ardupilot/ArduPlane/GCS_Mavlink.cpp

1649 lines
52 KiB
C++

#include "GCS_Mavlink.h"
#include "Plane.h"
MAV_TYPE GCS_MAVLINK_Plane::frame_type() const
{
return plane.quadplane.get_mav_type();
}
MAV_MODE GCS_MAVLINK_Plane::base_mode() const
{
uint8_t _base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
// work out the base_mode. This value is not very useful
// for APM, but we calculate it as best we can so a generic
// MAVLink enabled ground station can work out something about
// what the MAV is up to. The actual bit values are highly
// ambiguous for most of the APM flight modes. In practice, you
// only get useful information from the custom_mode, which maps to
// the APM flight mode and has a well defined meaning in the
// ArduPlane documentation
switch (plane.control_mode) {
case MANUAL:
case TRAINING:
case ACRO:
_base_mode = MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
break;
case STABILIZE:
case FLY_BY_WIRE_A:
case AUTOTUNE:
case FLY_BY_WIRE_B:
case QSTABILIZE:
case QHOVER:
case QLOITER:
case QLAND:
case CRUISE:
_base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED;
break;
case AUTO:
case RTL:
case LOITER:
case AVOID_ADSB:
case GUIDED:
case CIRCLE:
case QRTL:
_base_mode = MAV_MODE_FLAG_GUIDED_ENABLED |
MAV_MODE_FLAG_STABILIZE_ENABLED;
// note that MAV_MODE_FLAG_AUTO_ENABLED does not match what
// APM does in any mode, as that is defined as "system finds its own goal
// positions", which APM does not currently do
break;
case INITIALISING:
break;
}
if (!plane.training_manual_pitch || !plane.training_manual_roll) {
_base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED;
}
if (plane.control_mode != MANUAL && plane.control_mode != INITIALISING) {
// stabiliser of some form is enabled
_base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED;
}
if (plane.g.stick_mixing != STICK_MIXING_DISABLED && plane.control_mode != INITIALISING) {
// all modes except INITIALISING have some form of manual
// override if stick mixing is enabled
_base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
}
#if HIL_SUPPORT
if (plane.g.hil_mode == 1) {
_base_mode |= MAV_MODE_FLAG_HIL_ENABLED;
}
#endif
// we are armed if we are not initialising
if (plane.control_mode != INITIALISING && plane.arming.is_armed()) {
_base_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
}
// indicate we have set a custom mode
_base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
return (MAV_MODE)_base_mode;
}
uint32_t GCS_MAVLINK_Plane::custom_mode() const
{
return plane.control_mode;
}
MAV_STATE GCS_MAVLINK_Plane::system_status() const
{
if (plane.control_mode == INITIALISING) {
return MAV_STATE_CALIBRATING;
}
if (plane.any_failsafe_triggered()) {
return MAV_STATE_CRITICAL;
}
if (plane.crash_state.is_crashed) {
return MAV_STATE_EMERGENCY;
}
if (plane.is_flying()) {
return MAV_STATE_ACTIVE;
}
return MAV_STATE_STANDBY;
}
void GCS_MAVLINK_Plane::send_attitude() const
{
const AP_AHRS &ahrs = AP::ahrs();
float r = ahrs.roll;
float p = ahrs.pitch - radians(plane.g.pitch_trim_cd*0.01f);
float y = ahrs.yaw;
if (plane.quadplane.tailsitter_active()) {
r = plane.quadplane.ahrs_view->roll;
p = plane.quadplane.ahrs_view->pitch;
y = plane.quadplane.ahrs_view->yaw;
}
const Vector3f &omega = ahrs.get_gyro();
mavlink_msg_attitude_send(
chan,
millis(),
r,
p,
y,
omega.x,
omega.y,
omega.z);
}
void Plane::send_aoa_ssa(mavlink_channel_t chan)
{
mavlink_msg_aoa_ssa_send(
chan,
micros(),
ahrs.getAOA(),
ahrs.getSSA());
}
#if GEOFENCE_ENABLED == ENABLED
void Plane::send_fence_status(mavlink_channel_t chan)
{
geofence_send_status(chan);
}
#endif
void Plane::send_extended_status1(mavlink_channel_t chan)
{
int16_t battery_current = -1;
int8_t battery_remaining = -1;
if (battery.has_current() && battery.healthy()) {
battery_remaining = battery.capacity_remaining_pct();
battery_current = battery.current_amps() * 100;
}
update_sensor_status_flags();
mavlink_msg_sys_status_send(
chan,
control_sensors_present,
control_sensors_enabled,
control_sensors_health,
(uint16_t)(scheduler.load_average() * 1000),
battery.voltage() * 1000, // mV
battery_current, // in 10mA units
battery_remaining, // in %
0, // comm drops %,
0, // comm drops in pkts,
0, 0, 0, 0);
}
void Plane::send_nav_controller_output(mavlink_channel_t chan)
{
mavlink_msg_nav_controller_output_send(
chan,
nav_roll_cd * 0.01f,
nav_pitch_cd * 0.01f,
nav_controller->nav_bearing_cd() * 0.01f,
nav_controller->target_bearing_cd() * 0.01f,
MIN(auto_state.wp_distance, UINT16_MAX),
altitude_error_cm * 0.01f,
airspeed_error * 100,
nav_controller->crosstrack_error());
}
void GCS_MAVLINK_Plane::send_position_target_global_int()
{
if (plane.control_mode == MANUAL) {
return;
}
Location &next_WP_loc = plane.next_WP_loc;
mavlink_msg_position_target_global_int_send(
chan,
AP_HAL::millis(), // time_boot_ms
MAV_FRAME_GLOBAL_INT, // targets are always global altitude
0xFFF8, // ignore everything except the x/y/z components
next_WP_loc.lat, // latitude as 1e7
next_WP_loc.lng, // longitude as 1e7
next_WP_loc.alt * 0.01f, // altitude is sent as a float
0.0f, // vx
0.0f, // vy
0.0f, // vz
0.0f, // afx
0.0f, // afy
0.0f, // afz
0.0f, // yaw
0.0f); // yaw_rate
}
void Plane::send_servo_out(mavlink_channel_t chan)
{
// normalized values scaled to -10000 to 10000
// This is used for HIL. Do not change without discussing with
// HIL maintainers
mavlink_msg_rc_channels_scaled_send(
chan,
millis(),
0, // port 0
10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_aileron) / 4500.0f),
10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_elevator) / 4500.0f),
10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) / 100.0f),
10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_rudder) / 4500.0f),
0,
0,
0,
0,
rssi.read_receiver_rssi_uint8());
}
float GCS_MAVLINK_Plane::vfr_hud_airspeed() const
{
// airspeed sensors are best. While the AHRS airspeed_estimate
// will use an airspeed sensor, that value is constrained by the
// ground speed. When reporting we should send the true airspeed
// value if possible:
if (plane.airspeed.enabled() && plane.airspeed.healthy()) {
return plane.airspeed.get_airspeed();
}
// airspeed estimates are OK:
float aspeed;
if (AP::ahrs().airspeed_estimate(&aspeed)) {
return aspeed;
}
// lying is worst:
return 0;
}
int16_t GCS_MAVLINK_Plane::vfr_hud_throttle() const
{
return abs(plane.throttle_percentage());
}
float GCS_MAVLINK_Plane::vfr_hud_climbrate() const
{
if (plane.g2.soaring_controller.is_active()) {
return plane.g2.soaring_controller.get_vario_reading();
}
return AP::baro().get_climb_rate();
}
/*
keep last HIL_STATE message to allow sending SIM_STATE
*/
#if HIL_SUPPORT
static mavlink_hil_state_t last_hil_state;
#endif
// report simulator state
void GCS_MAVLINK_Plane::send_simstate() const
{
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
GCS_MAVLINK::send_simstate();
#elif HIL_SUPPORT
if (plane.g.hil_mode == 1) {
mavlink_msg_simstate_send(chan,
last_hil_state.roll,
last_hil_state.pitch,
last_hil_state.yaw,
last_hil_state.xacc*0.001f*GRAVITY_MSS,
last_hil_state.yacc*0.001f*GRAVITY_MSS,
last_hil_state.zacc*0.001f*GRAVITY_MSS,
last_hil_state.rollspeed,
last_hil_state.pitchspeed,
last_hil_state.yawspeed,
last_hil_state.lat,
last_hil_state.lon);
}
#endif
}
void Plane::send_wind(mavlink_channel_t chan)
{
Vector3f wind = ahrs.wind_estimate();
mavlink_msg_wind_send(
chan,
degrees(atan2f(-wind.y, -wind.x)), // use negative, to give
// direction wind is coming from
wind.length(),
wind.z);
}
/*
send RPM packet
*/
void NOINLINE Plane::send_rpm(mavlink_channel_t chan)
{
if (rpm_sensor.enabled(0) || rpm_sensor.enabled(1)) {
mavlink_msg_rpm_send(
chan,
rpm_sensor.get_rpm(0),
rpm_sensor.get_rpm(1));
}
}
// sends a single pid info over the provided channel
void Plane::send_pid_info(const mavlink_channel_t chan, const DataFlash_Class::PID_Info *pid_info,
const uint8_t axis, const float achieved)
{
if (pid_info == nullptr) {
return;
}
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
mavlink_msg_pid_tuning_send(chan, axis,
pid_info->desired,
achieved,
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D);
}
/*
send PID tuning message
*/
void Plane::send_pid_tuning(mavlink_channel_t chan)
{
const Vector3f &gyro = ahrs.get_gyro();
const DataFlash_Class::PID_Info *pid_info;
if (g.gcs_pid_mask & TUNING_BITS_ROLL) {
if (quadplane.in_vtol_mode()) {
pid_info = &quadplane.attitude_control->get_rate_roll_pid().get_pid_info();
} else {
pid_info = &rollController.get_pid_info();
}
send_pid_info(chan, pid_info, PID_TUNING_ROLL, degrees(gyro.x));
}
if (g.gcs_pid_mask & TUNING_BITS_PITCH) {
if (quadplane.in_vtol_mode()) {
pid_info = &quadplane.attitude_control->get_rate_pitch_pid().get_pid_info();
} else {
pid_info = &pitchController.get_pid_info();
}
send_pid_info(chan, pid_info, PID_TUNING_PITCH, degrees(gyro.y));
}
if (g.gcs_pid_mask & TUNING_BITS_YAW) {
if (quadplane.in_vtol_mode()) {
pid_info = &quadplane.attitude_control->get_rate_yaw_pid().get_pid_info();
} else {
pid_info = &yawController.get_pid_info();
}
send_pid_info(chan, pid_info, PID_TUNING_YAW, degrees(gyro.z));
}
if (g.gcs_pid_mask & TUNING_BITS_STEER) {
send_pid_info(chan, &steerController.get_pid_info(), PID_TUNING_STEER, degrees(gyro.z));
}
if ((g.gcs_pid_mask & TUNING_BITS_LAND) && (flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND)) {
send_pid_info(chan, landing.get_pid_info(), PID_TUNING_LANDING, degrees(gyro.z));
}
}
uint8_t GCS_MAVLINK_Plane::sysid_my_gcs() const
{
return plane.g.sysid_my_gcs;
}
uint32_t GCS_MAVLINK_Plane::telem_delay() const
{
return (uint32_t)(plane.g.telem_delay);
}
// try to send a message, return false if it won't fit in the serial tx buffer
bool GCS_MAVLINK_Plane::try_send_message(enum ap_message id)
{
if (telemetry_delayed()) {
return false;
}
// if we don't have at least 0.2ms remaining before the main loop
// wants to fire then don't send a mavlink message. We want to
// prioritise the main flight control loop over communications
if (!hal.scheduler->in_delay_callback() &&
plane.scheduler.time_available_usec() < 200) {
gcs().set_out_of_time(true);
return false;
}
switch (id) {
case MSG_EXTENDED_STATUS1:
CHECK_PAYLOAD_SIZE(SYS_STATUS);
plane.send_extended_status1(chan);
CHECK_PAYLOAD_SIZE2(POWER_STATUS);
send_power_status();
break;
case MSG_NAV_CONTROLLER_OUTPUT:
if (plane.control_mode != MANUAL) {
CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT);
plane.send_nav_controller_output(chan);
}
break;
case MSG_SERVO_OUT:
#if HIL_SUPPORT
if (plane.g.hil_mode == 1) {
CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED);
plane.send_servo_out(chan);
}
#endif
break;
case MSG_FENCE_STATUS:
#if GEOFENCE_ENABLED == ENABLED
CHECK_PAYLOAD_SIZE(FENCE_STATUS);
plane.send_fence_status(chan);
#endif
break;
case MSG_TERRAIN:
#if AP_TERRAIN_AVAILABLE
CHECK_PAYLOAD_SIZE(TERRAIN_REQUEST);
plane.terrain.send_request(chan);
#endif
break;
case MSG_WIND:
CHECK_PAYLOAD_SIZE(WIND);
plane.send_wind(chan);
break;
case MSG_MOUNT_STATUS:
#if MOUNT == ENABLED
CHECK_PAYLOAD_SIZE(MOUNT_STATUS);
plane.camera_mount.status_msg(chan);
#endif // MOUNT == ENABLED
break;
case MSG_OPTICAL_FLOW:
#if OPTFLOW == ENABLED
if (plane.optflow.enabled()) {
CHECK_PAYLOAD_SIZE(OPTICAL_FLOW);
send_opticalflow(plane.optflow);
}
#endif
break;
case MSG_GIMBAL_REPORT:
#if MOUNT == ENABLED
CHECK_PAYLOAD_SIZE(GIMBAL_REPORT);
plane.camera_mount.send_gimbal_report(chan);
#endif
break;
case MSG_PID_TUNING:
if (plane.control_mode != MANUAL) {
CHECK_PAYLOAD_SIZE(PID_TUNING);
plane.send_pid_tuning(chan);
}
break;
case MSG_RPM:
CHECK_PAYLOAD_SIZE(RPM);
plane.send_rpm(chan);
break;
case MSG_ADSB_VEHICLE:
CHECK_PAYLOAD_SIZE(ADSB_VEHICLE);
plane.adsb.send_adsb_vehicle(chan);
break;
case MSG_AOA_SSA:
CHECK_PAYLOAD_SIZE(AOA_SSA);
plane.send_aoa_ssa(chan);
break;
case MSG_LANDING:
plane.landing.send_landing_message(chan);
break;
default:
return GCS_MAVLINK::try_send_message(id);
}
return true;
}
/*
default stream rates to 1Hz
*/
const AP_Param::GroupInfo GCS_MAVLINK::var_info[] = {
// @Param: RAW_SENS
// @DisplayName: Raw sensor stream rate
// @Description: Raw sensor stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRates[0], 1),
// @Param: EXT_STAT
// @DisplayName: Extended status stream rate to ground station
// @Description: Extended status stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRates[1], 1),
// @Param: RC_CHAN
// @DisplayName: RC Channel stream rate to ground station
// @Description: RC Channel stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRates[2], 1),
// @Param: RAW_CTRL
// @DisplayName: Raw Control stream rate to ground station
// @Description: Raw Control stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRates[3], 1),
// @Param: POSITION
// @DisplayName: Position stream rate to ground station
// @Description: Position stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRates[4], 1),
// @Param: EXTRA1
// @DisplayName: Extra data type 1 stream rate to ground station
// @Description: Extra data type 1 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRates[5], 1),
// @Param: EXTRA2
// @DisplayName: Extra data type 2 stream rate to ground station
// @Description: Extra data type 2 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRates[6], 1),
// @Param: EXTRA3
// @DisplayName: Extra data type 3 stream rate to ground station
// @Description: Extra data type 3 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRates[7], 1),
// @Param: PARAMS
// @DisplayName: Parameter stream rate to ground station
// @Description: Parameter stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRates[8], 10),
// @Param: ADSB
// @DisplayName: ADSB stream rate to ground station
// @Description: ADSB stream rate to ground station
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("ADSB", 9, GCS_MAVLINK, streamRates[9], 5),
AP_GROUPEND
};
static const ap_message STREAM_RAW_SENSORS_msgs[] = {
MSG_RAW_IMU1, // RAW_IMU, SCALED_IMU2, SCALED_IMU3
MSG_RAW_IMU2, // SCALED_PRESSURE, SCALED_PRESSURE2, SCALED_PRESSURE3
MSG_RAW_IMU3 // SENSOR_OFFSETS
};
static const ap_message STREAM_EXTENDED_STATUS_msgs[] = {
MSG_EXTENDED_STATUS1, // SYS_STATUS, POWER_STATUS
MSG_EXTENDED_STATUS2, // MEMINFO
MSG_CURRENT_WAYPOINT,
MSG_GPS_RAW,
MSG_GPS_RTK,
MSG_GPS2_RAW,
MSG_GPS2_RTK,
MSG_NAV_CONTROLLER_OUTPUT,
MSG_FENCE_STATUS,
MSG_POSITION_TARGET_GLOBAL_INT,
};
static const ap_message STREAM_POSITION_msgs[] = {
MSG_LOCATION,
MSG_LOCAL_POSITION
};
static const ap_message STREAM_RAW_CONTROLLER_msgs[] = {
MSG_SERVO_OUT,
};
static const ap_message STREAM_RC_CHANNELS_msgs[] = {
MSG_SERVO_OUTPUT_RAW,
MSG_RADIO_IN
};
static const ap_message STREAM_EXTRA1_msgs[] = {
MSG_ATTITUDE,
MSG_SIMSTATE, // SIMSTATE, AHRS2
MSG_RPM,
MSG_AOA_SSA,
MSG_PID_TUNING,
MSG_LANDING,
MSG_ESC_TELEMETRY,
};
static const ap_message STREAM_EXTRA2_msgs[] = {
MSG_VFR_HUD
};
static const ap_message STREAM_EXTRA3_msgs[] = {
MSG_AHRS,
MSG_HWSTATUS,
MSG_WIND,
MSG_RANGEFINDER,
MSG_SYSTEM_TIME,
#if AP_TERRAIN_AVAILABLE
MSG_TERRAIN,
#endif
MSG_BATTERY2,
MSG_BATTERY_STATUS,
MSG_MOUNT_STATUS,
MSG_OPTICAL_FLOW,
MSG_GIMBAL_REPORT,
MSG_MAG_CAL_REPORT,
MSG_MAG_CAL_PROGRESS,
MSG_EKF_STATUS_REPORT,
MSG_VIBRATION,
};
static const ap_message STREAM_ADSB_msgs[] = {
MSG_ADSB_VEHICLE
};
const struct GCS_MAVLINK::stream_entries GCS_MAVLINK::all_stream_entries[] = {
MAV_STREAM_ENTRY(STREAM_RAW_SENSORS),
MAV_STREAM_ENTRY(STREAM_EXTENDED_STATUS),
MAV_STREAM_ENTRY(STREAM_POSITION),
MAV_STREAM_ENTRY(STREAM_RAW_CONTROLLER),
MAV_STREAM_ENTRY(STREAM_RC_CHANNELS),
MAV_STREAM_ENTRY(STREAM_EXTRA1),
MAV_STREAM_ENTRY(STREAM_EXTRA2),
MAV_STREAM_ENTRY(STREAM_EXTRA3),
MAV_STREAM_ENTRY(STREAM_ADSB),
MAV_STREAM_TERMINATOR // must have this at end of stream_entries
};
bool GCS_MAVLINK_Plane::in_hil_mode() const
{
#if HIL_SUPPORT
return plane.g.hil_mode == 1;
#endif
return false;
}
/*
handle a request to switch to guided mode. This happens via a
callback from handle_mission_item()
*/
bool GCS_MAVLINK_Plane::handle_guided_request(AP_Mission::Mission_Command &cmd)
{
if (plane.control_mode != GUIDED) {
// only accept position updates when in GUIDED mode
return false;
}
plane.guided_WP_loc = cmd.content.location;
// add home alt if needed
if (plane.guided_WP_loc.flags.relative_alt) {
plane.guided_WP_loc.alt += plane.home.alt;
plane.guided_WP_loc.flags.relative_alt = 0;
}
plane.set_guided_WP();
return true;
}
/*
handle a request to change current WP altitude. This happens via a
callback from handle_mission_item()
*/
void GCS_MAVLINK_Plane::handle_change_alt_request(AP_Mission::Mission_Command &cmd)
{
plane.next_WP_loc.alt = cmd.content.location.alt;
if (cmd.content.location.flags.relative_alt) {
plane.next_WP_loc.alt += plane.home.alt;
}
plane.next_WP_loc.flags.relative_alt = false;
plane.next_WP_loc.flags.terrain_alt = cmd.content.location.flags.terrain_alt;
plane.reset_offset_altitude();
}
MAV_RESULT GCS_MAVLINK_Plane::handle_command_preflight_calibration(const mavlink_command_long_t &packet)
{
plane.in_calibration = true;
MAV_RESULT ret = GCS_MAVLINK::handle_command_preflight_calibration(packet);
plane.in_calibration = false;
return ret;
}
MAV_RESULT GCS_MAVLINK_Plane::_handle_command_preflight_calibration(const mavlink_command_long_t &packet)
{
if (is_equal(packet.param4,1.0f)) {
if (plane.trim_radio()) {
return MAV_RESULT_ACCEPTED;
} else {
return MAV_RESULT_FAILED;
}
}
return GCS_MAVLINK::_handle_command_preflight_calibration(packet);
}
void GCS_MAVLINK_Plane::packetReceived(const mavlink_status_t &status,
mavlink_message_t &msg)
{
plane.avoidance_adsb.handle_msg(msg);
GCS_MAVLINK::packetReceived(status, msg);
}
bool GCS_MAVLINK_Plane::should_disable_overrides_on_reboot() const
{
return (plane.quadplane.enable != 0);
}
MAV_RESULT GCS_MAVLINK_Plane::handle_command_int_packet(const mavlink_command_int_t &packet)
{
switch(packet.command) {
case MAV_CMD_DO_SET_HOME:
if (is_equal(packet.param1, 1.0f)) {
plane.set_home_persistently(AP::gps().location());
AP::ahrs().lock_home();
return MAV_RESULT_ACCEPTED;
} else {
// ensure param1 is zero
if (!is_zero(packet.param1)) {
return MAV_RESULT_FAILED;
}
if ((packet.x == 0) && (packet.y == 0) && is_zero(packet.z)) {
// don't allow the 0,0 position
return MAV_RESULT_FAILED;
}
// check frame type is supported
if (packet.frame != MAV_FRAME_GLOBAL &&
packet.frame != MAV_FRAME_GLOBAL_INT &&
packet.frame != MAV_FRAME_GLOBAL_RELATIVE_ALT &&
packet.frame != MAV_FRAME_GLOBAL_RELATIVE_ALT_INT) {
return MAV_RESULT_FAILED;
}
// sanity check location
if (!check_latlng(packet.x, packet.y)) {
return MAV_RESULT_FAILED;
}
Location new_home_loc {};
new_home_loc.lat = packet.x;
new_home_loc.lng = packet.y;
new_home_loc.alt = packet.z * 100;
// handle relative altitude
if (packet.frame == MAV_FRAME_GLOBAL_RELATIVE_ALT || packet.frame == MAV_FRAME_GLOBAL_RELATIVE_ALT_INT) {
if (!AP::ahrs().home_is_set()) {
// cannot use relative altitude if home is not set
return MAV_RESULT_FAILED;
}
new_home_loc.alt += plane.ahrs.get_home().alt;
}
plane.set_home(new_home_loc);
AP::ahrs().lock_home();
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
case MAV_CMD_DO_REPOSITION: {
// sanity check location
if (!check_latlng(packet.x, packet.y)) {
return MAV_RESULT_FAILED;
}
Location requested_position {};
requested_position.lat = packet.x;
requested_position.lng = packet.y;
// check the floating representation for overflow of altitude
if (fabsf(packet.z * 100.0f) >= 0x7fffff) {
return MAV_RESULT_FAILED;
}
requested_position.alt = (int32_t)(packet.z * 100.0f);
// load option flags
if (packet.frame == MAV_FRAME_GLOBAL_RELATIVE_ALT_INT) {
requested_position.flags.relative_alt = 1;
}
else if (packet.frame == MAV_FRAME_GLOBAL_TERRAIN_ALT_INT) {
requested_position.flags.terrain_alt = 1;
}
else if (packet.frame != MAV_FRAME_GLOBAL_INT) {
// not a supported frame
return MAV_RESULT_FAILED;
}
if (is_zero(packet.param4)) {
requested_position.flags.loiter_ccw = 0;
} else {
requested_position.flags.loiter_ccw = 1;
}
if (location_sanitize(plane.current_loc, requested_position)) {
// if the location wasn't already sane don't load it
return MAV_RESULT_FAILED; // failed as the location is not valid
}
// location is valid load and set
if (((int32_t)packet.param2 & MAV_DO_REPOSITION_FLAGS_CHANGE_MODE) ||
(plane.control_mode == GUIDED)) {
plane.set_mode(GUIDED, MODE_REASON_GCS_COMMAND);
plane.guided_WP_loc = requested_position;
// add home alt if needed
if (plane.guided_WP_loc.flags.relative_alt) {
plane.guided_WP_loc.alt += plane.home.alt;
plane.guided_WP_loc.flags.relative_alt = 0;
}
plane.set_guided_WP();
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
}
default:
return GCS_MAVLINK::handle_command_int_packet(packet);
}
}
MAV_RESULT GCS_MAVLINK_Plane::handle_command_long_packet(const mavlink_command_long_t &packet)
{
switch(packet.command) {
case MAV_CMD_DO_CHANGE_SPEED:
// if we're in failsafe modes (e.g., RTL, LOITER) or in pilot
// controlled modes (e.g., MANUAL, TRAINING)
// this command should be ignored since it comes in from GCS
// or a companion computer:
if (plane.control_mode != GUIDED && plane.control_mode != AUTO && plane.control_mode != AVOID_ADSB) {
// failed
return MAV_RESULT_FAILED;
}
AP_Mission::Mission_Command cmd;
if (AP_Mission::mavlink_cmd_long_to_mission_cmd(packet, cmd) == MAV_MISSION_ACCEPTED) {
plane.do_change_speed(cmd);
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
case MAV_CMD_NAV_LOITER_UNLIM:
plane.set_mode(LOITER, MODE_REASON_GCS_COMMAND);
return MAV_RESULT_ACCEPTED;
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
plane.set_mode(RTL, MODE_REASON_GCS_COMMAND);
return MAV_RESULT_ACCEPTED;
case MAV_CMD_NAV_TAKEOFF: {
// user takeoff only works with quadplane code for now
// param7 : altitude [metres]
float takeoff_alt = packet.param7;
if (plane.quadplane.available() && plane.quadplane.do_user_takeoff(takeoff_alt)) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
}
#if MOUNT == ENABLED
// Sets the region of interest (ROI) for the camera
case MAV_CMD_DO_SET_ROI:
// sanity check location
if (!check_latlng(packet.param5, packet.param6)) {
return MAV_RESULT_FAILED;
}
Location roi_loc;
roi_loc.lat = (int32_t)(packet.param5 * 1.0e7f);
roi_loc.lng = (int32_t)(packet.param6 * 1.0e7f);
roi_loc.alt = (int32_t)(packet.param7 * 100.0f);
if (roi_loc.lat == 0 && roi_loc.lng == 0 && roi_loc.alt == 0) {
// switch off the camera tracking if enabled
if (plane.camera_mount.get_mode() == MAV_MOUNT_MODE_GPS_POINT) {
plane.camera_mount.set_mode_to_default();
}
} else {
// send the command to the camera mount
plane.camera_mount.set_roi_target(roi_loc);
}
return MAV_RESULT_ACCEPTED;
#endif
#if MOUNT == ENABLED
case MAV_CMD_DO_MOUNT_CONTROL:
plane.camera_mount.control(packet.param1, packet.param2, packet.param3, (MAV_MOUNT_MODE) packet.param7);
return MAV_RESULT_ACCEPTED;
#endif
case MAV_CMD_MISSION_START:
plane.set_mode(AUTO, MODE_REASON_GCS_COMMAND);
return MAV_RESULT_ACCEPTED;
case MAV_CMD_COMPONENT_ARM_DISARM:
if (is_equal(packet.param1,1.0f)) {
// run pre_arm_checks and arm_checks and display failures
const bool do_arming_checks = !is_equal(packet.param2,magic_force_arm_value);
if (plane.arm_motors(AP_Arming::MAVLINK, do_arming_checks)) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
} else if (is_zero(packet.param1)) {
if (plane.disarm_motors()) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
}
return MAV_RESULT_UNSUPPORTED;
case MAV_CMD_DO_LAND_START:
// attempt to switch to next DO_LAND_START command in the mission
if (plane.mission.jump_to_landing_sequence()) {
plane.set_mode(AUTO, MODE_REASON_UNKNOWN);
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
case MAV_CMD_DO_GO_AROUND:
if (plane.flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND) {
// Initiate an aborted landing. This will trigger a pitch-up and
// climb-out to a safe altitude holding heading then one of the
// following actions will occur, check for in this order:
// - If MAV_CMD_CONTINUE_AND_CHANGE_ALT is next command in mission,
// increment mission index to execute it
// - else if DO_LAND_START is available, jump to it
// - else decrement the mission index to repeat the landing approach
if (!is_zero(packet.param1)) {
plane.auto_state.takeoff_altitude_rel_cm = packet.param1 * 100;
}
if (plane.landing.request_go_around()) {
plane.auto_state.next_wp_crosstrack = false;
return MAV_RESULT_ACCEPTED;
}
}
return MAV_RESULT_FAILED;
case MAV_CMD_DO_FENCE_ENABLE:
if (!plane.geofence_present()) {
gcs().send_text(MAV_SEVERITY_NOTICE,"Fence not configured");
return MAV_RESULT_FAILED;
}
switch((uint16_t)packet.param1) {
case 0:
if (! plane.geofence_set_enabled(false, GCS_TOGGLED)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
case 1:
if (! plane.geofence_set_enabled(true, GCS_TOGGLED)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
case 2: //disable fence floor only
if (! plane.geofence_set_floor_enabled(false)) {
return MAV_RESULT_FAILED;
}
gcs().send_text(MAV_SEVERITY_NOTICE,"Fence floor disabled");
return MAV_RESULT_ACCEPTED;
default:
break;
}
return MAV_RESULT_FAILED;
case MAV_CMD_DO_SET_HOME: {
// param1 : use current (1=use current location, 0=use specified location)
// param5 : latitude
// param6 : longitude
// param7 : altitude (absolute)
if (is_equal(packet.param1,1.0f)) {
plane.set_home_persistently(AP::gps().location());
AP::ahrs().lock_home();
return MAV_RESULT_ACCEPTED;
} else {
// ensure param1 is zero
if (!is_zero(packet.param1)) {
return MAV_RESULT_FAILED;
}
if (is_zero(packet.param5) && is_zero(packet.param6) && is_zero(packet.param7)) {
// don't allow the 0,0 position
return MAV_RESULT_FAILED;
}
// sanity check location
if (!check_latlng(packet.param5,packet.param6)) {
return MAV_RESULT_FAILED;
}
Location new_home_loc {};
new_home_loc.lat = (int32_t)(packet.param5 * 1.0e7f);
new_home_loc.lng = (int32_t)(packet.param6 * 1.0e7f);
new_home_loc.alt = (int32_t)(packet.param7 * 100.0f);
plane.set_home(new_home_loc);
AP::ahrs().lock_home();
return MAV_RESULT_ACCEPTED;
}
break;
}
case MAV_CMD_DO_AUTOTUNE_ENABLE:
// param1 : enable/disable
plane.autotune_enable(!is_zero(packet.param1));
return MAV_RESULT_ACCEPTED;
#if PARACHUTE == ENABLED
case MAV_CMD_DO_PARACHUTE:
// configure or release parachute
switch ((uint16_t)packet.param1) {
case PARACHUTE_DISABLE:
plane.parachute.enabled(false);
return MAV_RESULT_ACCEPTED;
case PARACHUTE_ENABLE:
plane.parachute.enabled(true);
return MAV_RESULT_ACCEPTED;
case PARACHUTE_RELEASE:
// treat as a manual release which performs some additional check of altitude
if (plane.parachute.released()) {
gcs().send_text(MAV_SEVERITY_NOTICE, "Parachute already released");
return MAV_RESULT_FAILED;
}
if (!plane.parachute.enabled()) {
gcs().send_text(MAV_SEVERITY_NOTICE, "Parachute not enabled");
return MAV_RESULT_FAILED;
}
if (!plane.parachute_manual_release()) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
default:
break;
}
return MAV_RESULT_FAILED;
#endif
case MAV_CMD_DO_MOTOR_TEST:
// param1 : motor sequence number (a number from 1 to max number of motors on the vehicle)
// param2 : throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through. See MOTOR_TEST_THROTTLE_TYPE enum)
// param3 : throttle (range depends upon param2)
// param4 : timeout (in seconds)
// param5 : motor count (number of motors to test in sequence)
return plane.quadplane.mavlink_motor_test_start(chan,
(uint8_t)packet.param1,
(uint8_t)packet.param2,
(uint16_t)packet.param3,
packet.param4,
(uint8_t)packet.param5);
case MAV_CMD_DO_VTOL_TRANSITION:
if (!plane.quadplane.handle_do_vtol_transition((enum MAV_VTOL_STATE)packet.param1)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
case MAV_CMD_DO_ENGINE_CONTROL:
if (!plane.g2.ice_control.engine_control(packet.param1, packet.param2, packet.param3)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
default:
return GCS_MAVLINK::handle_command_long_packet(packet);
}
}
void GCS_MAVLINK_Plane::handleMessage(mavlink_message_t* msg)
{
switch (msg->msgid) {
#if GEOFENCE_ENABLED == ENABLED
// receive a fence point from GCS and store in EEPROM
case MAVLINK_MSG_ID_FENCE_POINT: {
mavlink_fence_point_t packet;
mavlink_msg_fence_point_decode(msg, &packet);
if (plane.g.fence_action != FENCE_ACTION_NONE) {
send_text(MAV_SEVERITY_WARNING,"Fencing must be disabled");
} else if (packet.count != plane.g.fence_total) {
send_text(MAV_SEVERITY_WARNING,"Bad fence point");
} else if (!check_latlng(packet.lat,packet.lng)) {
send_text(MAV_SEVERITY_WARNING,"Invalid fence point, lat or lng too large");
} else {
plane.set_fence_point_with_index(Vector2l(packet.lat*1.0e7f, packet.lng*1.0e7f), packet.idx);
}
break;
}
// send a fence point to GCS
case MAVLINK_MSG_ID_FENCE_FETCH_POINT: {
mavlink_fence_fetch_point_t packet;
mavlink_msg_fence_fetch_point_decode(msg, &packet);
if (packet.idx >= plane.g.fence_total) {
send_text(MAV_SEVERITY_WARNING,"Bad fence point");
} else {
Vector2l point = plane.get_fence_point_with_index(packet.idx);
mavlink_msg_fence_point_send_buf(msg, chan, msg->sysid, msg->compid, packet.idx, plane.g.fence_total,
point.x*1.0e-7f, point.y*1.0e-7f);
}
break;
}
#endif // GEOFENCE_ENABLED
case MAVLINK_MSG_ID_GIMBAL_REPORT:
{
#if MOUNT == ENABLED
handle_gimbal_report(plane.camera_mount, msg);
#endif
break;
}
case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE:
{
// allow override of RC channel values for HIL
// or for complete GCS control of switch position
// and RC PWM values.
if(msg->sysid != plane.g.sysid_my_gcs) {
break; // Only accept control from our gcs
}
uint32_t tnow = AP_HAL::millis();
mavlink_rc_channels_override_t packet;
mavlink_msg_rc_channels_override_decode(msg, &packet);
RC_Channels::set_override(0, packet.chan1_raw, tnow);
RC_Channels::set_override(1, packet.chan2_raw, tnow);
RC_Channels::set_override(2, packet.chan3_raw, tnow);
RC_Channels::set_override(3, packet.chan4_raw, tnow);
RC_Channels::set_override(4, packet.chan5_raw, tnow);
RC_Channels::set_override(5, packet.chan6_raw, tnow);
RC_Channels::set_override(6, packet.chan7_raw, tnow);
RC_Channels::set_override(7, packet.chan8_raw, tnow);
// a RC override message is consiered to be a 'heartbeat' from
// the ground station for failsafe purposes
plane.failsafe.last_heartbeat_ms = tnow;
break;
}
case MAVLINK_MSG_ID_MANUAL_CONTROL:
{
if (msg->sysid != plane.g.sysid_my_gcs) {
break; // only accept control from our gcs
}
mavlink_manual_control_t packet;
mavlink_msg_manual_control_decode(msg, &packet);
if (packet.target != plane.g.sysid_this_mav) {
break; // only accept messages aimed at us
}
uint32_t tnow = AP_HAL::millis();
int16_t roll = (packet.y == INT16_MAX) ? 0 : plane.channel_roll->get_radio_min() + (plane.channel_roll->get_radio_max() - plane.channel_roll->get_radio_min()) * (packet.y + 1000) / 2000.0f;
int16_t pitch = (packet.x == INT16_MAX) ? 0 : plane.channel_pitch->get_radio_min() + (plane.channel_pitch->get_radio_max() - plane.channel_pitch->get_radio_min()) * (-packet.x + 1000) / 2000.0f;
int16_t throttle = (packet.z == INT16_MAX) ? 0 : plane.channel_throttle->get_radio_min() + (plane.channel_throttle->get_radio_max() - plane.channel_throttle->get_radio_min()) * (packet.z) / 1000.0f;
int16_t yaw = (packet.r == INT16_MAX) ? 0 : plane.channel_rudder->get_radio_min() + (plane.channel_rudder->get_radio_max() - plane.channel_rudder->get_radio_min()) * (packet.r + 1000) / 2000.0f;
RC_Channels::set_override(uint8_t(plane.rcmap.roll() - 1), roll, tnow);
RC_Channels::set_override(uint8_t(plane.rcmap.pitch() - 1), pitch, tnow);
RC_Channels::set_override(uint8_t(plane.rcmap.throttle() - 1), throttle, tnow);
RC_Channels::set_override(uint8_t(plane.rcmap.yaw() - 1), yaw, tnow);
// a manual control message is considered to be a 'heartbeat' from the ground station for failsafe purposes
plane.failsafe.last_heartbeat_ms = tnow;
break;
}
case MAVLINK_MSG_ID_HEARTBEAT:
{
// We keep track of the last time we received a heartbeat from
// our GCS for failsafe purposes
if (msg->sysid != plane.g.sysid_my_gcs) break;
plane.failsafe.last_heartbeat_ms = AP_HAL::millis();
break;
}
case MAVLINK_MSG_ID_HIL_STATE:
{
#if HIL_SUPPORT
if (plane.g.hil_mode != 1) {
break;
}
mavlink_hil_state_t packet;
mavlink_msg_hil_state_decode(msg, &packet);
// sanity check location
if (!check_latlng(packet.lat, packet.lon)) {
break;
}
last_hil_state = packet;
// set gps hil sensor
Location loc;
memset(&loc, 0, sizeof(loc));
loc.lat = packet.lat;
loc.lng = packet.lon;
loc.alt = packet.alt/10;
Vector3f vel(packet.vx, packet.vy, packet.vz);
vel *= 0.01f;
// setup airspeed pressure based on 3D speed, no wind
plane.airspeed.setHIL(sq(vel.length()) / 2.0f + 2013);
plane.gps.setHIL(0, AP_GPS::GPS_OK_FIX_3D,
packet.time_usec/1000,
loc, vel, 10, 0);
// rad/sec
Vector3f gyros;
gyros.x = packet.rollspeed;
gyros.y = packet.pitchspeed;
gyros.z = packet.yawspeed;
// m/s/s
Vector3f accels;
accels.x = packet.xacc * GRAVITY_MSS*0.001f;
accels.y = packet.yacc * GRAVITY_MSS*0.001f;
accels.z = packet.zacc * GRAVITY_MSS*0.001f;
plane.ins.set_gyro(0, gyros);
plane.ins.set_accel(0, accels);
plane.barometer.setHIL(packet.alt*0.001f);
plane.compass.setHIL(0, packet.roll, packet.pitch, packet.yaw);
plane.compass.setHIL(1, packet.roll, packet.pitch, packet.yaw);
// cope with DCM getting badly off due to HIL lag
if (plane.g.hil_err_limit > 0 &&
(fabsf(packet.roll - plane.ahrs.roll) > ToRad(plane.g.hil_err_limit) ||
fabsf(packet.pitch - plane.ahrs.pitch) > ToRad(plane.g.hil_err_limit) ||
wrap_PI(fabsf(packet.yaw - plane.ahrs.yaw)) > ToRad(plane.g.hil_err_limit))) {
plane.ahrs.reset_attitude(packet.roll, packet.pitch, packet.yaw);
}
#endif
break;
}
#if MOUNT == ENABLED
//deprecated. Use MAV_CMD_DO_MOUNT_CONFIGURE
case MAVLINK_MSG_ID_MOUNT_CONFIGURE:
{
plane.camera_mount.configure_msg(msg);
break;
}
//deprecated. Use MAV_CMD_DO_MOUNT_CONTROL
case MAVLINK_MSG_ID_MOUNT_CONTROL:
{
plane.camera_mount.control_msg(msg);
break;
}
#endif // MOUNT == ENABLED
case MAVLINK_MSG_ID_RADIO:
case MAVLINK_MSG_ID_RADIO_STATUS:
{
handle_radio_status(msg, plane.DataFlash, plane.should_log(MASK_LOG_PM));
break;
}
case MAVLINK_MSG_ID_DISTANCE_SENSOR:
plane.rangefinder.handle_msg(msg);
break;
case MAVLINK_MSG_ID_TERRAIN_DATA:
case MAVLINK_MSG_ID_TERRAIN_CHECK:
#if AP_TERRAIN_AVAILABLE
plane.terrain.handle_data(chan, msg);
#endif
break;
case MAVLINK_MSG_ID_SET_ATTITUDE_TARGET:
{
// Only allow companion computer (or other external controller) to
// control attitude in GUIDED mode. We DON'T want external control
// in e.g., RTL, CICLE. Specifying a single mode for companion
// computer control is more safe (even more so when using
// FENCE_ACTION = 4 for geofence failures).
if (plane.control_mode != GUIDED && plane.control_mode != AVOID_ADSB) { // don't screw up failsafes
break;
}
mavlink_set_attitude_target_t att_target;
mavlink_msg_set_attitude_target_decode(msg, &att_target);
// Mappings: If any of these bits are set, the corresponding input should be ignored.
// NOTE, when parsing the bits we invert them for easier interpretation but transport has them inverted
// bit 1: body roll rate
// bit 2: body pitch rate
// bit 3: body yaw rate
// bit 4: unknown
// bit 5: unknown
// bit 6: reserved
// bit 7: throttle
// bit 8: attitude
// if not setting all Quaternion values, use _rate flags to indicate which fields.
// Extract the Euler roll angle from the Quaternion.
Quaternion q(att_target.q[0], att_target.q[1],
att_target.q[2], att_target.q[3]);
// NOTE: att_target.type_mask is inverted for easier interpretation
att_target.type_mask = att_target.type_mask ^ 0xFF;
uint8_t attitude_mask = att_target.type_mask & 0b10000111; // q plus rpy
uint32_t now = AP_HAL::millis();
if ((attitude_mask & 0b10000001) || // partial, including roll
(attitude_mask == 0b10000000)) { // all angles
plane.guided_state.forced_rpy_cd.x = degrees(q.get_euler_roll()) * 100.0f;
// Update timer for external roll to the nav control
plane.guided_state.last_forced_rpy_ms.x = now;
}
if ((attitude_mask & 0b10000010) || // partial, including pitch
(attitude_mask == 0b10000000)) { // all angles
plane.guided_state.forced_rpy_cd.y = degrees(q.get_euler_pitch()) * 100.0f;
// Update timer for external pitch to the nav control
plane.guided_state.last_forced_rpy_ms.y = now;
}
if ((attitude_mask & 0b10000100) || // partial, including yaw
(attitude_mask == 0b10000000)) { // all angles
plane.guided_state.forced_rpy_cd.z = degrees(q.get_euler_yaw()) * 100.0f;
// Update timer for external yaw to the nav control
plane.guided_state.last_forced_rpy_ms.z = now;
}
if (att_target.type_mask & 0b01000000) { // throttle
plane.guided_state.forced_throttle = att_target.thrust * 100.0f;
// Update timer for external throttle
plane.guided_state.last_forced_throttle_ms = now;
}
break;
}
case MAVLINK_MSG_ID_SET_HOME_POSITION:
{
mavlink_set_home_position_t packet;
mavlink_msg_set_home_position_decode(msg, &packet);
if((packet.latitude == 0) && (packet.longitude == 0) && (packet.altitude == 0)) {
// don't allow the 0,0 position
break;
}
// sanity check location
if (!check_latlng(packet.latitude,packet.longitude)) {
break;
}
Location new_home_loc {};
new_home_loc.lat = packet.latitude;
new_home_loc.lng = packet.longitude;
new_home_loc.alt = packet.altitude / 10;
plane.set_home(new_home_loc);
break;
}
case MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED:
{
// decode packet
mavlink_set_position_target_local_ned_t packet;
mavlink_msg_set_position_target_local_ned_decode(msg, &packet);
// exit if vehicle is not in Guided mode
if (plane.control_mode != GUIDED) {
break;
}
// only local moves for now
if (packet.coordinate_frame != MAV_FRAME_LOCAL_OFFSET_NED) {
break;
}
// just do altitude for now
plane.next_WP_loc.alt += -packet.z*100.0;
gcs().send_text(MAV_SEVERITY_INFO, "Change alt to %.1f",
(double)((plane.next_WP_loc.alt - plane.home.alt)*0.01));
break;
}
case MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT:
{
// Only want to allow companion computer position control when
// in a certain mode to avoid inadvertently sending these
// kinds of commands when the autopilot is responding to problems
// in modes such as RTL, CIRCLE, etc. Specifying ONLY one mode
// for companion computer control is more safe (provided
// one uses the FENCE_ACTION = 4 (RTL) for geofence failures).
if (plane.control_mode != GUIDED && plane.control_mode != AVOID_ADSB) {
//don't screw up failsafes
break;
}
mavlink_set_position_target_global_int_t pos_target;
mavlink_msg_set_position_target_global_int_decode(msg, &pos_target);
// Unexpectedly, the mask is expecting "ones" for dimensions that should
// be IGNORNED rather than INCLUDED. See mavlink documentation of the
// SET_POSITION_TARGET_GLOBAL_INT message, type_mask field.
const uint16_t alt_mask = 0b1111111111111011; // (z mask at bit 3)
bool msg_valid = true;
AP_Mission::Mission_Command cmd = {0};
if (pos_target.type_mask & alt_mask)
{
cmd.content.location.alt = pos_target.alt * 100;
cmd.content.location.flags.relative_alt = false;
cmd.content.location.flags.terrain_alt = false;
switch (pos_target.coordinate_frame)
{
case MAV_FRAME_GLOBAL_INT:
break; //default to MSL altitude
case MAV_FRAME_GLOBAL_RELATIVE_ALT_INT:
cmd.content.location.flags.relative_alt = true;
break;
case MAV_FRAME_GLOBAL_TERRAIN_ALT_INT:
cmd.content.location.flags.relative_alt = true;
cmd.content.location.flags.terrain_alt = true;
break;
default:
gcs().send_text(MAV_SEVERITY_WARNING, "Invalid coord frame in SET_POSTION_TARGET_GLOBAL_INT");
msg_valid = false;
break;
}
if (msg_valid) {
handle_change_alt_request(cmd);
}
} // end if alt_mask
break;
}
case MAVLINK_MSG_ID_ADSB_VEHICLE:
case MAVLINK_MSG_ID_UAVIONIX_ADSB_OUT_CFG:
case MAVLINK_MSG_ID_UAVIONIX_ADSB_OUT_DYNAMIC:
case MAVLINK_MSG_ID_UAVIONIX_ADSB_TRANSCEIVER_HEALTH_REPORT:
plane.adsb.handle_message(chan, msg);
break;
default:
handle_common_message(msg);
break;
} // end switch
} // end handle mavlink
/*
* a delay() callback that processes MAVLink packets. We set this as the
* callback in long running library initialisation routines to allow
* MAVLink to process packets while waiting for the initialisation to
* complete
*/
void Plane::mavlink_delay_cb()
{
static uint32_t last_1hz, last_50hz, last_5s;
if (!gcs().chan(0).initialised) return;
DataFlash.EnableWrites(false);
uint32_t tnow = millis();
if (tnow - last_1hz > 1000) {
last_1hz = tnow;
gcs().send_message(MSG_HEARTBEAT);
gcs().send_message(MSG_EXTENDED_STATUS1);
}
if (tnow - last_50hz > 20) {
last_50hz = tnow;
gcs_update();
gcs_data_stream_send();
notify.update();
}
if (tnow - last_5s > 5000) {
last_5s = tnow;
gcs().send_text(MAV_SEVERITY_INFO, "Initialising APM");
}
DataFlash.EnableWrites(true);
}
/*
* send data streams in the given rate range on both links
*/
void Plane::gcs_data_stream_send(void)
{
gcs().data_stream_send();
}
/*
* look for incoming commands on the GCS links
*/
void Plane::gcs_update(void)
{
gcs().update();
}
/*
send airspeed calibration data
*/
void Plane::gcs_send_airspeed_calibration(const Vector3f &vg)
{
gcs().send_airspeed_calibration(vg);
}
/**
retry any deferred messages
*/
void Plane::gcs_retry_deferred(void)
{
gcs().retry_deferred();
}
/*
return true if we will accept this packet. Used to implement SYSID_ENFORCE
*/
bool GCS_MAVLINK_Plane::accept_packet(const mavlink_status_t &status, mavlink_message_t &msg)
{
if (!plane.g2.sysid_enforce) {
return true;
}
if (msg.msgid == MAVLINK_MSG_ID_RADIO || msg.msgid == MAVLINK_MSG_ID_RADIO_STATUS) {
return true;
}
return (msg.sysid == plane.g.sysid_my_gcs);
}
Compass *GCS_MAVLINK_Plane::get_compass() const
{
return &plane.compass;
}
AP_Mission *GCS_MAVLINK_Plane::get_mission()
{
return &plane.mission;
}
void GCS_MAVLINK_Plane::handle_mission_set_current(AP_Mission &mission, mavlink_message_t *msg)
{
plane.auto_state.next_wp_crosstrack = false;
GCS_MAVLINK::handle_mission_set_current(mission, msg);
if (plane.control_mode == AUTO && plane.mission.state() == AP_Mission::MISSION_STOPPED) {
plane.mission.resume();
}
}
AP_Camera *GCS_MAVLINK_Plane::get_camera() const
{
#if CAMERA == ENABLED
return &plane.camera;
#else
return nullptr;
#endif
}
AP_AdvancedFailsafe *GCS_MAVLINK_Plane::get_advanced_failsafe() const
{
return &plane.afs;
}
AP_Rally *GCS_MAVLINK_Plane::get_rally() const
{
return &plane.rally;
}
/*
set_mode() wrapper for MAVLink SET_MODE
*/
bool GCS_MAVLINK_Plane::set_mode(const uint8_t mode)
{
switch (mode) {
case MANUAL:
case CIRCLE:
case STABILIZE:
case TRAINING:
case ACRO:
case FLY_BY_WIRE_A:
case AUTOTUNE:
case FLY_BY_WIRE_B:
case CRUISE:
case AVOID_ADSB:
case GUIDED:
case AUTO:
case RTL:
case LOITER:
case QSTABILIZE:
case QHOVER:
case QLOITER:
case QLAND:
case QRTL:
plane.set_mode((enum FlightMode)mode, MODE_REASON_GCS_COMMAND);
return true;
}
return false;
}