS 1 Velocity Error Offsets in NED
|
|
// @Vector3Parameter: 1
|
|
// @User: Advanced
|
|
AP_GROUPINFO("GPS_VERR", 15, SIM, gps_vel_err[0], 0),
|
|
// @Param: GPS_JAM
|
|
// @DisplayName: GPS jamming enable
|
|
// @Description: Enable simulated GPS jamming
|
|
// @User: Advanced
|
|
// @Values: 0:Disabled, 1:Enabled
|
|
AP_GROUPINFO("GPS_JAM", 16, SIM, gps_jam[0], 0),
|
|
// @Param: GPS2_DISABLE
|
|
// @DisplayName: GPS 2 disable
|
|
// @Description: Disables GPS 2
|
|
// @Values: 0:Enable, 1:GPS Disabled
|
|
// @User: Advanced
|
|
AP_GROUPINFO("GPS2_DISABLE", 30, SIM, gps_disable[1], 1),
|
|
// @Param: GPS2_LAG_MS
|
|
// @DisplayName: GPS 2 Lag
|
|
// @Description: GPS 2 lag in ms
|
|
// @Units: ms
|
|
// @User: Advanced
|
|
AP_GROUPINFO("GPS2_LAG_MS", 31, SIM, gps_delay_ms[1], 100),
|
|
// @Param: GPS2_TYPE
|
|
// @CopyFieldsFrom: SIM_GPS_TYPE
|
|
// @DisplayName: GPS 2 type
|
|
// @Description: Sets the type of simulation used for GPS 2
|
|
AP_GROUPINFO("GPS2_TYPE", 32, SIM, gps_type[1], GPS::Type::UBLOX),
|
|
// @Param: GPS2_BYTELOS
|
|
// @DisplayName: GPS 2 Byteloss
|
|
// @Description: Percent of bytes lost from GPS 2
|
|
// @Units: %
|
|
// @User: Advanced
|
|
AP_GROUPINFO("GPS2_BYTELOS", 33, SIM, gps_byteloss[1], 0),
|
|
// @Param: GPS2_NUMSATS
|
|
// @DisplayName: GPS 2 Num Satellites
|
|
// @Description: Number of satellites GPS 2 has in view
|
|
AP_GROUPINFO("GPS2_NUMSATS", 34, SIM, gps_numsats[1], 10),
|
|
// @Param: GPS2_GLTCH
|
|
// @DisplayName: GPS 2 Glitch
|
|
// @Description: Glitch offsets of simulated GPS 2 sensor
|
|
// @Vector3Parameter: 1
|
|
// @User: Advanced
|
|
AP_GROUPINFO("GPS2_GLTCH", 35, SIM, gps_glitch[1], 0),
|
|
// @Param: GPS2_HZ
|
|
// @DisplayName: GPS 2 Hz
|
|
// @Description: GPS 2 Update rate
|
|
// @Units: Hz
|
|
AP_GROUPINFO("GPS2_HZ", 36, SIM, gps_hertz[1], 5),
|
|
// @Param: GPS2_DRFTALT
|
|
// @DisplayName: GPS 2 Altitude Drift
|
|
// @Description: GPS 2 altitude drift error
|
|
// @Units: m
|
|
// @User: Advanced
|
|
AP_GROUPINFO("GPS2_DRFTALT", 37, SIM, gps_drift_alt[1], 0),
|
|
// @Param: GPS2_POS
|
|
// @DisplayName: GPS 2 Position
|
|
// @Description: GPS 2 antenna phase center position relative to the body frame origin
|
|
// @Units: m
|
|
// @Vector3Parameter: 1
|
|
AP_GROUPINFO("GPS2_POS", 38, SIM, gps_pos_offset[1], 0),
|
|
// @Param: GPS2_NOISE
|
|
// @DisplayName: GPS 2 Noise
|
|
// @Description: Amplitude of the GPS2 altitude error
|
|
// @Units: m
|
|
// @User: Advanced
|
|
AP_GROUPINFO("GPS2_NOISE", 39, SIM, gps_noise[1], 0),
|
|
// @Param: GPS2_LCKTIME
|
|
// @DisplayName: GPS 2 Lock Time
|
|
// @Description: Delay in seconds before GPS2 acquires lock
|
|
// @Units: s
|
|
// @User: Advanced
|
|
AP_GROUPINFO("GPS2_LCKTIME", 40, SIM, gps_lock_time[1], 0),
|
|
// @Param: GPS2_ALT_OFS
|
|
// @DisplayName: GPS 2 Altitude Offset
|
|
// @Description: GPS 2 Altitude Error
|
|
// @Units: m
|
|
AP_GROUPINFO("GPS2_ALT_OFS", 41, SIM, gps_alt_offset[1], 0),
|
|
// @Param: GPS2_HDG
|
|
// @DisplayName: GPS 2 Heading
|
|
// @Description: Enable GPS2 output of NMEA heading HDT sentence or UBLOX_RELPOSNED
|
|
// @Values: 0:Disabled, 1:Enabled
|
|
// @User: Advanced
|
|
AP_GROUPINFO("GPS2_HDG", 42, SIM, gps_hdg_enabled[1], SIM::GPS_HEADING_NONE),
|
|
// @Param: GPS2_ACC
|
|
// @DisplayName: GPS 2 Accuracy
|
|
// @Description: GPS 2 Accuracy
|
|
// @User: Advanced
|
|
AP_GROUPINFO("GPS2_ACC", 43, SIM, gps_accuracy[1], 0.3),
|
|
// @Param: GPS2_VERR
|
|
// @DisplayName: GPS 2 Velocity Error
|
|
// @Description: GPS 2 Velocity Error Offsets in NED
|
|
// @Vector3Parameter: 1
|
|
// @User: Advanced
|
|
AP_GROUPINFO("GPS2_VERR", 44, SIM, gps_vel_err[1], 0),
|
|
|
|
// @Param: INIT_LAT_OFS
|
|
// @DisplayName: Initial Latitude Offset
|
|
// @Description: GPS initial lat offset from origin
|
|
AP_GROUPINFO("INIT_LAT_OFS", 45, SIM, gps_init_lat_ofs, 0),
|
|
// @Param: INIT_LON_OFS
|
|
// @DisplayName: Initial Longitude Offset
|
|
// @Description: GPS initial lon offset from origin
|
|
AP_GROUPINFO("INIT_LON_OFS", 46, SIM, gps_init_lon_ofs, 0),
|
|
// @Param: INIT_ALT_OFS
|
|
// @DisplayName: Initial Altitude Offset
|
|
// @Description: GPS initial alt offset from origin
|
|
AP_GROUPINFO("INIT_ALT_OFS", 47, SIM, gps_init_alt_ofs, 0),
|
|
|
|
// @Param: GPS_LOG_NUM
|
|
// @DisplayName: GPS Log Number
|
|
// @Description: Log number for GPS:update_file()
|
|
AP_GROUPINFO("GPS_LOG_NUM", 48, SIM, gps_log_num, 0),
|
|
|
|
// @Param: GPS2_JAM
|
|
// @DisplayName: GPS jamming enable
|
|
// @Description: Enable simulated GPS jamming
|
|
// @User: Advanced
|
|
// @Values: 0:Disabled, 1:Enabled
|
|
AP_GROUPINFO("GPS2_JAM", 49, SIM, gps_jam[1], 0),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
#endif // HAL_SIM_GPS_ENABLED
|
|
|
|
// Mag SITL parameters
|
|
const AP_Param::GroupInfo SIM::var_mag[] = {
|
|
AP_GROUPINFO("MAG_RND", 1, SIM, mag_noise, 0),
|
|
AP_GROUPINFO("MAG_MOT", 2, SIM, mag_mot, 0),
|
|
AP_GROUPINFO("MAG_DELAY", 3, SIM, mag_delay, 0),
|
|
AP_GROUPINFO("MAG1_OFS", 4, SIM, mag_ofs[0], 0),
|
|
AP_GROUPINFO("MAG_ALY", 5, SIM, mag_anomaly_ned, 0),
|
|
AP_GROUPINFO("MAG_ALY_HGT", 6, SIM, mag_anomaly_hgt, 1.0f),
|
|
AP_GROUPINFO("MAG1_DIA", 7, SIM, mag_diag[0], 0),
|
|
AP_GROUPINFO("MAG1_ODI", 8, SIM, mag_offdiag[0], 0),
|
|
AP_GROUPINFO("MAG1_ORIENT", 9, SIM, mag_orient[0], 0),
|
|
AP_GROUPINFO("MAG1_SCALING", 10, SIM, mag_scaling[0], 1),
|
|
// @Param: MAG1_DEVID
|
|
// @DisplayName: MAG1 Device ID
|
|
// @Description: Device ID of simulated compass 1
|
|
// @User: Advanced
|
|
AP_GROUPINFO("MAG1_DEVID", 11, SIM, mag_devid[0], 97539),
|
|
AP_GROUPINFO("MAG2_DEVID", 12, SIM, mag_devid[1], 131874),
|
|
#if MAX_CONNECTED_MAGS > 2
|
|
AP_GROUPINFO("MAG3_DEVID", 13, SIM, mag_devid[2], 263178),
|
|
#endif
|
|
#if MAX_CONNECTED_MAGS > 3
|
|
AP_GROUPINFO("MAG4_DEVID", 14, SIM, mag_devid[3], 97283),
|
|
#endif
|
|
#if MAX_CONNECTED_MAGS > 4
|
|
AP_GROUPINFO("MAG5_DEVID", 15, SIM, mag_devid[4], 97795),
|
|
#endif
|
|
#if MAX_CONNECTED_MAGS > 5
|
|
AP_GROUPINFO("MAG6_DEVID", 16, SIM, mag_devid[5], 98051),
|
|
#endif
|
|
#if MAX_CONNECTED_MAGS > 6
|
|
AP_GROUPINFO("MAG7_DEVID", 17, SIM, mag_devid[6], 0),
|
|
#endif
|
|
#if MAX_CONNECTED_MAGS > 7
|
|
AP_GROUPINFO("MAG8_DEVID", 18, SIM, mag_devid[7], 0),
|
|
#endif
|
|
// @Param: MAG1_FAIL
|
|
// @DisplayName: MAG1 Failure
|
|
// @Description: Simulated failure of MAG1
|
|
// @Values: 0:Disabled, 1:MAG1 Failure
|
|
// @User: Advanced
|
|
AP_GROUPINFO("MAG1_FAIL", 26, SIM, mag_fail[0], 0),
|
|
#if HAL_COMPASS_MAX_SENSORS > 1
|
|
AP_GROUPINFO("MAG2_OFS", 19, SIM, mag_ofs[1], 0),
|
|
AP_GROUPINFO("MAG2_DIA", 20, SIM, mag_diag[1], 0),
|
|
AP_GROUPINFO("MAG2_ODI", 21, SIM, mag_offdiag[1], 0),
|
|
AP_GROUPINFO("MAG2_ORIENT", 22, SIM, mag_orient[1], 0),
|
|
// @Param: MAG2_FAIL
|
|
// @DisplayName: MAG2 Failure
|
|
// @Description: Simulated failure of MAG2
|
|
// @Values: 0:Disabled, 1:MAG2 Failure
|
|
// @User: Advanced
|
|
AP_GROUPINFO("MAG2_FAIL", 27, SIM, mag_fail[1], 0),
|
|
AP_GROUPINFO("MAG2_SCALING", 28, SIM, mag_scaling[1], 1),
|
|
#endif
|
|
#if HAL_COMPASS_MAX_SENSORS > 2
|
|
AP_GROUPINFO("MAG3_OFS", 23, SIM, mag_ofs[2], 0),
|
|
AP_GROUPINFO("MAG3_DIA", 24, SIM, mag_diag[2], 0),
|
|
AP_GROUPINFO("MAG3_ODI", 25, SIM, mag_offdiag[2], 0),
|
|
// @Param: MAG3_FAIL
|
|
// @DisplayName: MAG3 Failure
|
|
// @Description: Simulated failure of MAG3
|
|
// @Values: 0:Disabled, 1:MAG3 Failure
|
|
// @User: Advanced
|
|
AP_GROUPINFO("MAG3_FAIL", 29, SIM, mag_fail[2], 0),
|
|
AP_GROUPINFO("MAG3_SCALING", 30, SIM, mag_scaling[2], 1),
|
|
AP_GROUPINFO("MAG3_ORIENT", 36, SIM, mag_orient[2], 0),
|
|
#endif
|
|
|
|
// @Param: MAG_SAVE_IDS
|
|
// @DisplayName: Save MAG devids on startup
|
|
// @Description: This forces saving of compass devids on startup so that simulated compasses start as calibrated
|
|
// @Values: 0:Disabled, 1:Enabled
|
|
// @User: Advanced
|
|
AP_GROUPINFO("MAG_SAVE_IDS", 37, SIM, mag_save_ids, 1),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
#ifdef SFML_JOYSTICK
|
|
const AP_Param::GroupInfo SIM::var_sfml_joystick[] = {
|
|
AP_GROUPINFO("SF_JS_STICK", 1, SIM, sfml_joystick_id, 0),
|
|
AP_GROUPINFO("SF_JS_AXIS1", 2, SIM, sfml_joystick_axis[0], sf::Joystick::Axis::X),
|
|
AP_GROUPINFO("SF_JS_AXIS2", 3, SIM, sfml_joystick_axis[1], sf::Joystick::Axis::Y),
|
|
AP_GROUPINFO("SF_JS_AXIS3", 4, SIM, sfml_joystick_axis[2], sf::Joystick::Axis::Z),
|
|
AP_GROUPINFO("SF_JS_AXIS4", 5, SIM, sfml_joystick_axis[3], sf::Joystick::Axis::U),
|
|
AP_GROUPINFO("SF_JS_AXIS5", 6, SIM, sfml_joystick_axis[4], sf::Joystick::Axis::V),
|
|
AP_GROUPINFO("SF_JS_AXIS6", 7, SIM, sfml_joystick_axis[5], sf::Joystick::Axis::R),
|
|
AP_GROUPINFO("SF_JS_AXIS7", 8, SIM, sfml_joystick_axis[6], sf::Joystick::Axis::PovX),
|
|
AP_GROUPINFO("SF_JS_AXIS8", 9, SIM, sfml_joystick_axis[7], sf::Joystick::Axis::PovY),
|
|
AP_GROUPEND
|
|
};
|
|
#endif //SFML_JOYSTICK
|
|
|
|
// INS SITL parameters
|
|
const AP_Param::GroupInfo SIM::var_ins[] = {
|
|
#if HAL_INS_TEMPERATURE_CAL_ENABLE
|
|
AP_GROUPINFO("IMUT_START", 1, SIM, imu_temp_start, 25),
|
|
AP_GROUPINFO("IMUT_END", 2, SIM, imu_temp_end, 45),
|
|
AP_GROUPINFO("IMUT_TCONST", 3, SIM, imu_temp_tconst, 300),
|
|
AP_GROUPINFO("IMUT_FIXED", 4, SIM, imu_temp_fixed, 0),
|
|
#endif
|
|
// @Param: ACC1_BIAS
|
|
// @DisplayName: Accel 1 bias
|
|
// @Description: bias of simulated accelerometer sensor
|
|
// @User: Advanced
|
|
// @Vector3Parameter: 1
|
|
AP_GROUPINFO("ACC1_BIAS", 5, SIM, accel_bias[0], 0),
|
|
#if INS_MAX_INSTANCES > 1
|
|
// @Param: ACC2_BIAS
|
|
// @DisplayName: Accel 2 bias
|
|
// @CopyFieldsFrom: SIM_ACC1_BIAS
|
|
// @Vector3Parameter: 1
|
|
AP_GROUPINFO("ACC2_BIAS", 6, SIM, accel_bias[1], 0),
|
|
#endif
|
|
#if INS_MAX_INSTANCES > 2
|
|
// @Param: ACC3_BIAS
|
|
// @DisplayName: Accel 3 bias
|
|
// @CopyFieldsFrom: SIM_ACC1_BIAS
|
|
// @Vector3Parameter: 1
|
|
AP_GROUPINFO("ACC3_BIAS", 7, SIM, accel_bias[2], 0),
|
|
#endif
|
|
AP_GROUPINFO("GYR1_RND", 8, SIM, gyro_noise[0], 0),
|
|
#if INS_MAX_INSTANCES > 1
|
|
AP_GROUPINFO("GYR2_RND", 9, SIM, gyro_noise[1], 0),
|
|
#endif
|
|
#if INS_MAX_INSTANCES > 2
|
|
AP_GROUPINFO("GYR3_RND", 10, SIM, gyro_noise[2], 0),
|
|
#endif
|
|
AP_GROUPINFO("ACC1_RND", 11, SIM, accel_noise[0], 0),
|
|
#if INS_MAX_INSTANCES > 1
|
|
AP_GROUPINFO("ACC2_RND", 12, SIM, accel_noise[1], 0),
|
|
#endif
|
|
#if INS_MAX_INSTANCES > 2
|
|
AP_GROUPINFO("ACC3_RND", 13, SIM, accel_noise[2], 0),
|
|
#endif
|
|
// @Param: GYR1_SCALE
|
|
// @DisplayName: Gyro 1 scaling factor
|
|
// @Description: scaling factors applied to simulated gyroscope
|
|
// @User: Advanced
|
|
// @Vector3Parameter: 1
|
|
AP_GROUPINFO("GYR1_SCALE", 14, SIM, gyro_scale[0], 0),
|
|
#if INS_MAX_INSTANCES > 1
|
|
// @Param: GYR2_SCALE
|
|
// @DisplayName: Gyro 2 scaling factor
|
|
// @CopyFieldsFrom: SIM_GYR1_SCALE
|
|
// @Vector3Parameter: 1
|
|
AP_GROUPINFO("GYR2_SCALE", 15, SIM, gyro_scale[1], 0),
|
|
#endif
|
|
#if INS_MAX_INSTANCES > 2
|
|
// @Param: GYR3_SCALE
|
|
// @DisplayName: Gyro 3 scaling factor
|
|
// @CopyFieldsFrom: SIM_GYR1_SCALE
|
|
// @Vector3Parameter: 1
|
|
AP_GROUPINFO("GYR3_SCALE", 16, SIM, gyro_scale[2], 0),
|
|
#endif
|
|
// @Param: ACCEL1_FAIL
|
|
// @DisplayName: ACCEL1 Failure
|
|
// @Description: Simulated failure of ACCEL1
|
|
// @Values: 0:Disabled, 1:ACCEL1 Failure
|
|
// @User: Advanced
|
|
AP_GROUPINFO("ACCEL1_FAIL", 17, SIM, accel_fail[0], 0),
|
|
#if INS_MAX_INSTANCES > 1
|
|
// @Param: ACCEL2_FAIL
|
|
// @DisplayName: ACCEL2 Failure
|
|
// @Description: Simulated failure of ACCEL2
|
|
// @Values: 0:Disabled, 1:ACCEL2 Failure
|
|
// @User: Advanced
|
|
AP_GROUPINFO("ACCEL2_FAIL", 18, SIM, accel_fail[1], 0),
|
|
#endif
|
|
#if INS_MAX_INSTANCES > 2
|
|
// @Param: ACCEL3_FAIL
|
|
// @DisplayName: ACCEL3 Failure
|
|
// @Description: Simulated failure of ACCEL3
|
|
// @Values: 0:Disabled, 1:ACCEL3 Failure
|
|
// @User: Advanced
|
|
AP_GROUPINFO("ACCEL3_FAIL", 19, SIM, accel_fail[2], 0),
|
|
#endif
|
|
// @Param: GYRO_FAIL_MSK
|
|
// @DisplayName: Gyro Failure Mask
|
|
// @Description: Determines if the gyro reading updates are stopped when for an IMU simulated failure by ACCELx_FAIL params
|
|
// @Values: 0:Disabled, 1:Readings stopped
|
|
// @User: Advanced
|
|
AP_GROUPINFO("GYR_FAIL_MSK", 20, SIM, gyro_fail_mask, 0),
|
|
// @Param: ACC_FAIL_MSK
|
|
// @DisplayName: Accelerometer Failure Mask
|
|
// @Description: Determines if the acclerometer reading updates are stopped when for an IMU simulated failure by ACCELx_FAIL params
|
|
// @Values: 0:Disabled, 1:Readings stopped
|
|
// @User: Advanced
|
|
AP_GROUPINFO("ACC_FAIL_MSK", 21, SIM, accel_fail_mask, 0),
|
|
|
|
// @Param: ACC1_SCAL
|
|
// @DisplayName: Accel 1 scaling factor
|
|
// @Description: scaling factors applied to simulated accelerometer
|
|
// @User: Advanced
|
|
// @Vector3Parameter: 1
|
|
AP_GROUPINFO("ACC1_SCAL", 22, SIM, accel_scale[0], 0),
|
|
#if INS_MAX_INSTANCES > 1
|
|
// @Param: ACC2_SCAL
|
|
// @DisplayName: Accel 2 scaling factor
|
|
// @CopyFieldsFrom: SIM_ACC1_SCAL
|
|
// @Vector3Parameter: 1
|
|
AP_GROUPINFO("ACC2_SCAL", 23, SIM, accel_scale[1], 0),
|
|
#endif
|
|
#if INS_MAX_INSTANCES > 2
|
|
// @Param: ACC3_SCAL
|
|
// @DisplayName: Accel 3 scaling factor
|
|
// @CopyFieldsFrom: SIM_ACC1_SCAL
|
|
// @Vector3Parameter: 1
|
|
AP_GROUPINFO("ACC3_SCAL", 24, SIM, accel_scale[2], 0),
|
|
#endif
|
|
AP_GROUPINFO("ACC_TRIM", 25, SIM, accel_trim, 0),
|
|
|
|
#if APM_BUILD_TYPE(APM_BUILD_Rover)
|
|
// @Param{Rover}: SAIL_TYPE
|
|
// @DisplayName: Sailboat simulation sail type
|
|
// @Description: 0: mainsail with sheet, 1: directly actuated wing
|
|
AP_GROUPINFO("SAIL_TYPE", 26, SIM, sail_type, 0),
|
|
#endif
|
|
|
|
// @Param: JSON_MASTER
|
|
// @DisplayName: JSON master instance
|
|
// @Description: the instance number to take servos from
|
|
AP_GROUPINFO("JSON_MASTER", 27, SIM, ride_along_master, 0),
|
|
|
|
// @Param: OH_MASK
|
|
// @DisplayName: SIM-on_hardware Output Enable Mask
|
|
// @Description: channels which are passed through to actual hardware when running sim on actual hardware
|
|
AP_GROUPINFO("OH_MASK", 28, SIM, on_hardware_output_enable_mask, 0),
|
|
#if AP_SIM_INS_FILE_ENABLED
|
|
// read and write IMU data to/from files
|
|
AP_GROUPINFO("GYR_FILE_RW", 29, SIM, gyro_file_rw, INSFileMode::INS_FILE_NONE),
|
|
AP_GROUPINFO("ACC_FILE_RW", 30, SIM, accel_file_rw, INSFileMode::INS_FILE_NONE),
|
|
#endif
|
|
|
|
// @Param: GYR1_BIAS_X
|
|
// @DisplayName: First Gyro bias on X axis
|
|
// @Description: First Gyro bias on X axis
|
|
// @Units: rad/s
|
|
// @User: Advanced
|
|
|
|
// @Param: GYR1_BIAS_Y
|
|
// @DisplayName: First Gyro bias on Y axis
|
|
// @Description: First Gyro bias on Y axis
|
|
// @Units: rad/s
|
|
// @User: Advanced
|
|
|
|
// @Param: GYR1_BIAS_Z
|
|
// @DisplayName: First Gyro bias on Z axis
|
|
// @Description: First Gyro bias on Z axis
|
|
// @Units: rad/s
|
|
// @User: Advanced
|
|
|
|
|
|
AP_GROUPINFO("GYR1_BIAS", 31, SIM, gyro_bias[0], 0),
|
|
#if INS_MAX_INSTANCES > 1
|
|
// @Param: GYR2_BIAS_X
|
|
// @CopyFieldsFrom: SIM_GYR1_BIAS_X
|
|
// @DisplayName: Second Gyro bias on X axis
|
|
// @Description: Second Gyro bias on X axis
|
|
|
|
// @Param: GYR2_BIAS_Y
|
|
// @CopyFieldsFrom: SIM_GYR1_BIAS_Y
|
|
// @DisplayName: Second Gyro bias on Y axis
|
|
// @Description: Second Gyro bias on Y axis
|
|
|
|
// @Param: GYR2_BIAS_Z
|
|
// @CopyFieldsFrom: SIM_GYR1_BIAS_Z
|
|
// @DisplayName: Second Gyro bias on Z axis
|
|
// @Description: Second Gyro bias on Z axis
|
|
AP_GROUPINFO("GYR2_BIAS", 32, SIM, gyro_bias[1], 0),
|
|
#endif
|
|
#if INS_MAX_INSTANCES > 2
|
|
// @Param: GYR3_BIAS_X
|
|
// @CopyFieldsFrom: SIM_GYR1_BIAS_X
|
|
// @DisplayName: Third Gyro bias on X axis
|
|
// @Description: Third Gyro bias on X axis
|
|
|
|
// @Param: GYR3_BIAS_Y
|
|
// @CopyFieldsFrom: SIM_GYR1_BIAS_Y
|
|
// @DisplayName: Third Gyro bias on Y axis
|
|
// @Description: Third Gyro bias on Y axis
|
|
|
|
// @Param: GYR3_BIAS_Z
|
|
// @CopyFieldsFrom: SIM_GYR1_BIAS_Z
|
|
// @DisplayName: Third Gyro bias on Z axis
|
|
// @Description: Third Gyro bias on Z axis
|
|
|
|
AP_GROUPINFO("GYR3_BIAS", 33, SIM, gyro_bias[2], 0),
|
|
#endif
|
|
|
|
#if INS_MAX_INSTANCES > 3
|
|
// @Param: ACC4_SCAL
|
|
// @DisplayName: Accel 4 scaling factor
|
|
// @CopyFieldsFrom: SIM_ACC1_SCAL
|
|
// @Vector3Parameter: 1
|
|
AP_GROUPINFO("ACC4_SCAL", 34, SIM, accel_scale[3], 0),
|
|
|
|
// @Param: ACCEL4_FAIL
|
|
// @DisplayName: ACCEL4 Failure
|
|
// @Description: Simulated failure of ACCEL4
|
|
// @Values: 0:Disabled, 1:ACCEL4 Failure
|
|
// @User: Advanced
|
|
AP_GROUPINFO("ACCEL4_FAIL", 35, SIM, accel_fail[3], 0),
|
|
|
|
// @Param: GYR4_SCALE
|
|
// @DisplayName: Gyro 4 scaling factor
|
|
// @CopyFieldsFrom: SIM_GYR1_SCALE
|
|
// @Vector3Parameter: 1
|
|
AP_GROUPINFO("GYR4_SCALE", 36, SIM, gyro_scale[3], 0),
|
|
|
|
AP_GROUPINFO("ACC4_RND", 37, SIM, accel_noise[3], 0),
|
|
|
|
AP_GROUPINFO("GYR4_RND", 38, SIM, gyro_noise[3], 0),
|
|
|
|
// @Param: ACC4_BIAS
|
|
// @DisplayName: Accel 4 bias
|
|
// @CopyFieldsFrom: SIM_ACC1_BIAS
|
|
// @Vector3Parameter: 1
|
|
AP_GROUPINFO("ACC4_BIAS", 39, SIM, accel_bias[3], 0),
|
|
|
|
// @Param: GYR4_BIAS_X
|
|
// @CopyFieldsFrom: SIM_GYR1_BIAS_X
|
|
// @DisplayName: Fourth Gyro bias on X axis
|
|
// @Description: Fourth Gyro bias on X axis
|
|
|
|
// @Param: GYR4_BIAS_Y
|
|
// @CopyFieldsFrom: SIM_GYR1_BIAS_Y
|
|
// @DisplayName: Fourth Gyro bias on Y axis
|
|
// @Description: Fourth Gyro bias on Y axis
|
|
|
|
// @Param: GYR4_BIAS_Z
|
|
// @CopyFieldsFrom: SIM_GYR1_BIAS_Z
|
|
// @DisplayName: Fourth Gyro bias on Z axis
|
|
// @Description: Fourth Gyro bias on Z axis
|
|
|
|
AP_GROUPINFO("GYR4_BIAS", 40, SIM, gyro_bias[3], 0),
|
|
|
|
#endif
|
|
|
|
#if INS_MAX_INSTANCES > 4
|
|
// @Param: ACC5_SCAL
|
|
// @DisplayName: Accel 4 scaling factor
|
|
// @CopyFieldsFrom: SIM_ACC1_SCAL
|
|
// @Vector3Parameter: 1
|
|
AP_GROUPINFO("ACC5_SCAL", 41, SIM, accel_scale[4], 0),
|
|
|
|
|
|
// @Param: ACCEL5_FAIL
|
|
// @DisplayName: ACCEL5 Failure
|
|
// @Description: Simulated failure of ACCEL5
|
|
// @Values: 0:Disabled, 1:ACCEL5 Failure
|
|
// @User: Advanced
|
|
AP_GROUPINFO("ACCEL5_FAIL", 42, SIM, accel_fail[4], 0),
|
|
|
|
// @Param: GYR5_SCALE
|
|
// @DisplayName: Gyro 5 scaling factor
|
|
// @CopyFieldsFrom: SIM_GYR1_SCALE
|
|
// @Vector3Parameter: 1
|
|
AP_GROUPINFO("GYR5_SCALE", 43, SIM, gyro_scale[4], 0),
|
|
|
|
AP_GROUPINFO("ACC5_RND", 44, SIM, accel_noise[4], 0),
|
|
|
|
AP_GROUPINFO("GYR5_RND", 45, SIM, gyro_noise[4], 0),
|
|
|
|
// @Param: ACC5_BIAS
|
|
// @DisplayName: Accel 5 bias
|
|
// @CopyFieldsFrom: SIM_ACC1_BIAS
|
|
// @Vector3Parameter: 1
|
|
AP_GROUPINFO("ACC5_BIAS", 46, SIM, accel_bias[4], 0),
|
|
|
|
// @Param: GYR5_BIAS_X
|
|
// @CopyFieldsFrom: SIM_GYR1_BIAS_X
|
|
// @DisplayName: Fifth Gyro bias on X axis
|
|
// @Description: Fifth Gyro bias on X axis
|
|
|
|
// @Param: GYR5_BIAS_Y
|
|
// @CopyFieldsFrom: SIM_GYR1_BIAS_Y
|
|
// @DisplayName: Fifth Gyro bias on Y axis
|
|
// @Description: Fifth Gyro bias on Y axis
|
|
|
|
// @Param: GYR5_BIAS_Z
|
|
// @CopyFieldsFrom: SIM_GYR1_BIAS_Z
|
|
// @DisplayName: Fifth Gyro bias on Z axis
|
|
// @Description: Fifth Gyro bias on Z axis
|
|
|
|
AP_GROUPINFO("GYR5_BIAS", 47, SIM, gyro_bias[4], 0),
|
|
#endif
|
|
|
|
// @Param: OH_RELAY_MSK
|
|
// @DisplayName: SIM-on_hardware Relay Enable Mask
|
|
// @Description: Allow relay output operation when running SIM-on-hardware
|
|
AP_GROUPINFO("OH_RELAY_MSK", 48, SIM, on_hardware_relay_enable_mask, SIM_DEFAULT_ENABLED_RELAY_CHANNELS),
|
|
|
|
// @Param: CLAMP_CH
|
|
// @DisplayName: Simulated Clamp Channel
|
|
// @Description: If non-zero the vehicle will be clamped in position until the value on this servo channel passes 1800PWM
|
|
AP_GROUPINFO("CLAMP_CH", 49, SIM, clamp_ch, 0),
|
|
|
|
// the IMUT parameters must be last due to the enable parameters
|
|
#if HAL_INS_TEMPERATURE_CAL_ENABLE
|
|
AP_SUBGROUPINFO(imu_tcal[0], "IMUT1_", 61, SIM, AP_InertialSensor_TCal),
|
|
#if INS_MAX_INSTANCES > 1
|
|
AP_SUBGROUPINFO(imu_tcal[1], "IMUT2_", 62, SIM, AP_InertialSensor_TCal),
|
|
#endif
|
|
#if INS_MAX_INSTANCES > 2
|
|
AP_SUBGROUPINFO(imu_tcal[2], "IMUT3_", 63, SIM, AP_InertialSensor_TCal),
|
|
#endif
|
|
#if INS_MAX_INSTANCES > 3
|
|
AP_SUBGROUPINFO(imu_tcal[3], "IMUT4_", 60, SIM, AP_InertialSensor_TCal),
|
|
#endif
|
|
#if INS_MAX_INSTANCES > 4
|
|
AP_SUBGROUPINFO(imu_tcal[4], "IMUT5_", 59, SIM, AP_InertialSensor_TCal),
|
|
#endif
|
|
#endif // HAL_INS_TEMPERATURE_CAL_ENABLE
|
|
AP_GROUPEND
|
|
};
|
|
|
|
// user settable parameters for the physics models
|
|
const AP_Param::GroupInfo SIM::ModelParm::var_info[] = {
|
|
|
|
#if AP_SIM_SHIP_ENABLED
|
|
// @Group: SHIP_
|
|
// @Path: ./SIM_Ship.cpp
|
|
AP_SUBGROUPINFO(shipsim, "SHIP_", 1, SIM::ModelParm, ShipSim),
|
|
#endif
|
|
#if AP_SIM_STRATOBLIMP_ENABLED
|
|
// @Group: SB_
|
|
// @Path: ./SIM_StratoBlimp.cpp
|
|
AP_SUBGROUPPTR(stratoblimp_ptr, "SB_", 2, SIM::ModelParm, StratoBlimp),
|
|
#endif
|
|
|
|
#if AP_SIM_GLIDER_ENABLED
|
|
// @Group: GLD_
|
|
// @Path: ./SIM_Glider.cpp
|
|
AP_SUBGROUPPTR(glider_ptr, "GLD_", 3, SIM::ModelParm, Glider),
|
|
#endif
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
const Location post_origin {
|
|
518752066,
|
|
146487830,
|
|
0,
|
|
Location::AltFrame::ABSOLUTE
|
|
};
|
|
|
|
/* report SITL state via MAVLink SIMSTATE*/
|
|
void SIM::simstate_send(mavlink_channel_t chan) const
|
|
{
|
|
if (stop_MAVLink_sim_state) {
|
|
// Sim only MAVLink messages disabled to give more relaistic data rates
|
|
return;
|
|
}
|
|
|
|
float yaw;
|
|
|
|
// convert to same conventions as DCM
|
|
yaw = state.yawDeg;
|
|
if (yaw > 180) {
|
|
yaw -= 360;
|
|
}
|
|
|
|
mavlink_msg_simstate_send(chan,
|
|
ToRad(state.rollDeg),
|
|
ToRad(state.pitchDeg),
|
|
ToRad(yaw),
|
|
state.xAccel,
|
|
state.yAccel,
|
|
state.zAccel,
|
|
radians(state.rollRate),
|
|
radians(state.pitchRate),
|
|
radians(state.yawRate),
|
|
state.latitude*1.0e7,
|
|
state.longitude*1.0e7);
|
|
}
|
|
|
|
/* report SITL state via MAVLink SIM_STATE */
|
|
void SIM::sim_state_send(mavlink_channel_t chan) const
|
|
{
|
|
if (stop_MAVLink_sim_state) {
|
|
// Sim only MAVLink messages disabled to give more relaistic data rates
|
|
return;
|
|
}
|
|
|
|
// convert to same conventions as DCM
|
|
float yaw = state.yawDeg;
|
|
if (yaw > 180) {
|
|
yaw -= 360;
|
|
}
|
|
|
|
mavlink_msg_sim_state_send(chan,
|
|
state.quaternion.q1,
|
|
state.quaternion.q2,
|
|
state.quaternion.q3,
|
|
state.quaternion.q4,
|
|
ToRad(state.rollDeg),
|
|
ToRad(state.pitchDeg),
|
|
ToRad(yaw),
|
|
state.xAccel,
|
|
state.yAccel,
|
|
state.zAccel,
|
|
radians(state.rollRate),
|
|
radians(state.pitchRate),
|
|
radians(state.yawRate),
|
|
state.latitude*1.0e7,
|
|
state.longitude*1.0e7,
|
|
(float)state.altitude,
|
|
0.0,
|
|
0.0,
|
|
state.speedN,
|
|
state.speedE,
|
|
state.speedD,
|
|
(int32_t)(state.latitude*1.0e7),
|
|
(int32_t)(state.longitude*1.0e7));
|
|
}
|
|
|
|
#if HAL_LOGGING_ENABLED
|
|
/* report SITL state to AP_Logger */
|
|
void SIM::Log_Write_SIMSTATE()
|
|
{
|
|
float yaw;
|
|
|
|
// convert to same conventions as DCM
|
|
yaw = state.yawDeg;
|
|
if (yaw > 180) {
|
|
yaw -= 360;
|
|
}
|
|
|
|
struct log_AHRS pkt = {
|
|
LOG_PACKET_HEADER_INIT(LOG_SIMSTATE_MSG),
|
|
time_us : AP_HAL::micros64(),
|
|
roll : (int16_t)(state.rollDeg*100),
|
|
pitch : (int16_t)(state.pitchDeg*100),
|
|
yaw : (uint16_t)(wrap_360_cd(yaw*100)),
|
|
alt : (float)state.altitude,
|
|
lat : (int32_t)(state.latitude*1.0e7),
|
|
lng : (int32_t)(state.longitude*1.0e7),
|
|
q1 : state.quaternion.q1,
|
|
q2 : state.quaternion.q2,
|
|
q3 : state.quaternion.q3,
|
|
q4 : state.quaternion.q4,
|
|
};
|
|
AP::logger().WriteBlock(&pkt, sizeof(pkt));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
convert a set of roll rates from earth frame to body frame
|
|
output values are in radians/second
|
|
*/
|
|
void SIM::convert_body_frame(double rollDeg, double pitchDeg,
|
|
double rollRate, double pitchRate, double yawRate,
|
|
double *p, double *q, double *r)
|
|
{
|
|
double phi, theta, phiDot, thetaDot, psiDot;
|
|
|
|
phi = ToRad(rollDeg);
|
|
theta = ToRad(pitchDeg);
|
|
phiDot = ToRad(rollRate);
|
|
thetaDot = ToRad(pitchRate);
|
|
psiDot = ToRad(yawRate);
|
|
|
|
*p = phiDot - psiDot*sin(theta);
|
|
*q = cos(phi)*thetaDot + sin(phi)*psiDot*cos(theta);
|
|
*r = cos(phi)*psiDot*cos(theta) - sin(phi)*thetaDot;
|
|
}
|
|
|
|
|
|
/*
|
|
convert angular velocities from body frame to
|
|
earth frame.
|
|
|
|
all inputs and outputs are in radians/s
|
|
*/
|
|
Vector3f SIM::convert_earth_frame(const Matrix3f &dcm, const Vector3f &gyro)
|
|
{
|
|
float p = gyro.x;
|
|
float q = gyro.y;
|
|
float r = gyro.z;
|
|
|
|
float phi, theta, psi;
|
|
dcm.to_euler(&phi, &theta, &psi);
|
|
|
|
float phiDot = p + tanf(theta)*(q*sinf(phi) + r*cosf(phi));
|
|
float thetaDot = q*cosf(phi) - r*sinf(phi);
|
|
if (fabsf(cosf(theta)) < 1.0e-20f) {
|
|
theta += 1.0e-10f;
|
|
}
|
|
float psiDot = (q*sinf(phi) + r*cosf(phi))/cosf(theta);
|
|
return Vector3f(phiDot, thetaDot, psiDot);
|
|
}
|
|
|
|
// get the rangefinder reading for the desired rotation, returns -1 for no data
|
|
float SIM::get_rangefinder(uint8_t instance) {
|
|
if (instance < ARRAY_SIZE(state.rangefinder_m)) {
|
|
return state.rangefinder_m[instance];
|
|
}
|
|
return nanf("");
|
|
};
|
|
|
|
float SIM::measure_distance_at_angle_bf(const Location &location, float angle) const
|
|
{
|
|
// should we populate state.rangefinder_m[...] from this?
|
|
Vector2f vehicle_pos_cm;
|
|
if (!location.get_vector_xy_from_origin_NE(vehicle_pos_cm)) {
|
|
// should probably use SITL variables...
|
|
return 0.0f;
|
|
}
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
static uint64_t count = 0;
|
|
|
|
if (count == 0) {
|
|
unlink("/tmp/rayfile.scr");
|
|
unlink("/tmp/intersectionsfile.scr");
|
|
}
|
|
|
|
count++;
|
|
|
|
// the 1000 here is so the files don't grow unbounded
|
|
const bool write_debug_files = count < 1000;
|
|
|
|
FILE *rayfile = nullptr;
|
|
if (write_debug_files) {
|
|
rayfile = fopen("/tmp/rayfile.scr", "a");
|
|
}
|
|
#endif
|
|
|
|
// cast a ray from location out 200m...
|
|
Location location2 = location;
|
|
location2.offset_bearing(wrap_180(angle + state.yawDeg), 200);
|
|
Vector2f ray_endpos_cm;
|
|
if (!location2.get_vector_xy_from_origin_NE(ray_endpos_cm)) {
|
|
// should probably use SITL variables...
|
|
return 0.0f;
|
|
}
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
if (rayfile != nullptr) {
|
|
::fprintf(rayfile, "map icon %f %f barrell\n", location2.lat*1e-7, location2.lng*1e-7);
|
|
fclose(rayfile);
|
|
}
|
|
|
|
// setup a grid of posts
|
|
FILE *postfile = nullptr;
|
|
FILE *intersectionsfile = nullptr;
|
|
if (write_debug_files) {
|
|
static bool postfile_written;
|
|
if (!postfile_written) {
|
|
::fprintf(stderr, "Writing /tmp/post-locations.scr\n");
|
|
postfile_written = true;
|
|
postfile = fopen("/tmp/post-locations.scr", "w");
|
|
}
|
|
intersectionsfile = fopen("/tmp/intersections.scr", "a");
|
|
}
|
|
#endif
|
|
|
|
const float radius_cm = 100.0f;
|
|
float min_dist_cm = 1000000.0;
|
|
const uint8_t num_post_offset = 10;
|
|
for (int8_t x=-num_post_offset; x<num_post_offset; x++) {
|
|
for (int8_t y=-num_post_offset; y<num_post_offset; y++) {
|
|
Location post_location = post_origin;
|
|
post_location.offset(x*10+3, y*10+2);
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
if (postfile != nullptr) {
|
|
::fprintf(postfile, "map circle %f %f %f blue\n", post_location.lat*1e-7, post_location.lng*1e-7, radius_cm/100.0);
|
|
}
|
|
#endif
|
|
Vector2f post_position_cm;
|
|
if (!post_location.get_vector_xy_from_origin_NE(post_position_cm)) {
|
|
// should probably use SITL variables...
|
|
return 0.0f;
|
|
}
|
|
Vector2f intersection_point_cm;
|
|
if (Vector2f::circle_segment_intersection(ray_endpos_cm, vehicle_pos_cm, post_position_cm, radius_cm, intersection_point_cm)) {
|
|
float dist_cm = (intersection_point_cm-vehicle_pos_cm).length();
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
if (intersectionsfile != nullptr) {
|
|
Location intersection_point = location;
|
|
intersection_point.offset(intersection_point_cm.x/100.0,
|
|
intersection_point_cm.y/100.0);
|
|
::fprintf(intersectionsfile,
|
|
"map icon %f %f barrell\n",
|
|
intersection_point.lat*1e-7,
|
|
intersection_point.lng*1e-7);
|
|
}
|
|
#endif
|
|
if (dist_cm < min_dist_cm) {
|
|
min_dist_cm = dist_cm;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
if (postfile != nullptr) {
|
|
fclose(postfile);
|
|
}
|
|
if (intersectionsfile != nullptr) {
|
|
fclose(intersectionsfile);
|
|
}
|
|
#endif
|
|
|
|
// ::fprintf(stderr, "Distance @%f = %fm\n", angle, min_dist_cm/100.0f);
|
|
return min_dist_cm / 100.0f;
|
|
}
|
|
|
|
} // namespace SITL
|
|
|
|
namespace AP {
|
|
|
|
SITL::SIM *sitl()
|
|
{
|
|
return SITL::SIM::get_singleton();
|
|
}
|
|
|
|
};
|
|
|
|
#endif // AP_SIM_ENABLED
|