mirror of https://github.com/ArduPilot/ardupilot
569 lines
21 KiB
C++
569 lines
21 KiB
C++
#include "Rover.h"
|
|
|
|
Mode::Mode() :
|
|
ahrs(rover.ahrs),
|
|
g(rover.g),
|
|
g2(rover.g2),
|
|
channel_steer(rover.channel_steer),
|
|
channel_throttle(rover.channel_throttle),
|
|
channel_lateral(rover.channel_lateral),
|
|
channel_roll(rover.channel_roll),
|
|
channel_pitch(rover.channel_pitch),
|
|
channel_walking_height(rover.channel_walking_height),
|
|
attitude_control(g2.attitude_control)
|
|
{ }
|
|
|
|
void Mode::exit()
|
|
{
|
|
// call sub-classes exit
|
|
_exit();
|
|
}
|
|
|
|
bool Mode::enter()
|
|
{
|
|
const bool ignore_checks = !hal.util->get_soft_armed(); // allow switching to any mode if disarmed. We rely on the arming check to perform
|
|
if (!ignore_checks) {
|
|
|
|
// get EKF filter status
|
|
nav_filter_status filt_status;
|
|
rover.ahrs.get_filter_status(filt_status);
|
|
|
|
// check position estimate. requires origin and at least one horizontal position flag to be true
|
|
const bool position_ok = rover.ekf_position_ok() && !rover.failsafe.ekf;
|
|
if (requires_position() && !position_ok) {
|
|
return false;
|
|
}
|
|
|
|
// check velocity estimate (if we have position estimate, we must have velocity estimate)
|
|
if (requires_velocity() && !position_ok && !filt_status.flags.horiz_vel) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool ret = _enter();
|
|
|
|
// initialisation common to all modes
|
|
if (ret) {
|
|
set_reversed(false);
|
|
|
|
// clear sailboat tacking flags
|
|
g2.sailboat.clear_tack();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
// decode pilot steering and throttle inputs and return in steer_out and throttle_out arguments
|
|
// steering_out is in the range -4500 ~ +4500 with positive numbers meaning rotate clockwise
|
|
// throttle_out is in the range -100 ~ +100
|
|
void Mode::get_pilot_input(float &steering_out, float &throttle_out) const
|
|
{
|
|
// no RC input means no throttle and centered steering
|
|
if (rover.failsafe.bits & FAILSAFE_EVENT_THROTTLE) {
|
|
steering_out = 0;
|
|
throttle_out = 0;
|
|
return;
|
|
}
|
|
|
|
// apply RC skid steer mixing
|
|
switch ((enum pilot_steer_type_t)g.pilot_steer_type.get())
|
|
{
|
|
case PILOT_STEER_TYPE_DEFAULT:
|
|
case PILOT_STEER_TYPE_DIR_REVERSED_WHEN_REVERSING:
|
|
default: {
|
|
// by default regular and skid-steering vehicles reverse their rotation direction when backing up
|
|
throttle_out = rover.channel_throttle->get_control_in();
|
|
const float steering_dir = is_negative(throttle_out) ? -1 : 1;
|
|
steering_out = steering_dir * rover.channel_steer->get_control_in();
|
|
break;
|
|
}
|
|
|
|
case PILOT_STEER_TYPE_TWO_PADDLES: {
|
|
// convert the two radio_in values from skid steering values
|
|
// left paddle from steering input channel, right paddle from throttle input channel
|
|
// steering = left-paddle - right-paddle
|
|
// throttle = average(left-paddle, right-paddle)
|
|
const float left_paddle = rover.channel_steer->norm_input_dz();
|
|
const float right_paddle = rover.channel_throttle->norm_input_dz();
|
|
|
|
throttle_out = 0.5f * (left_paddle + right_paddle) * 100.0f;
|
|
steering_out = (left_paddle - right_paddle) * 0.5f * 4500.0f;
|
|
break;
|
|
}
|
|
|
|
case PILOT_STEER_TYPE_DIR_UNCHANGED_WHEN_REVERSING: {
|
|
throttle_out = rover.channel_throttle->get_control_in();
|
|
steering_out = rover.channel_steer->get_control_in();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// decode pilot steering and throttle inputs and return in steer_out and throttle_out arguments
|
|
// steering_out is in the range -4500 ~ +4500 with positive numbers meaning rotate clockwise
|
|
// throttle_out is in the range -100 ~ +100
|
|
void Mode::get_pilot_desired_steering_and_throttle(float &steering_out, float &throttle_out) const
|
|
{
|
|
// do basic conversion
|
|
get_pilot_input(steering_out, throttle_out);
|
|
|
|
// for skid steering vehicles, if pilot commands would lead to saturation
|
|
// we proportionally reduce steering and throttle
|
|
if (g2.motors.have_skid_steering()) {
|
|
const float steer_normalised = constrain_float(steering_out / 4500.0f, -1.0f, 1.0f);
|
|
const float throttle_normalised = constrain_float(throttle_out * 0.01f, -1.0f, 1.0f);
|
|
const float saturation_value = fabsf(steer_normalised) + fabsf(throttle_normalised);
|
|
if (saturation_value > 1.0f) {
|
|
steering_out /= saturation_value;
|
|
throttle_out /= saturation_value;
|
|
}
|
|
}
|
|
|
|
// check for special case of input and output throttle being in opposite directions
|
|
float throttle_out_limited = g2.motors.get_slew_limited_throttle(throttle_out, rover.G_Dt);
|
|
if ((is_negative(throttle_out) != is_negative(throttle_out_limited)) &&
|
|
((g.pilot_steer_type == PILOT_STEER_TYPE_DEFAULT) ||
|
|
(g.pilot_steer_type == PILOT_STEER_TYPE_DIR_REVERSED_WHEN_REVERSING))) {
|
|
steering_out *= -1;
|
|
}
|
|
throttle_out = throttle_out_limited;
|
|
}
|
|
|
|
// decode pilot steering and return steering_out and speed_out (in m/s)
|
|
void Mode::get_pilot_desired_steering_and_speed(float &steering_out, float &speed_out) const
|
|
{
|
|
float desired_throttle;
|
|
get_pilot_input(steering_out, desired_throttle);
|
|
speed_out = desired_throttle * 0.01f * calc_speed_max(g.speed_cruise, g.throttle_cruise * 0.01f);
|
|
// check for special case of input and output throttle being in opposite directions
|
|
float speed_out_limited = g2.attitude_control.get_desired_speed_accel_limited(speed_out, rover.G_Dt);
|
|
if ((is_negative(speed_out) != is_negative(speed_out_limited)) &&
|
|
((g.pilot_steer_type == PILOT_STEER_TYPE_DEFAULT) ||
|
|
(g.pilot_steer_type == PILOT_STEER_TYPE_DIR_REVERSED_WHEN_REVERSING))) {
|
|
steering_out *= -1;
|
|
}
|
|
speed_out = speed_out_limited;
|
|
}
|
|
|
|
// decode pilot lateral movement input and return in lateral_out argument
|
|
void Mode::get_pilot_desired_lateral(float &lateral_out) const
|
|
{
|
|
// no RC input means no lateral input
|
|
if ((rover.failsafe.bits & FAILSAFE_EVENT_THROTTLE) || (rover.channel_lateral == nullptr)) {
|
|
lateral_out = 0;
|
|
return;
|
|
}
|
|
|
|
// get pilot lateral input
|
|
lateral_out = rover.channel_lateral->get_control_in();
|
|
}
|
|
|
|
// decode pilot's input and return heading_out (in cd) and speed_out (in m/s)
|
|
void Mode::get_pilot_desired_heading_and_speed(float &heading_out, float &speed_out) const
|
|
{
|
|
// get steering and throttle in the -1 to +1 range
|
|
float desired_steering = constrain_float(rover.channel_steer->norm_input_dz(), -1.0f, 1.0f);
|
|
float desired_throttle = constrain_float(rover.channel_throttle->norm_input_dz(), -1.0f, 1.0f);
|
|
|
|
// handle two paddle input
|
|
if ((enum pilot_steer_type_t)g.pilot_steer_type.get() == PILOT_STEER_TYPE_TWO_PADDLES) {
|
|
const float left_paddle = desired_steering;
|
|
const float right_paddle = desired_throttle;
|
|
desired_steering = (left_paddle - right_paddle) * 0.5f;
|
|
desired_throttle = (left_paddle + right_paddle) * 0.5f;
|
|
}
|
|
|
|
// calculate angle of input stick vector
|
|
heading_out = wrap_360_cd(atan2f(desired_steering, desired_throttle) * DEGX100);
|
|
|
|
// calculate throttle using magnitude of input stick vector
|
|
const float throttle = MIN(safe_sqrt(sq(desired_throttle) + sq(desired_steering)), 1.0f);
|
|
speed_out = throttle * calc_speed_max(g.speed_cruise, g.throttle_cruise * 0.01f);
|
|
}
|
|
|
|
// decode pilot roll and pitch inputs and return in roll_out and pitch_out arguments
|
|
// outputs are in the range -1 to +1
|
|
void Mode::get_pilot_desired_roll_and_pitch(float &roll_out, float &pitch_out) const
|
|
{
|
|
if (channel_roll != nullptr) {
|
|
roll_out = channel_roll->norm_input();
|
|
} else {
|
|
roll_out = 0.0f;
|
|
}
|
|
if (channel_pitch != nullptr) {
|
|
pitch_out = channel_pitch->norm_input();
|
|
} else {
|
|
pitch_out = 0.0f;
|
|
}
|
|
}
|
|
|
|
// decode pilot walking_height inputs and return in walking_height_out arguments
|
|
// outputs are in the range -1 to +1
|
|
void Mode::get_pilot_desired_walking_height(float &walking_height_out) const
|
|
{
|
|
if (channel_walking_height != nullptr) {
|
|
walking_height_out = channel_walking_height->norm_input();
|
|
} else {
|
|
walking_height_out = 0.0f;
|
|
}
|
|
}
|
|
|
|
// return heading (in degrees) to target destination (aka waypoint)
|
|
float Mode::wp_bearing() const
|
|
{
|
|
if (!is_autopilot_mode()) {
|
|
return 0.0f;
|
|
}
|
|
return g2.wp_nav.wp_bearing_cd() * 0.01f;
|
|
}
|
|
|
|
// return short-term target heading in degrees (i.e. target heading back to line between waypoints)
|
|
float Mode::nav_bearing() const
|
|
{
|
|
if (!is_autopilot_mode()) {
|
|
return 0.0f;
|
|
}
|
|
return g2.wp_nav.nav_bearing_cd() * 0.01f;
|
|
}
|
|
|
|
// return cross track error (i.e. vehicle's distance from the line between waypoints)
|
|
float Mode::crosstrack_error() const
|
|
{
|
|
if (!is_autopilot_mode()) {
|
|
return 0.0f;
|
|
}
|
|
return g2.wp_nav.crosstrack_error();
|
|
}
|
|
|
|
// return desired lateral acceleration
|
|
float Mode::get_desired_lat_accel() const
|
|
{
|
|
if (!is_autopilot_mode()) {
|
|
return 0.0f;
|
|
}
|
|
return g2.wp_nav.get_lat_accel();
|
|
}
|
|
|
|
// set desired location
|
|
bool Mode::set_desired_location(const Location &destination, Location next_destination )
|
|
{
|
|
if (!g2.wp_nav.set_desired_location(destination, next_destination)) {
|
|
return false;
|
|
}
|
|
|
|
// initialise distance
|
|
_distance_to_destination = g2.wp_nav.get_distance_to_destination();
|
|
_reached_destination = false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// get default speed for this mode (held in WP_SPEED or RTL_SPEED)
|
|
float Mode::get_speed_default(bool rtl) const
|
|
{
|
|
if (rtl && is_positive(g2.rtl_speed)) {
|
|
return g2.rtl_speed;
|
|
}
|
|
|
|
return g2.wp_nav.get_default_speed();
|
|
}
|
|
|
|
// execute the mission in reverse (i.e. backing up)
|
|
void Mode::set_reversed(bool value)
|
|
{
|
|
g2.wp_nav.set_reversed(value);
|
|
}
|
|
|
|
// handle tacking request (from auxiliary switch) in sailboats
|
|
void Mode::handle_tack_request()
|
|
{
|
|
// autopilot modes handle tacking
|
|
if (is_autopilot_mode()) {
|
|
g2.sailboat.handle_tack_request_auto();
|
|
}
|
|
}
|
|
|
|
void Mode::calc_throttle(float target_speed, bool avoidance_enabled)
|
|
{
|
|
// get acceleration limited target speed
|
|
target_speed = attitude_control.get_desired_speed_accel_limited(target_speed, rover.G_Dt);
|
|
|
|
#if AP_AVOIDANCE_ENABLED
|
|
// apply object avoidance to desired speed using half vehicle's maximum deceleration
|
|
if (avoidance_enabled) {
|
|
g2.avoid.adjust_speed(0.0f, 0.5f * attitude_control.get_decel_max(), ahrs.get_yaw(), target_speed, rover.G_Dt);
|
|
if (g2.sailboat.tack_enabled() && g2.avoid.limits_active()) {
|
|
// we are a sailboat trying to avoid fence, try a tack
|
|
if (rover.control_mode != &rover.mode_acro) {
|
|
rover.control_mode->handle_tack_request();
|
|
}
|
|
}
|
|
}
|
|
#endif // AP_AVOIDANCE_ENABLED
|
|
|
|
// call throttle controller and convert output to -100 to +100 range
|
|
float throttle_out = 0.0f;
|
|
|
|
if (g2.sailboat.sail_enabled()) {
|
|
// sailboats use special throttle and mainsail controller
|
|
g2.sailboat.get_throttle_and_set_mainsail(target_speed, throttle_out);
|
|
} else {
|
|
// call speed or stop controller
|
|
if (is_zero(target_speed) && !rover.is_balancebot()) {
|
|
bool stopped;
|
|
throttle_out = 100.0f * attitude_control.get_throttle_out_stop(g2.motors.limit.throttle_lower, g2.motors.limit.throttle_upper, g.speed_cruise, g.throttle_cruise * 0.01f, rover.G_Dt, stopped);
|
|
} else {
|
|
bool motor_lim_low = g2.motors.limit.throttle_lower || attitude_control.pitch_limited();
|
|
bool motor_lim_high = g2.motors.limit.throttle_upper || attitude_control.pitch_limited();
|
|
throttle_out = 100.0f * attitude_control.get_throttle_out_speed(target_speed, motor_lim_low, motor_lim_high, g.speed_cruise, g.throttle_cruise * 0.01f, rover.G_Dt);
|
|
}
|
|
|
|
// if vehicle is balance bot, calculate actual throttle required for balancing
|
|
if (rover.is_balancebot()) {
|
|
rover.balancebot_pitch_control(throttle_out);
|
|
}
|
|
}
|
|
|
|
// send to motor
|
|
g2.motors.set_throttle(throttle_out);
|
|
}
|
|
|
|
// performs a controlled stop without turning
|
|
bool Mode::stop_vehicle()
|
|
{
|
|
// call throttle controller and convert output to -100 to +100 range
|
|
bool stopped = false;
|
|
float throttle_out;
|
|
|
|
// if vehicle is balance bot, calculate throttle required for balancing
|
|
if (rover.is_balancebot()) {
|
|
throttle_out = 100.0f * attitude_control.get_throttle_out_speed(0, g2.motors.limit.throttle_lower, g2.motors.limit.throttle_upper, g.speed_cruise, g.throttle_cruise * 0.01f, rover.G_Dt);
|
|
rover.balancebot_pitch_control(throttle_out);
|
|
} else {
|
|
throttle_out = 100.0f * attitude_control.get_throttle_out_stop(g2.motors.limit.throttle_lower, g2.motors.limit.throttle_upper, g.speed_cruise, g.throttle_cruise * 0.01f, rover.G_Dt, stopped);
|
|
}
|
|
|
|
// relax sails if present
|
|
g2.sailboat.relax_sails();
|
|
|
|
// send to motor
|
|
g2.motors.set_throttle(throttle_out);
|
|
|
|
// do not turn while slowing down
|
|
float steering_out = 0.0;
|
|
if (!stopped) {
|
|
steering_out = attitude_control.get_steering_out_rate(0.0, g2.motors.limit.steer_left, g2.motors.limit.steer_right, rover.G_Dt);
|
|
}
|
|
g2.motors.set_steering(steering_out * 4500.0);
|
|
|
|
// return true once stopped
|
|
return stopped;
|
|
}
|
|
|
|
// estimate maximum vehicle speed (in m/s)
|
|
// cruise_speed is in m/s, cruise_throttle should be in the range -1 to +1
|
|
float Mode::calc_speed_max(float cruise_speed, float cruise_throttle) const
|
|
{
|
|
float speed_max;
|
|
|
|
// sanity checks
|
|
if (cruise_throttle > 1.0f || cruise_throttle < 0.05f) {
|
|
speed_max = cruise_speed;
|
|
} else if (is_positive(g2.speed_max)) {
|
|
speed_max = g2.speed_max;
|
|
} else {
|
|
// project vehicle's maximum speed
|
|
speed_max = (1.0f / cruise_throttle) * cruise_speed;
|
|
}
|
|
|
|
// constrain to 30m/s (108km/h) and return
|
|
return constrain_float(speed_max, 0.0f, 30.0f);
|
|
}
|
|
|
|
// calculate pilot input to nudge speed up or down
|
|
// target_speed should be in meters/sec
|
|
// reversed should be true if the vehicle is intentionally backing up which allows the pilot to increase the backing up speed by pulling the throttle stick down
|
|
float Mode::calc_speed_nudge(float target_speed, bool reversed)
|
|
{
|
|
// sanity checks
|
|
if (g.throttle_cruise > 100 || g.throttle_cruise < 5) {
|
|
return target_speed;
|
|
}
|
|
|
|
// convert pilot throttle input to speed
|
|
float pilot_steering, pilot_throttle;
|
|
get_pilot_input(pilot_steering, pilot_throttle);
|
|
float pilot_speed = pilot_throttle * 0.01f * calc_speed_max(g.speed_cruise, g.throttle_cruise * 0.01f);
|
|
|
|
// ignore pilot's input if in opposite direction to vehicle's desired direction of travel
|
|
// note that the target_speed may be negative while reversed is true (or vice-versa)
|
|
// while vehicle is transitioning between forward and backwards movement
|
|
if ((is_positive(pilot_speed) && reversed) ||
|
|
(is_negative(pilot_speed) && !reversed)) {
|
|
return target_speed;
|
|
}
|
|
|
|
// return the larger of the pilot speed and the original target speed
|
|
if (reversed) {
|
|
return MIN(target_speed, pilot_speed);
|
|
} else {
|
|
return MAX(target_speed, pilot_speed);
|
|
}
|
|
}
|
|
|
|
// high level call to navigate to waypoint
|
|
// uses wp_nav to calculate turn rate and speed to drive along the path from origin to destination
|
|
// this function updates _distance_to_destination
|
|
void Mode::navigate_to_waypoint()
|
|
{
|
|
// apply speed nudge from pilot
|
|
// calc_speed_nudge's "desired_speed" argument should be negative when vehicle is reversing
|
|
// AR_WPNav nudge_speed_max argu,ent should always be positive even when reversing
|
|
const float calc_nudge_input_speed = g2.wp_nav.get_speed_max() * (g2.wp_nav.get_reversed() ? -1.0 : 1.0);
|
|
const float nudge_speed_max = calc_speed_nudge(calc_nudge_input_speed, g2.wp_nav.get_reversed());
|
|
g2.wp_nav.set_nudge_speed_max(fabsf(nudge_speed_max));
|
|
|
|
// update navigation controller
|
|
g2.wp_nav.update(rover.G_Dt);
|
|
_distance_to_destination = g2.wp_nav.get_distance_to_destination();
|
|
|
|
#if AP_AVOIDANCE_ENABLED
|
|
// sailboats trigger tack if simple avoidance becomes active
|
|
if (g2.sailboat.tack_enabled() && g2.avoid.limits_active()) {
|
|
// we are a sailboat trying to avoid fence, try a tack
|
|
rover.control_mode->handle_tack_request();
|
|
}
|
|
#endif
|
|
|
|
// pass desired speed to throttle controller
|
|
// do not do simple avoidance because this is already handled in the position controller
|
|
calc_throttle(g2.wp_nav.get_speed(), false);
|
|
|
|
float desired_heading_cd = g2.wp_nav.oa_wp_bearing_cd();
|
|
if (g2.sailboat.use_indirect_route(desired_heading_cd)) {
|
|
// sailboats use heading controller when tacking upwind
|
|
desired_heading_cd = g2.sailboat.calc_heading(desired_heading_cd);
|
|
// use pivot turn rate for tacks
|
|
const float turn_rate = g2.sailboat.tacking() ? g2.wp_nav.get_pivot_rate() : 0.0f;
|
|
calc_steering_to_heading(desired_heading_cd, turn_rate);
|
|
} else {
|
|
// retrieve turn rate from waypoint controller
|
|
float desired_turn_rate_rads = g2.wp_nav.get_turn_rate_rads();
|
|
|
|
// if simple avoidance is active at very low speed do not attempt to turn
|
|
#if AP_AVOIDANCE_ENABLED
|
|
if (g2.avoid.limits_active() && (fabsf(attitude_control.get_desired_speed()) <= attitude_control.get_stop_speed())) {
|
|
desired_turn_rate_rads = 0.0f;
|
|
}
|
|
#endif
|
|
|
|
// call turn rate steering controller
|
|
calc_steering_from_turn_rate(desired_turn_rate_rads);
|
|
}
|
|
}
|
|
|
|
// calculate steering output given a turn rate
|
|
// desired turn rate in radians/sec. Positive to the right.
|
|
void Mode::calc_steering_from_turn_rate(float turn_rate)
|
|
{
|
|
// calculate and send final steering command to motor library
|
|
const float steering_out = attitude_control.get_steering_out_rate(turn_rate,
|
|
g2.motors.limit.steer_left,
|
|
g2.motors.limit.steer_right,
|
|
rover.G_Dt);
|
|
set_steering(steering_out * 4500.0f);
|
|
}
|
|
|
|
/*
|
|
calculate steering output given lateral_acceleration
|
|
*/
|
|
void Mode::calc_steering_from_lateral_acceleration(float lat_accel, bool reversed)
|
|
{
|
|
// constrain to max G force
|
|
lat_accel = constrain_float(lat_accel, -attitude_control.get_turn_lat_accel_max(), attitude_control.get_turn_lat_accel_max());
|
|
|
|
// send final steering command to motor library
|
|
const float steering_out = attitude_control.get_steering_out_lat_accel(lat_accel,
|
|
g2.motors.limit.steer_left,
|
|
g2.motors.limit.steer_right,
|
|
rover.G_Dt);
|
|
set_steering(steering_out * 4500.0f);
|
|
}
|
|
|
|
// calculate steering output to drive towards desired heading
|
|
// rate_max is a maximum turn rate in deg/s. set to zero to use default turn rate limits
|
|
void Mode::calc_steering_to_heading(float desired_heading_cd, float rate_max_degs)
|
|
{
|
|
// call heading controller
|
|
const float steering_out = attitude_control.get_steering_out_heading(radians(desired_heading_cd*0.01f),
|
|
radians(rate_max_degs),
|
|
g2.motors.limit.steer_left,
|
|
g2.motors.limit.steer_right,
|
|
rover.G_Dt);
|
|
set_steering(steering_out * 4500.0f);
|
|
}
|
|
|
|
void Mode::set_steering(float steering_value)
|
|
{
|
|
if (allows_stick_mixing() && g2.stick_mixing > 0) {
|
|
steering_value = channel_steer->stick_mixing((int16_t)steering_value);
|
|
}
|
|
g2.motors.set_steering(steering_value);
|
|
}
|
|
|
|
Mode *Rover::mode_from_mode_num(const enum Mode::Number num)
|
|
{
|
|
Mode *ret = nullptr;
|
|
switch (num) {
|
|
case Mode::Number::MANUAL:
|
|
ret = &mode_manual;
|
|
break;
|
|
case Mode::Number::ACRO:
|
|
ret = &mode_acro;
|
|
break;
|
|
case Mode::Number::STEERING:
|
|
ret = &mode_steering;
|
|
break;
|
|
case Mode::Number::HOLD:
|
|
ret = &mode_hold;
|
|
break;
|
|
case Mode::Number::LOITER:
|
|
ret = &mode_loiter;
|
|
break;
|
|
#if MODE_FOLLOW_ENABLED == ENABLED
|
|
case Mode::Number::FOLLOW:
|
|
ret = &mode_follow;
|
|
break;
|
|
#endif
|
|
case Mode::Number::SIMPLE:
|
|
ret = &mode_simple;
|
|
break;
|
|
case Mode::Number::CIRCLE:
|
|
ret = &g2.mode_circle;
|
|
break;
|
|
case Mode::Number::AUTO:
|
|
ret = &mode_auto;
|
|
break;
|
|
case Mode::Number::RTL:
|
|
ret = &mode_rtl;
|
|
break;
|
|
case Mode::Number::SMART_RTL:
|
|
ret = &mode_smartrtl;
|
|
break;
|
|
case Mode::Number::GUIDED:
|
|
ret = &mode_guided;
|
|
break;
|
|
case Mode::Number::INITIALISING:
|
|
ret = &mode_initializing;
|
|
break;
|
|
#if MODE_DOCK_ENABLED == ENABLED
|
|
case Mode::Number::DOCK:
|
|
ret = (Mode *)g2.mode_dock_ptr;
|
|
break;
|
|
#endif
|
|
default:
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|