ardupilot/libraries/AP_Compass/AP_Compass_Calibration.cpp
2015-09-03 16:59:22 +10:00

329 lines
8.6 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL/AP_HAL.h>
#include "Compass.h"
#include <AP_Notify/AP_Notify.h>
extern AP_HAL::HAL& hal;
void
Compass::compass_cal_update()
{
AP_Notify::flags.compass_cal_running = 0;
for (uint8_t i=0; i<COMPASS_MAX_INSTANCES; i++) {
bool failure;
_calibrator[i].update(failure);
if (failure) {
AP_Notify::events.compass_cal_failed = 1;
}
if (_calibrator[i].check_for_timeout()) {
AP_Notify::events.compass_cal_failed = 1;
cancel_calibration_all();
}
if (_calibrator[i].running()) {
AP_Notify::flags.compass_cal_running = 1;
}
}
if (is_calibrating()) {
_cal_has_run = true;
return;
} else if (_cal_has_run && auto_reboot()) {
hal.scheduler->delay(1000);
hal.scheduler->reboot(false);
}
}
bool
Compass::start_calibration(uint8_t i, bool retry, bool autosave, float delay, bool autoreboot)
{
if (!healthy(i)) {
return false;
}
memset(_reports_sent,0,sizeof(_reports_sent));
if (!is_calibrating() && delay > 0.5f) {
AP_Notify::events.initiated_compass_cal = 1;
}
if (i == get_primary()) {
_calibrator[i].set_tolerance(8);
} else {
_calibrator[i].set_tolerance(16);
}
_calibrator[i].start(retry, autosave, delay);
_compass_cal_autoreboot = autoreboot;
return true;
}
bool
Compass::start_calibration_mask(uint8_t mask, bool retry, bool autosave, float delay, bool autoreboot)
{
for (uint8_t i=0; i<COMPASS_MAX_INSTANCES; i++) {
if ((1<<i) & mask) {
if (!start_calibration(i,retry,autosave,delay,autoreboot)) {
cancel_calibration_mask(mask);
return false;
}
}
}
return true;
}
bool
Compass::start_calibration_all(bool retry, bool autosave, float delay, bool autoreboot)
{
for (uint8_t i=0; i<COMPASS_MAX_INSTANCES; i++) {
if (healthy(i) && use_for_yaw(i)) {
if (!start_calibration(i,retry,autosave,delay,autoreboot)) {
cancel_calibration_all();
return false;
}
}
}
return true;
}
void
Compass::cancel_calibration(uint8_t i)
{
_calibrator[i].clear();
AP_Notify::events.compass_cal_canceled = 1;
AP_Notify::events.initiated_compass_cal = 0;
}
void
Compass::cancel_calibration_mask(uint8_t mask)
{
for(uint8_t i=0; i<COMPASS_MAX_INSTANCES; i++) {
if((1<<i) & mask) {
cancel_calibration(i);
}
}
}
void
Compass::cancel_calibration_all()
{
cancel_calibration_mask(0xFF);
}
bool
Compass::accept_calibration(uint8_t i)
{
CompassCalibrator& cal = _calibrator[i];
uint8_t cal_status = cal.get_status();
if (cal_status == COMPASS_CAL_SUCCESS) {
_cal_complete_requires_reboot = true;
Vector3f ofs, diag, offdiag;
cal.get_calibration(ofs, diag, offdiag);
cal.clear();
set_and_save_offsets(i, ofs);
set_and_save_diagonals(i,diag);
set_and_save_offdiagonals(i,offdiag);
if (!is_calibrating()) {
AP_Notify::events.compass_cal_saved = 1;
}
return true;
} else {
return false;
}
}
bool
Compass::accept_calibration_mask(uint8_t mask)
{
for(uint8_t i=0; i<COMPASS_MAX_INSTANCES; i++) {
if ((1<<i) & mask) {
CompassCalibrator& cal = _calibrator[i];
uint8_t cal_status = cal.get_status();
if (cal_status != COMPASS_CAL_SUCCESS && cal_status != COMPASS_CAL_NOT_STARTED) {
// a compass failed or is still in progress
return false;
}
}
}
bool success = true;
for (uint8_t i=0; i<COMPASS_MAX_INSTANCES; i++) {
if ((1<<i) & mask) {
if (!accept_calibration(i)) {
success = false;
}
}
}
return success;
}
bool
Compass::accept_calibration_all()
{
return accept_calibration_mask(0xFF);
}
void
Compass::send_mag_cal_progress(mavlink_channel_t chan)
{
uint8_t cal_mask = get_cal_mask();
for (uint8_t compass_id=0; compass_id<COMPASS_MAX_INSTANCES; compass_id++) {
uint8_t cal_status = _calibrator[compass_id].get_status();
if (cal_status == COMPASS_CAL_WAITING_TO_START ||
cal_status == COMPASS_CAL_RUNNING_STEP_ONE ||
cal_status == COMPASS_CAL_RUNNING_STEP_TWO) {
uint8_t completion_pct = _calibrator[compass_id].get_completion_percent();
uint8_t completion_mask[10];
Vector3f direction(0.0f,0.0f,0.0f);
uint8_t attempt = _calibrator[compass_id].get_attempt();
memset(completion_mask, 0, sizeof(completion_mask));
mavlink_msg_mag_cal_progress_send(
chan,
compass_id, cal_mask,
cal_status, attempt, completion_pct, completion_mask,
direction.x, direction.y, direction.z
);
}
}
}
void Compass::send_mag_cal_report(mavlink_channel_t chan)
{
uint8_t cal_mask = get_cal_mask();
for (uint8_t compass_id=0; compass_id<COMPASS_MAX_INSTANCES; compass_id++) {
uint8_t cal_status = _calibrator[compass_id].get_status();
if ((cal_status == COMPASS_CAL_SUCCESS ||
cal_status == COMPASS_CAL_FAILED) && ((_reports_sent[compass_id] < MAX_CAL_REPORTS) || CONTINUOUS_REPORTS)) {
float fitness = _calibrator[compass_id].get_fitness();
Vector3f ofs, diag, offdiag;
_calibrator[compass_id].get_calibration(ofs, diag, offdiag);
uint8_t autosaved = _calibrator[compass_id].get_autosave();
mavlink_msg_mag_cal_report_send(
chan,
compass_id, cal_mask,
cal_status, autosaved,
fitness,
ofs.x, ofs.y, ofs.z,
diag.x, diag.y, diag.z,
offdiag.x, offdiag.y, offdiag.z
);
_reports_sent[compass_id]++;
}
if (cal_status == COMPASS_CAL_SUCCESS && _calibrator[compass_id].get_autosave()) {
accept_calibration(compass_id);
}
}
}
bool
Compass::is_calibrating() const
{
return get_cal_mask();
}
uint8_t
Compass::get_cal_mask() const
{
uint8_t cal_mask = 0;
for (uint8_t i=0; i<COMPASS_MAX_INSTANCES; i++) {
if (_calibrator[i].get_status() != COMPASS_CAL_NOT_STARTED) {
cal_mask |= 1 << i;
}
}
return cal_mask;
}
/*
handle an incoming MAG_CAL command
*/
uint8_t Compass::handle_mag_cal_command(const mavlink_command_long_t &packet)
{
uint8_t result = MAV_RESULT_FAILED;
switch (packet.command) {
case MAV_CMD_DO_START_MAG_CAL: {
result = MAV_RESULT_ACCEPTED;
if (hal.util->get_soft_armed()) {
hal.console->println("Disarm for compass calibration");
result = MAV_RESULT_FAILED;
break;
}
if (packet.param1 < 0 || packet.param1 > 255) {
result = MAV_RESULT_FAILED;
break;
}
uint8_t mag_mask = packet.param1;
bool retry = packet.param2;
bool autosave = packet.param3;
float delay = packet.param4;
bool autoreboot = packet.param5;
if (mag_mask == 0) { // 0 means all
if (!start_calibration_all(retry, autosave, delay, autoreboot)) {
result = MAV_RESULT_FAILED;
}
} else {
if (!start_calibration_mask(mag_mask, retry, autosave, delay, autoreboot)) {
result = MAV_RESULT_FAILED;
}
}
break;
}
case MAV_CMD_DO_ACCEPT_MAG_CAL: {
result = MAV_RESULT_ACCEPTED;
if(packet.param1 < 0 || packet.param1 > 255) {
result = MAV_RESULT_FAILED;
break;
}
uint8_t mag_mask = packet.param1;
if (mag_mask == 0) { // 0 means all
if(!accept_calibration_all()) {
result = MAV_RESULT_FAILED;
}
break;
}
if(!accept_calibration_mask(mag_mask)) {
result = MAV_RESULT_FAILED;
}
break;
}
case MAV_CMD_DO_CANCEL_MAG_CAL: {
result = MAV_RESULT_ACCEPTED;
if(packet.param1 < 0 || packet.param1 > 255) {
result = MAV_RESULT_FAILED;
break;
}
uint8_t mag_mask = packet.param1;
if (mag_mask == 0) { // 0 means all
cancel_calibration_all();
break;
}
cancel_calibration_mask(mag_mask);
break;
}
}
return result;
}