ardupilot/ArduCopter/system.cpp

525 lines
16 KiB
C++

#include "Copter.h"
#include <AP_ESC_Telem/AP_ESC_Telem.h>
/*****************************************************************************
* The init_ardupilot function processes everything we need for an in - air restart
* We will determine later if we are actually on the ground and process a
* ground start in that case.
*
*****************************************************************************/
static void failsafe_check_static()
{
copter.failsafe_check();
}
void Copter::init_ardupilot()
{
// init winch
#if AP_WINCH_ENABLED
g2.winch.init();
#endif
// initialise notify system
notify.init();
notify_flight_mode();
// initialise battery monitor
battery.init();
// Init RSSI
rssi.init();
barometer.init();
// setup telem slots with serial ports
gcs().setup_uarts();
#if OSD_ENABLED == ENABLED
osd.init();
#endif
// update motor interlock state
update_using_interlock();
#if FRAME_CONFIG == HELI_FRAME
// trad heli specific initialisation
heli_init();
#endif
#if FRAME_CONFIG == HELI_FRAME
input_manager.set_loop_rate(scheduler.get_loop_rate_hz());
#endif
init_rc_in(); // sets up rc channels from radio
// initialise surface to be tracked in SurfaceTracking
// must be before rc init to not override initial switch position
surface_tracking.init((SurfaceTracking::Surface)copter.g2.surftrak_mode.get());
// allocate the motors class
allocate_motors();
// initialise rc channels including setting mode
rc().convert_options(RC_Channel::AUX_FUNC::ARMDISARM_UNUSED, RC_Channel::AUX_FUNC::ARMDISARM_AIRMODE);
rc().init();
// sets up motors and output to escs
init_rc_out();
// check if we should enter esc calibration mode
esc_calibration_startup_check();
// motors initialised so parameters can be sent
ap.initialised_params = true;
#if AP_RELAY_ENABLED
relay.init();
#endif
/*
* setup the 'main loop is dead' check. Note that this relies on
* the RC library being initialised.
*/
hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000);
// Do GPS init
gps.set_log_gps_bit(MASK_LOG_GPS);
gps.init();
AP::compass().set_log_bit(MASK_LOG_COMPASS);
AP::compass().init();
#if AP_AIRSPEED_ENABLED
airspeed.set_log_bit(MASK_LOG_IMU);
#endif
#if AP_OAPATHPLANNER_ENABLED
g2.oa.init();
#endif
attitude_control->parameter_sanity_check();
#if AP_OPTICALFLOW_ENABLED
// initialise optical flow sensor
optflow.init(MASK_LOG_OPTFLOW);
#endif // AP_OPTICALFLOW_ENABLED
#if HAL_MOUNT_ENABLED
// initialise camera mount
camera_mount.init();
#endif
#if AP_CAMERA_ENABLED
// initialise camera
camera.init();
#endif
#if AC_PRECLAND_ENABLED
// initialise precision landing
init_precland();
#endif
#if AP_LANDINGGEAR_ENABLED
// initialise landing gear position
landinggear.init();
#endif
#ifdef USERHOOK_INIT
USERHOOK_INIT
#endif
// read Baro pressure at ground
//-----------------------------
barometer.set_log_baro_bit(MASK_LOG_IMU);
barometer.calibrate();
#if RANGEFINDER_ENABLED == ENABLED
// initialise rangefinder
init_rangefinder();
#endif
#if HAL_PROXIMITY_ENABLED
// init proximity sensor
g2.proximity.init();
#endif
#if AP_BEACON_ENABLED
// init beacons used for non-gps position estimation
g2.beacon.init();
#endif
#if AP_RPM_ENABLED
// initialise AP_RPM library
rpm_sensor.init();
#endif
#if MODE_AUTO_ENABLED == ENABLED
// initialise mission library
mode_auto.mission.init();
#endif
#if MODE_SMARTRTL_ENABLED == ENABLED
// initialize SmartRTL
g2.smart_rtl.init();
#endif
#if HAL_LOGGING_ENABLED
// initialise AP_Logger library
logger.setVehicle_Startup_Writer(FUNCTOR_BIND(&copter, &Copter::Log_Write_Vehicle_Startup_Messages, void));
#endif
startup_INS_ground();
#if AC_CUSTOMCONTROL_MULTI_ENABLED == ENABLED
custom_control.init();
#endif
// set landed flags
set_land_complete(true);
set_land_complete_maybe(true);
// enable CPU failsafe
failsafe_enable();
ins.set_log_raw_bit(MASK_LOG_IMU_RAW);
motors->output_min(); // output lowest possible value to motors
// attempt to set the initial_mode, else set to STABILIZE
if (!set_mode((enum Mode::Number)g.initial_mode.get(), ModeReason::INITIALISED)) {
// set mode to STABILIZE will trigger mode change notification to pilot
set_mode(Mode::Number::STABILIZE, ModeReason::UNAVAILABLE);
}
pos_variance_filt.set_cutoff_frequency(g2.fs_ekf_filt_hz);
vel_variance_filt.set_cutoff_frequency(g2.fs_ekf_filt_hz);
hgt_variance_filt.set_cutoff_frequency(g2.fs_ekf_filt_hz);
// flag that initialisation has completed
ap.initialised = true;
}
//******************************************************************************
//This function does all the calibrations, etc. that we need during a ground start
//******************************************************************************
void Copter::startup_INS_ground()
{
// initialise ahrs (may push imu calibration into the mpu6000 if using that device).
ahrs.init();
ahrs.set_vehicle_class(AP_AHRS::VehicleClass::COPTER);
// Warm up and calibrate gyro offsets
ins.init(scheduler.get_loop_rate_hz());
// reset ahrs including gyro bias
ahrs.reset();
}
// position_ok - returns true if the horizontal absolute position is ok and home position is set
bool Copter::position_ok() const
{
// return false if ekf failsafe has triggered
if (failsafe.ekf) {
return false;
}
// check ekf position estimate
return (ekf_has_absolute_position() || ekf_has_relative_position());
}
// ekf_has_absolute_position - returns true if the EKF can provide an absolute WGS-84 position estimate
bool Copter::ekf_has_absolute_position() const
{
if (!ahrs.have_inertial_nav()) {
// do not allow navigation with dcm position
return false;
}
// with EKF use filter status and ekf check
nav_filter_status filt_status = inertial_nav.get_filter_status();
// if disarmed we accept a predicted horizontal position
if (!motors->armed()) {
return ((filt_status.flags.horiz_pos_abs || filt_status.flags.pred_horiz_pos_abs));
} else {
// once armed we require a good absolute position and EKF must not be in const_pos_mode
return (filt_status.flags.horiz_pos_abs && !filt_status.flags.const_pos_mode);
}
}
// ekf_has_relative_position - returns true if the EKF can provide a position estimate relative to it's starting position
bool Copter::ekf_has_relative_position() const
{
// return immediately if EKF not used
if (!ahrs.have_inertial_nav()) {
return false;
}
// return immediately if neither optflow nor visual odometry is enabled and dead reckoning is inactive
bool enabled = false;
#if AP_OPTICALFLOW_ENABLED
if (optflow.enabled()) {
enabled = true;
}
#endif
#if HAL_VISUALODOM_ENABLED
if (visual_odom.enabled()) {
enabled = true;
}
#endif
if (dead_reckoning.active && !dead_reckoning.timeout) {
enabled = true;
}
if (!enabled) {
return false;
}
// get filter status from EKF
nav_filter_status filt_status = inertial_nav.get_filter_status();
// if disarmed we accept a predicted horizontal relative position
if (!motors->armed()) {
return (filt_status.flags.pred_horiz_pos_rel);
} else {
return (filt_status.flags.horiz_pos_rel && !filt_status.flags.const_pos_mode);
}
}
// returns true if the ekf has a good altitude estimate (required for modes which do AltHold)
bool Copter::ekf_alt_ok() const
{
if (!ahrs.have_inertial_nav()) {
// do not allow alt control with only dcm
return false;
}
// with EKF use filter status and ekf check
nav_filter_status filt_status = inertial_nav.get_filter_status();
// require both vertical velocity and position
return (filt_status.flags.vert_vel && filt_status.flags.vert_pos);
}
// update_auto_armed - update status of auto_armed flag
void Copter::update_auto_armed()
{
// disarm checks
if(ap.auto_armed){
// if motors are disarmed, auto_armed should also be false
if(!motors->armed()) {
set_auto_armed(false);
return;
}
// if in stabilize or acro flight mode and throttle is zero, auto-armed should become false
if(flightmode->has_manual_throttle() && ap.throttle_zero && !failsafe.radio) {
set_auto_armed(false);
}
}else{
// arm checks
// for tradheli if motors are armed and throttle is above zero and the motor is started, auto_armed should be true
if(motors->armed() && ap.using_interlock) {
if(!ap.throttle_zero && motors->get_spool_state() == AP_Motors::SpoolState::THROTTLE_UNLIMITED) {
set_auto_armed(true);
}
// if motors are armed and throttle is above zero auto_armed should be true
// if motors are armed and we are in throw mode, then auto_armed should be true
} else if (motors->armed() && !ap.using_interlock) {
if(!ap.throttle_zero || flightmode->mode_number() == Mode::Number::THROW) {
set_auto_armed(true);
}
}
}
}
#if HAL_LOGGING_ENABLED
/*
should we log a message type now?
*/
bool Copter::should_log(uint32_t mask)
{
ap.logging_started = logger.logging_started();
return logger.should_log(mask);
}
#endif
/*
allocate the motors class
*/
void Copter::allocate_motors(void)
{
switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) {
#if FRAME_CONFIG != HELI_FRAME
case AP_Motors::MOTOR_FRAME_QUAD:
case AP_Motors::MOTOR_FRAME_HEXA:
case AP_Motors::MOTOR_FRAME_Y6:
case AP_Motors::MOTOR_FRAME_OCTA:
case AP_Motors::MOTOR_FRAME_OCTAQUAD:
case AP_Motors::MOTOR_FRAME_DODECAHEXA:
case AP_Motors::MOTOR_FRAME_DECA:
case AP_Motors::MOTOR_FRAME_SCRIPTING_MATRIX:
default:
motors = NEW_NOTHROW AP_MotorsMatrix(copter.scheduler.get_loop_rate_hz());
motors_var_info = AP_MotorsMatrix::var_info;
break;
case AP_Motors::MOTOR_FRAME_TRI:
motors = NEW_NOTHROW AP_MotorsTri(copter.scheduler.get_loop_rate_hz());
motors_var_info = AP_MotorsTri::var_info;
AP_Param::set_frame_type_flags(AP_PARAM_FRAME_TRICOPTER);
break;
case AP_Motors::MOTOR_FRAME_SINGLE:
motors = NEW_NOTHROW AP_MotorsSingle(copter.scheduler.get_loop_rate_hz());
motors_var_info = AP_MotorsSingle::var_info;
break;
case AP_Motors::MOTOR_FRAME_COAX:
motors = NEW_NOTHROW AP_MotorsCoax(copter.scheduler.get_loop_rate_hz());
motors_var_info = AP_MotorsCoax::var_info;
break;
case AP_Motors::MOTOR_FRAME_TAILSITTER:
motors = NEW_NOTHROW AP_MotorsTailsitter(copter.scheduler.get_loop_rate_hz());
motors_var_info = AP_MotorsTailsitter::var_info;
break;
case AP_Motors::MOTOR_FRAME_6DOF_SCRIPTING:
#if AP_SCRIPTING_ENABLED
motors = NEW_NOTHROW AP_MotorsMatrix_6DoF_Scripting(copter.scheduler.get_loop_rate_hz());
motors_var_info = AP_MotorsMatrix_6DoF_Scripting::var_info;
#endif // AP_SCRIPTING_ENABLED
break;
case AP_Motors::MOTOR_FRAME_DYNAMIC_SCRIPTING_MATRIX:
#if AP_SCRIPTING_ENABLED
motors = NEW_NOTHROW AP_MotorsMatrix_Scripting_Dynamic(copter.scheduler.get_loop_rate_hz());
motors_var_info = AP_MotorsMatrix_Scripting_Dynamic::var_info;
#endif // AP_SCRIPTING_ENABLED
break;
#else // FRAME_CONFIG == HELI_FRAME
case AP_Motors::MOTOR_FRAME_HELI_DUAL:
motors = NEW_NOTHROW AP_MotorsHeli_Dual(copter.scheduler.get_loop_rate_hz());
motors_var_info = AP_MotorsHeli_Dual::var_info;
AP_Param::set_frame_type_flags(AP_PARAM_FRAME_HELI);
break;
case AP_Motors::MOTOR_FRAME_HELI_QUAD:
motors = NEW_NOTHROW AP_MotorsHeli_Quad(copter.scheduler.get_loop_rate_hz());
motors_var_info = AP_MotorsHeli_Quad::var_info;
AP_Param::set_frame_type_flags(AP_PARAM_FRAME_HELI);
break;
case AP_Motors::MOTOR_FRAME_HELI:
default:
motors = NEW_NOTHROW AP_MotorsHeli_Single(copter.scheduler.get_loop_rate_hz());
motors_var_info = AP_MotorsHeli_Single::var_info;
AP_Param::set_frame_type_flags(AP_PARAM_FRAME_HELI);
break;
#endif
}
if (motors == nullptr) {
AP_BoardConfig::allocation_error("FRAME_CLASS=%u", (unsigned)g2.frame_class.get());
}
AP_Param::load_object_from_eeprom(motors, motors_var_info);
ahrs_view = ahrs.create_view(ROTATION_NONE);
if (ahrs_view == nullptr) {
AP_BoardConfig::allocation_error("AP_AHRS_View");
}
#if FRAME_CONFIG != HELI_FRAME
if ((AP_Motors::motor_frame_class)g2.frame_class.get() == AP_Motors::MOTOR_FRAME_6DOF_SCRIPTING) {
#if AP_SCRIPTING_ENABLED
attitude_control = NEW_NOTHROW AC_AttitudeControl_Multi_6DoF(*ahrs_view, aparm, *motors);
attitude_control_var_info = AC_AttitudeControl_Multi_6DoF::var_info;
#endif // AP_SCRIPTING_ENABLED
} else {
attitude_control = NEW_NOTHROW AC_AttitudeControl_Multi(*ahrs_view, aparm, *motors);
attitude_control_var_info = AC_AttitudeControl_Multi::var_info;
}
#else
attitude_control = NEW_NOTHROW AC_AttitudeControl_Heli(*ahrs_view, aparm, *motors);
attitude_control_var_info = AC_AttitudeControl_Heli::var_info;
#endif
if (attitude_control == nullptr) {
AP_BoardConfig::allocation_error("AttitudeControl");
}
AP_Param::load_object_from_eeprom(attitude_control, attitude_control_var_info);
pos_control = NEW_NOTHROW AC_PosControl(*ahrs_view, inertial_nav, *motors, *attitude_control);
if (pos_control == nullptr) {
AP_BoardConfig::allocation_error("PosControl");
}
AP_Param::load_object_from_eeprom(pos_control, pos_control->var_info);
#if AP_OAPATHPLANNER_ENABLED
wp_nav = NEW_NOTHROW AC_WPNav_OA(inertial_nav, *ahrs_view, *pos_control, *attitude_control);
#else
wp_nav = NEW_NOTHROW AC_WPNav(inertial_nav, *ahrs_view, *pos_control, *attitude_control);
#endif
if (wp_nav == nullptr) {
AP_BoardConfig::allocation_error("WPNav");
}
AP_Param::load_object_from_eeprom(wp_nav, wp_nav->var_info);
loiter_nav = NEW_NOTHROW AC_Loiter(inertial_nav, *ahrs_view, *pos_control, *attitude_control);
if (loiter_nav == nullptr) {
AP_BoardConfig::allocation_error("LoiterNav");
}
AP_Param::load_object_from_eeprom(loiter_nav, loiter_nav->var_info);
#if MODE_CIRCLE_ENABLED == ENABLED
circle_nav = NEW_NOTHROW AC_Circle(inertial_nav, *ahrs_view, *pos_control);
if (circle_nav == nullptr) {
AP_BoardConfig::allocation_error("CircleNav");
}
AP_Param::load_object_from_eeprom(circle_nav, circle_nav->var_info);
#endif
// reload lines from the defaults file that may now be accessible
AP_Param::reload_defaults_file(true);
// now setup some frame-class specific defaults
switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) {
case AP_Motors::MOTOR_FRAME_Y6:
attitude_control->get_rate_roll_pid().kP().set_default(0.1);
attitude_control->get_rate_roll_pid().kD().set_default(0.006);
attitude_control->get_rate_pitch_pid().kP().set_default(0.1);
attitude_control->get_rate_pitch_pid().kD().set_default(0.006);
attitude_control->get_rate_yaw_pid().kP().set_default(0.15);
attitude_control->get_rate_yaw_pid().kI().set_default(0.015);
break;
case AP_Motors::MOTOR_FRAME_TRI:
attitude_control->get_rate_yaw_pid().filt_D_hz().set_default(100);
break;
default:
break;
}
// brushed 16kHz defaults to 16kHz pulses
if (motors->is_brushed_pwm_type()) {
g.rc_speed.set_default(16000);
}
// upgrade parameters. This must be done after allocating the objects
convert_pid_parameters();
#if FRAME_CONFIG == HELI_FRAME
convert_tradheli_parameters();
motors->heli_motors_param_conversions();
#endif
#if HAL_PROXIMITY_ENABLED
// convert PRX to PRX1_ parameters
convert_prx_parameters();
#endif
// param count could have changed
AP_Param::invalidate_count();
}
bool Copter::is_tradheli() const
{
#if FRAME_CONFIG == HELI_FRAME
return true;
#else
return false;
#endif
}