ardupilot/Tools/autotest/helicopter.py

1174 lines
42 KiB
Python

'''
Fly Helicopter in SITL
AP_FLAKE8_CLEAN
'''
from __future__ import print_function
from arducopter import AutoTestCopter
import vehicle_test_suite
from vehicle_test_suite import NotAchievedException, AutoTestTimeoutException
from pymavlink import mavutil
from pysim import vehicleinfo
import copy
import operator
class AutoTestHelicopter(AutoTestCopter):
sitl_start_loc = mavutil.location(40.072842, -105.230575, 1586, 0) # Sparkfun AVC Location
def vehicleinfo_key(self):
return 'Helicopter'
def log_name(self):
return "HeliCopter"
def default_frame(self):
return "heli"
def sitl_start_location(self):
return self.sitl_start_loc
def default_speedup(self):
'''Heli seems to be race-free'''
return 100
def is_heli(self):
return True
def rc_defaults(self):
ret = super(AutoTestHelicopter, self).rc_defaults()
ret[8] = 1000
ret[3] = 1000 # collective
return ret
@staticmethod
def get_position_armable_modes_list():
'''filter THROW mode out of armable modes list; Heli is special-cased'''
ret = AutoTestCopter.get_position_armable_modes_list()
ret = filter(lambda x : x != "THROW", ret)
return ret
def loiter_requires_position(self):
self.progress("Skipping loiter-requires-position for heli; rotor runup issues")
def get_collective_out(self):
servo = self.mav.recv_match(type='SERVO_OUTPUT_RAW', blocking=True)
chan_pwm = (servo.servo1_raw + servo.servo2_raw + servo.servo3_raw)/3.0
return chan_pwm
def RotorRunup(self):
'''Test rotor runip'''
# Takeoff and landing in Loiter
TARGET_RUNUP_TIME = 10
self.zero_throttle()
self.change_mode('LOITER')
self.wait_ready_to_arm()
self.arm_vehicle()
servo = self.mav.recv_match(type='SERVO_OUTPUT_RAW', blocking=True)
coll = servo.servo1_raw
coll = coll + 50
self.set_parameter("H_RSC_RUNUP_TIME", TARGET_RUNUP_TIME)
self.progress("Initiate Runup by putting some throttle")
self.set_rc(8, 2000)
self.set_rc(3, 1700)
self.progress("Collective threshold PWM %u" % coll)
tstart = self.get_sim_time()
self.progress("Wait that collective PWM pass threshold value")
servo = self.mav.recv_match(condition='SERVO_OUTPUT_RAW.servo1_raw>%u' % coll, blocking=True)
runup_time = self.get_sim_time() - tstart
self.progress("Collective is now at PWM %u" % servo.servo1_raw)
self.mav.wait_heartbeat()
if runup_time < TARGET_RUNUP_TIME:
self.zero_throttle()
self.set_rc(8, 1000)
self.disarm_vehicle()
self.mav.wait_heartbeat()
raise NotAchievedException("Takeoff initiated before runup time complete %u" % runup_time)
self.progress("Runup time %u" % runup_time)
self.zero_throttle()
self.land_and_disarm()
self.mav.wait_heartbeat()
# fly_avc_test - fly AVC mission
def AVCMission(self):
'''fly AVC mission'''
self.change_mode('STABILIZE')
self.wait_ready_to_arm()
self.arm_vehicle()
self.progress("Raising rotor speed")
self.set_rc(8, 2000)
# upload mission from file
self.progress("# Load copter_AVC2013_mission")
# load the waypoint count
num_wp = self.load_mission("copter_AVC2013_mission.txt", strict=False)
if not num_wp:
raise NotAchievedException("load copter_AVC2013_mission failed")
self.progress("Fly AVC mission from 1 to %u" % num_wp)
self.set_current_waypoint(1)
# wait for motor runup
self.delay_sim_time(20)
# switch into AUTO mode and raise throttle
self.change_mode('AUTO')
self.set_rc(3, 1500)
# fly the mission
self.wait_waypoint(0, num_wp-1, timeout=500)
# set throttle to minimum
self.zero_throttle()
# wait for disarm
self.wait_disarmed()
self.progress("MOTORS DISARMED OK")
self.progress("Lowering rotor speed")
self.set_rc(8, 1000)
self.progress("AVC mission completed: passed!")
def takeoff(self,
alt_min=30,
takeoff_throttle=1700,
require_absolute=True,
mode="STABILIZE",
timeout=120):
"""Takeoff get to 30m altitude."""
self.progress("TAKEOFF")
self.change_mode(mode)
if not self.armed():
self.wait_ready_to_arm(require_absolute=require_absolute, timeout=timeout)
self.zero_throttle()
self.arm_vehicle()
self.progress("Raising rotor speed")
self.set_rc(8, 2000)
self.progress("wait for rotor runup to complete")
if self.get_parameter("H_RSC_MODE") == 4:
self.context_collect('STATUSTEXT')
self.wait_statustext("Governor Engaged", check_context=True)
elif self.get_parameter("H_RSC_MODE") == 3:
self.wait_rpm(1, 1300, 1400)
else:
self.wait_servo_channel_value(8, 1659, timeout=10)
# wait for motor runup
self.delay_sim_time(20)
if mode == 'GUIDED':
self.user_takeoff(alt_min=alt_min)
else:
self.set_rc(3, takeoff_throttle)
self.wait_altitude(alt_min-1, alt_min+5, relative=True, timeout=timeout)
self.hover()
self.progress("TAKEOFF COMPLETE")
def FlyEachFrame(self):
'''Fly each supported internal frame'''
vinfo = vehicleinfo.VehicleInfo()
vinfo_options = vinfo.options[self.vehicleinfo_key()]
known_broken_frames = {
}
for frame in sorted(vinfo_options["frames"].keys()):
self.start_subtest("Testing frame (%s)" % str(frame))
if frame in known_broken_frames:
self.progress("Actually, no I'm not - it is known-broken (%s)" %
(known_broken_frames[frame]))
continue
frame_bits = vinfo_options["frames"][frame]
print("frame_bits: %s" % str(frame_bits))
if frame_bits.get("external", False):
self.progress("Actually, no I'm not - it is an external simulation")
continue
model = frame_bits.get("model", frame)
# the model string for Callisto has crap in it.... we
# should really have another entry in the vehicleinfo data
# to carry the path to the JSON.
actual_model = model.split(":")[0]
defaults = self.model_defaults_filepath(actual_model)
if not isinstance(defaults, list):
defaults = [defaults]
self.customise_SITL_commandline(
[],
defaults_filepath=defaults,
model=model,
wipe=True,
)
self.takeoff(10)
self.do_RTL()
def governortest(self):
'''Test Heli Internal Throttle Curve and Governor'''
self.customise_SITL_commandline(
[],
defaults_filepath=self.model_defaults_filepath('heli-gas'),
model="heli-gas",
wipe=True,
)
self.set_parameter("H_RSC_MODE", 4)
self.takeoff(10)
self.do_RTL()
def hover(self):
self.progress("Setting hover collective")
self.set_rc(3, 1500)
def PosHoldTakeOff(self):
"""ensure vehicle stays put until it is ready to fly"""
self.set_parameter("PILOT_TKOFF_ALT", 700)
self.change_mode('POSHOLD')
self.zero_throttle()
self.set_rc(8, 1000)
self.wait_ready_to_arm()
# Arm
self.arm_vehicle()
self.progress("Raising rotor speed")
self.set_rc(8, 2000)
self.progress("wait for rotor runup to complete")
self.wait_servo_channel_value(8, 1659, timeout=10)
self.delay_sim_time(20)
# check we are still on the ground...
max_relalt = 1 # metres
relative_alt = self.get_altitude(relative=True)
if abs(relative_alt) > max_relalt:
raise NotAchievedException("Took off prematurely (abs(%f)>%f)" %
(relative_alt, max_relalt))
self.progress("Pushing collective past half-way")
self.set_rc(3, 1600)
self.delay_sim_time(0.5)
self.hover()
# make sure we haven't already reached alt:
relative_alt = self.get_altitude(relative=True)
max_initial_alt = 1.5 # metres
if abs(relative_alt) > max_initial_alt:
raise NotAchievedException("Took off too fast (%f > %f" %
(abs(relative_alt), max_initial_alt))
self.progress("Monitoring takeoff-to-alt")
self.wait_altitude(6, 8, relative=True, minimum_duration=5)
self.progress("takeoff OK")
self.land_and_disarm()
def StabilizeTakeOff(self):
"""Fly stabilize takeoff"""
self.change_mode('STABILIZE')
self.set_rc(3, 1000)
self.set_rc(8, 1000)
self.wait_ready_to_arm()
self.arm_vehicle()
self.set_rc(8, 2000)
self.progress("wait for rotor runup to complete")
self.wait_servo_channel_value(8, 1659, timeout=10)
self.delay_sim_time(20)
# check we are still on the ground...
relative_alt = self.get_altitude(relative=True)
if abs(relative_alt) > 0.1:
raise NotAchievedException("Took off prematurely")
self.progress("Pushing throttle past half-way")
self.set_rc(3, 1650)
self.progress("Monitoring takeoff")
self.wait_altitude(6.9, 8, relative=True)
self.progress("takeoff OK")
self.land_and_disarm()
def SplineWaypoint(self, timeout=600):
"""ensure basic spline functionality works"""
self.load_mission("copter_spline_mission.txt", strict=False)
self.change_mode("LOITER")
self.wait_ready_to_arm()
self.arm_vehicle()
self.progress("Raising rotor speed")
self.set_rc(8, 2000)
self.delay_sim_time(20)
self.change_mode("AUTO")
self.set_rc(3, 1500)
self.wait_disarmed(timeout=600)
self.progress("Lowering rotor speed")
self.set_rc(8, 1000)
def Autorotation(self, timeout=600):
"""Check engine-out behaviour"""
self.context_push()
start_alt = 100 # metres
self.set_parameters({
"AROT_ENABLE": 1,
"H_RSC_AROT_ENBL": 1,
})
bail_out_time = self.get_parameter('H_RSC_AROT_RUNUP')
self.change_mode('POSHOLD')
self.set_rc(3, 1000)
self.set_rc(8, 1000)
self.wait_ready_to_arm()
self.arm_vehicle()
self.set_rc(8, 2000)
self.progress("wait for rotor runup to complete")
self.wait_servo_channel_value(8, 1659, timeout=10)
self.delay_sim_time(20)
self.set_rc(3, 2000)
self.wait_altitude(start_alt - 1,
(start_alt + 5),
relative=True,
timeout=timeout)
self.context_collect('STATUSTEXT')
# Reset collective to enter hover
self.set_rc(3, 1500)
# Change to the autorotation flight mode
self.progress("Triggering autorotate mode")
self.change_mode('AUTOROTATE')
self.delay_sim_time(2)
# Disengage the interlock to remove power
self.set_rc(8, 1000)
# Ensure we have progressed through the mode's state machine
self.wait_statustext("SS Glide Phase", check_context=True)
self.progress("Testing bailout from autorotation")
self.set_rc(8, 2000)
# See if the output ramps to a value close to expected with the prescribed time
self.wait_servo_channel_value(8, 1659, timeout=bail_out_time+1, comparator=operator.ge)
# Successfully bailed out, disengage the interlock and allow autorotation to progress
self.set_rc(8, 1000)
self.wait_statustext(r"SIM Hit ground at ([0-9.]+) m/s",
check_context=True,
regex=True)
speed = float(self.re_match.group(1))
if speed > 30:
raise NotAchievedException("Hit too hard")
# Set throttle low to trip auto disarm
self.set_rc(3, 1000)
self.wait_disarmed()
self.context_pop()
def ManAutorotation(self, timeout=600):
"""Check autorotation power recovery behaviour"""
RSC_CHAN = 8
def check_rsc_output(self, throttle, timeout):
# Check we get a sensible throttle output
expected_pwm = int(throttle * 0.01 * 1000 + 1000)
# Help out the detection by accepting some margin
margin = 2
# See if the output ramps to a value close to expected with the prescribed time
self.wait_servo_channel_in_range(RSC_CHAN, expected_pwm-margin, expected_pwm+margin, timeout=timeout)
def TestAutorotationConfig(self, rsc_idle, arot_ramp_time, arot_idle, cool_down):
RAMP_TIME = 10
RUNUP_TIME = 15
AROT_RUNUP_TIME = arot_ramp_time + 4
RSC_SETPOINT = 66
self.set_parameters({
"H_RSC_AROT_ENBL": 1,
"H_RSC_AROT_RAMP": arot_ramp_time,
"H_RSC_AROT_RUNUP": AROT_RUNUP_TIME,
"H_RSC_AROT_IDLE": arot_idle,
"H_RSC_RAMP_TIME": RAMP_TIME,
"H_RSC_RUNUP_TIME": RUNUP_TIME,
"H_RSC_IDLE": rsc_idle,
"H_RSC_SETPOINT": RSC_SETPOINT,
"H_RSC_CLDWN_TIME": cool_down
})
# Check the RSC config so we know what to expect on the throttle output
if self.get_parameter("H_RSC_MODE") != 2:
self.set_parameter("H_RSC_MODE", 2)
self.reboot_sitl()
self.change_mode('POSHOLD')
self.set_rc(3, 1000)
self.set_rc(8, 1000)
self.wait_ready_to_arm()
self.arm_vehicle()
self.set_rc(8, 2000)
self.progress("wait for rotor runup to complete")
check_rsc_output(self, RSC_SETPOINT, RUNUP_TIME+1)
self.delay_sim_time(20)
self.set_rc(3, 2000)
self.wait_altitude(100,
105,
relative=True,
timeout=timeout)
self.context_collect('STATUSTEXT')
self.change_mode('STABILIZE')
self.progress("Triggering manual autorotation by disabling interlock")
self.set_rc(3, 1000)
self.set_rc(8, 1000)
self.wait_statustext(r"RSC: In Autorotation", check_context=True)
# Check we are using the correct throttle output. This should happen instantly on ramp down.
idle_thr = rsc_idle
if (arot_idle > 0):
idle_thr = arot_idle
check_rsc_output(self, idle_thr, 1)
self.progress("RSC is outputting correct idle throttle")
# Wait to establish autorotation.
self.delay_sim_time(2)
# Re-engage interlock to start bailout sequence
self.set_rc(8, 2000)
# Ensure we see the bailout state
self.wait_statustext("RSC: Bailing Out", check_context=True)
# Check we are back up to flight throttle. Autorotation ramp up time should be used
check_rsc_output(self, RSC_SETPOINT, arot_ramp_time+1)
# Give time for engine to power up
self.set_rc(3, 1400)
self.delay_sim_time(2)
self.progress("in-flight power recovery")
self.set_rc(3, 1500)
self.delay_sim_time(5)
# Initiate autorotation again
self.set_rc(3, 1000)
self.set_rc(8, 1000)
self.wait_statustext(r"SIM Hit ground at ([0-9.]+) m/s",
check_context=True,
regex=True)
speed = float(self.re_match.group(1))
if speed > 30:
raise NotAchievedException("Hit too hard")
# Check that cool down is still used correctly if set
# First wait until we are out of the autorotation state
self.wait_statustext("RSC: Autorotation Stopped")
if (cool_down > 0):
check_rsc_output(self, rsc_idle*1.5, cool_down)
# Verify RSC output resets to RSC_IDLE after land complete
check_rsc_output(self, rsc_idle, 20)
self.wait_disarmed()
# We test the bailout behavior of two different configs
# First we test config with a regular throttle curve
self.progress("testing autorotation with throttle curve config")
self.context_push()
TestAutorotationConfig(self, rsc_idle=5.0, arot_ramp_time=2.0, arot_idle=0, cool_down=0)
# Now we test a config that would be used with an ESC with internal governor and an autorotation window
self.progress("testing autorotation with ESC autorotation window config")
TestAutorotationConfig(self, rsc_idle=0.0, arot_ramp_time=0.0, arot_idle=20.0, cool_down=0)
# Check rsc output behavior when using the cool down feature
self.progress("testing autorotation with cool down enabled and zero autorotation idle")
TestAutorotationConfig(self, rsc_idle=5.0, arot_ramp_time=2.0, arot_idle=0, cool_down=5.0)
self.progress("testing that H_RSC_AROT_IDLE is used over RSC_IDLE when cool down is enabled")
TestAutorotationConfig(self, rsc_idle=5.0, arot_ramp_time=2.0, arot_idle=10, cool_down=5.0)
self.context_pop()
def mission_item_home(self, target_system, target_component):
'''returns a mission_item_int which can be used as home in a mission'''
return self.mav.mav.mission_item_int_encode(
target_system,
target_component,
0, # seq
mavutil.mavlink.MAV_FRAME_GLOBAL_INT,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT,
0, # current
0, # autocontinue
3, # p1
0, # p2
0, # p3
0, # p4
int(1.0000 * 1e7), # latitude
int(2.0000 * 1e7), # longitude
31.0000, # altitude
mavutil.mavlink.MAV_MISSION_TYPE_MISSION)
def mission_item_takeoff(self, target_system, target_component):
'''returns a mission_item_int which can be used as takeoff in a mission'''
return self.mav.mav.mission_item_int_encode(
target_system,
target_component,
1, # seq
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT_INT,
mavutil.mavlink.MAV_CMD_NAV_TAKEOFF,
0, # current
0, # autocontinue
0, # p1
0, # p2
0, # p3
0, # p4
int(1.0000 * 1e7), # latitude
int(1.0000 * 1e7), # longitude
31.0000, # altitude
mavutil.mavlink.MAV_MISSION_TYPE_MISSION)
def mission_item_rtl(self, target_system, target_component):
'''returns a mission_item_int which can be used as takeoff in a mission'''
return self.mav.mav.mission_item_int_encode(
target_system,
target_component,
1, # seq
mavutil.mavlink.MAV_FRAME_GLOBAL,
mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH,
0, # current
0, # autocontinue
0, # p1
0, # p2
0, # p3
0, # p4
0, # latitude
0, # longitude
0.0000, # altitude
mavutil.mavlink.MAV_MISSION_TYPE_MISSION)
def scurve_nasty_mission(self, target_system=1, target_component=1):
'''returns a mission which attempts to give the SCurve library
indigestion. The same destination is given several times.'''
wp2_loc = self.mav.location()
wp2_offset_n = 20
wp2_offset_e = 30
self.location_offset_ne(wp2_loc, wp2_offset_n, wp2_offset_e)
wp2_by_three = self.mav.mav.mission_item_int_encode(
target_system,
target_component,
2, # seq
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT_INT,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT,
0, # current
0, # autocontinue
3, # p1
0, # p2
0, # p3
0, # p4
int(wp2_loc.lat * 1e7), # latitude
int(wp2_loc.lng * 1e7), # longitude
31.0000, # altitude
mavutil.mavlink.MAV_MISSION_TYPE_MISSION)
wp5_loc = self.mav.location()
wp5_offset_n = -20
wp5_offset_e = 30
self.location_offset_ne(wp5_loc, wp5_offset_n, wp5_offset_e)
wp5_by_three = self.mav.mav.mission_item_int_encode(
target_system,
target_component,
5, # seq
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT_INT,
mavutil.mavlink.MAV_CMD_NAV_SPLINE_WAYPOINT,
0, # current
0, # autocontinue
3, # p1
0, # p2
0, # p3
0, # p4
int(wp5_loc.lat * 1e7), # latitude
int(wp5_loc.lng * 1e7), # longitude
31.0000, # altitude
mavutil.mavlink.MAV_MISSION_TYPE_MISSION)
ret = copy.copy([
# slot 0 is home
self.mission_item_home(target_system=target_system, target_component=target_component),
# slot 1 is takeoff
self.mission_item_takeoff(target_system=target_system, target_component=target_component),
# now three spline waypoints right on top of one another:
copy.copy(wp2_by_three),
copy.copy(wp2_by_three),
copy.copy(wp2_by_three),
# now three MORE spline waypoints right on top of one another somewhere else:
copy.copy(wp5_by_three),
copy.copy(wp5_by_three),
copy.copy(wp5_by_three),
self.mission_item_rtl(target_system=target_system, target_component=target_component),
])
self.correct_wp_seq_numbers(ret)
return ret
def scurve_nasty_up_mission(self, target_system=1, target_component=1):
'''returns a mission which attempts to give the SCurve library
indigestion. The same destination is given several times but with differing altitudes.'''
wp2_loc = self.mav.location()
wp2_offset_n = 20
wp2_offset_e = 30
self.location_offset_ne(wp2_loc, wp2_offset_n, wp2_offset_e)
wp2 = self.mav.mav.mission_item_int_encode(
target_system,
target_component,
2, # seq
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT_INT,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT,
0, # current
0, # autocontinue
3, # p1
0, # p2
0, # p3
0, # p4
int(wp2_loc.lat * 1e7), # latitude
int(wp2_loc.lng * 1e7), # longitude
31.0000, # altitude
mavutil.mavlink.MAV_MISSION_TYPE_MISSION)
wp3 = copy.copy(wp2)
wp3.alt = 40
wp4 = copy.copy(wp2)
wp4.alt = 31
wp5_loc = self.mav.location()
wp5_offset_n = -20
wp5_offset_e = 30
self.location_offset_ne(wp5_loc, wp5_offset_n, wp5_offset_e)
wp5 = self.mav.mav.mission_item_int_encode(
target_system,
target_component,
5, # seq
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT_INT,
mavutil.mavlink.MAV_CMD_NAV_SPLINE_WAYPOINT,
0, # current
0, # autocontinue
3, # p1
0, # p2
0, # p3
0, # p4
int(wp5_loc.lat * 1e7), # latitude
int(wp5_loc.lng * 1e7), # longitude
31.0000, # altitude
mavutil.mavlink.MAV_MISSION_TYPE_MISSION)
wp6 = copy.copy(wp5)
wp6.alt = 41
wp7 = copy.copy(wp5)
wp7.alt = 51
ret = copy.copy([
# slot 0 is home
self.mission_item_home(target_system=target_system, target_component=target_component),
# slot 1 is takeoff
self.mission_item_takeoff(target_system=target_system, target_component=target_component),
wp2,
wp3,
wp4,
# now three MORE spline waypoints right on top of one another somewhere else:
wp5,
wp6,
wp7,
self.mission_item_rtl(target_system=target_system, target_component=target_component),
])
self.correct_wp_seq_numbers(ret)
return ret
def fly_mission_points(self, points):
'''takes a list of waypoints and flies them, expecting a disarm at end'''
self.check_mission_upload_download(points)
self.set_parameter("AUTO_OPTIONS", 3)
self.change_mode('AUTO')
self.set_rc(8, 1000)
self.wait_ready_to_arm()
self.arm_vehicle()
self.progress("Raising rotor speed")
self.set_rc(8, 2000)
self.wait_waypoint(0, len(points)-1)
self.wait_disarmed()
self.set_rc(8, 1000)
def NastyMission(self):
'''constructs and runs missions designed to test scurves'''
self.fly_mission_points(self.scurve_nasty_mission())
# hopefully we don't need this step forever:
self.progress("Restting mission state machine by changing into LOITER")
self.change_mode('LOITER')
self.fly_mission_points(self.scurve_nasty_up_mission())
def MountFailsafeAction(self):
"""Fly Mount Failsafe action"""
self.context_push()
self.progress("Setting up servo mount")
roll_servo = 12
pitch_servo = 11
yaw_servo = 10
open_servo = 9
roll_limit = 50
self.set_parameters({
"MNT1_TYPE": 1,
"SERVO%u_MIN" % roll_servo: 1000,
"SERVO%u_MAX" % roll_servo: 2000,
"SERVO%u_FUNCTION" % yaw_servo: 6, # yaw
"SERVO%u_FUNCTION" % pitch_servo: 7, # roll
"SERVO%u_FUNCTION" % roll_servo: 8, # pitch
"SERVO%u_FUNCTION" % open_servo: 9, # mount open
"MNT1_OPTIONS": 2, # retract
"MNT1_DEFLT_MODE": 3, # RC targettting
"MNT1_ROLL_MIN": -roll_limit,
"MNT1_ROLL_MAX": roll_limit,
})
self.reboot_sitl()
retract_roll = 25.0
self.set_parameter("MNT1_NEUTRAL_X", retract_roll)
self.progress("Killing RC")
self.set_parameter("SIM_RC_FAIL", 2)
self.delay_sim_time(10)
want_servo_channel_value = int(1500 + 500*retract_roll/roll_limit)
self.wait_servo_channel_value(roll_servo, want_servo_channel_value, epsilon=1)
self.progress("Resurrecting RC")
self.set_parameter("SIM_RC_FAIL", 0)
self.wait_servo_channel_value(roll_servo, 1500)
self.context_pop()
self.reboot_sitl()
def set_rc_default(self):
super(AutoTestHelicopter, self).set_rc_default()
self.progress("Lowering rotor speed")
self.set_rc(8, 1000)
def fly_mission(self, filename, strict=True):
num_wp = self.load_mission(filename, strict=strict)
self.change_mode("LOITER")
self.wait_ready_to_arm()
self.arm_vehicle()
self.set_rc(8, 2000) # Raise rotor speed
self.delay_sim_time(20)
self.change_mode("AUTO")
self.set_rc(3, 1500)
self.wait_waypoint(1, num_wp-1)
self.wait_disarmed()
self.set_rc(8, 1000) # Lower rotor speed
# FIXME move this & plane's version to common
def AirspeedDrivers(self, timeout=600):
'''Test AirSpeed drivers'''
# Copter's airspeed sensors are off by default
self.set_parameters({
"ARSPD_ENABLE": 1,
"ARSPD_TYPE": 2, # Analog airspeed driver
"ARSPD_PIN": 1, # Analog airspeed driver pin for SITL
})
# set the start location to CMAC to use same test script as other vehicles
self.sitl_start_loc = mavutil.location(-35.362881, 149.165222, 582.000000, 90.0) # CMAC
self.customise_SITL_commandline(["--home", "%s,%s,%s,%s"
% (-35.362881, 149.165222, 582.000000, 90.0)])
# insert listener to compare airspeeds:
airspeed = [None, None]
def check_airspeeds(mav, m):
m_type = m.get_type()
if (m_type == 'NAMED_VALUE_FLOAT' and
m.name == 'AS2'):
airspeed[1] = m.value
elif m_type == 'VFR_HUD':
airspeed[0] = m.airspeed
else:
return
if airspeed[0] is None or airspeed[1] is None:
return
delta = abs(airspeed[0] - airspeed[1])
if delta > 3:
raise NotAchievedException("Airspeed mismatch (as1=%f as2=%f)" % (airspeed[0], airspeed[1]))
airspeed_sensors = [
("MS5525", 3, 1),
("DLVR", 7, 2),
]
for (name, t, bus) in airspeed_sensors:
self.context_push()
if bus is not None:
self.set_parameter("ARSPD2_BUS", bus)
self.set_parameter("ARSPD2_TYPE", t)
self.reboot_sitl()
self.wait_ready_to_arm()
self.arm_vehicle()
self.install_message_hook_context(check_airspeeds)
self.fly_mission("ap1.txt", strict=False)
if airspeed[0] is None:
raise NotAchievedException("Never saw an airspeed1")
if airspeed[1] is None:
raise NotAchievedException("Never saw an airspeed2")
if not self.current_onboard_log_contains_message("ARSP"):
raise NotAchievedException("Expected ARSP log message")
self.disarm_vehicle()
self.context_pop()
def TurbineCoolDown(self, timeout=200):
"""Check Turbine Cool Down Feature"""
self.context_push()
# set option for Turbine
RAMP_TIME = 4
SETPOINT = 66
IDLE = 15
COOLDOWN_TIME = 5
self.set_parameters({"RC6_OPTION": 161,
"H_RSC_RAMP_TIME": RAMP_TIME,
"H_RSC_SETPOINT": SETPOINT,
"H_RSC_IDLE": IDLE,
"H_RSC_CLDWN_TIME": COOLDOWN_TIME})
self.set_rc(3, 1000)
self.set_rc(8, 1000)
self.progress("Starting turbine")
self.wait_ready_to_arm()
self.context_collect("STATUSTEXT")
self.arm_vehicle()
self.set_rc(6, 2000)
self.wait_statustext('Turbine startup', check_context=True)
# Engage interlock to run up to head speed
self.set_rc(8, 2000)
# Check throttle gets to setpoint
expected_thr = SETPOINT * 0.01 * 1000 + 1000 - 1 # servo end points are 1000 to 2000
self.wait_servo_channel_value(8, expected_thr, timeout=RAMP_TIME+1, comparator=operator.ge)
self.progress("Checking cool down behaviour, idle x 1.5")
self.set_rc(8, 1000)
tstart = self.get_sim_time()
expected_thr = IDLE * 1.5 * 0.01 * 1000 + 1000 + 1
self.wait_servo_channel_value(8, expected_thr, timeout=2, comparator=operator.le)
# Check that the throttle drops to idle after cool down time
expected_thr = IDLE * 0.01 * 1000 + 1000 + 1
self.wait_servo_channel_value(8, expected_thr, timeout=COOLDOWN_TIME+1, comparator=operator.le)
measured_time = self.get_sim_time() - tstart
if (abs(measured_time - COOLDOWN_TIME) > 1.0):
raise NotAchievedException('Throttle did not reduce to idle within H_RSC_CLDWN_TIME')
self.set_rc(6, 1000)
self.wait_disarmed(timeout=20)
self.context_pop()
def TurbineStart(self, timeout=200):
"""Check Turbine Start Feature"""
RAMP_TIME = 4
# set option for Turbine Start
self.set_parameter("RC6_OPTION", 161)
self.set_parameter("H_RSC_RAMP_TIME", RAMP_TIME)
self.set_parameter("H_RSC_SETPOINT", 66)
self.set_parameter("DISARM_DELAY", 0)
self.set_rc(3, 1000)
self.set_rc(8, 1000)
# check that turbine start doesn't activate while disarmed
self.progress("Checking Turbine Start doesn't activate while disarmed")
self.set_rc(6, 2000)
tstart = self.get_sim_time()
while self.get_sim_time() - tstart < 2:
servo = self.mav.recv_match(type='SERVO_OUTPUT_RAW', blocking=True)
if servo.servo8_raw > 1050:
raise NotAchievedException("Turbine Start activated while disarmed")
self.set_rc(6, 1000)
# check that turbine start doesn't activate armed with interlock enabled
self.progress("Checking Turbine Start doesn't activate while armed with interlock enabled")
self.wait_ready_to_arm()
self.arm_vehicle()
self.set_rc(8, 2000)
self.set_rc(6, 2000)
tstart = self.get_sim_time()
while self.get_sim_time() - tstart < 5:
servo = self.mav.recv_match(type='SERVO_OUTPUT_RAW', blocking=True)
if servo.servo8_raw > 1660:
raise NotAchievedException("Turbine Start activated with interlock enabled")
self.set_rc(8, 1000)
self.set_rc(6, 1000)
self.disarm_vehicle()
# check that turbine start activates as designed (armed with interlock disabled)
self.progress("Checking Turbine Start activates as designed (armed with interlock disabled)")
self.delay_sim_time(2)
self.arm_vehicle()
self.set_rc(6, 2000)
tstart = self.get_sim_time()
while True:
if self.get_sim_time() - tstart > 5:
raise AutoTestTimeoutException("Turbine Start did not activate")
servo = self.mav.recv_match(type='SERVO_OUTPUT_RAW', blocking=True)
if servo.servo8_raw > 1800:
break
self.wait_servo_channel_value(8, 1000, timeout=3)
self.set_rc(6, 1000)
# check that turbine start will not reactivate after interlock enabled
self.progress("Checking Turbine Start doesn't activate once interlock is enabled after start)")
self.set_rc(8, 2000)
self.set_rc(6, 2000)
tstart = self.get_sim_time()
while self.get_sim_time() - tstart < 5:
servo = self.mav.recv_match(type='SERVO_OUTPUT_RAW', blocking=True)
if servo.servo8_raw > 1660:
raise NotAchievedException("Turbine Start activated with interlock enabled")
self.set_rc(6, 1000)
self.set_rc(8, 1000)
self.disarm_vehicle()
def PIDNotches(self):
"""Use dynamic harmonic notch to control motor noise."""
self.progress("Flying with PID notches")
self.set_parameters({
"FILT1_TYPE": 1,
"FILT2_TYPE": 1,
"AHRS_EKF_TYPE": 10,
"INS_LOG_BAT_MASK": 3,
"INS_LOG_BAT_OPT": 0,
"INS_GYRO_FILTER": 100, # set the gyro filter high so we can observe behaviour
"LOG_BITMASK": 65535,
"LOG_DISARMED": 0,
"SIM_VIB_FREQ_X": 120, # roll
"SIM_VIB_FREQ_Y": 120, # pitch
"SIM_VIB_FREQ_Z": 180, # yaw
"FILT1_NOTCH_FREQ": 120,
"FILT2_NOTCH_FREQ": 180,
"ATC_RAT_RLL_NEF": 1,
"ATC_RAT_PIT_NEF": 1,
"ATC_RAT_YAW_NEF": 2,
"SIM_GYR1_RND": 5,
})
self.reboot_sitl()
self.hover_and_check_matched_frequency_with_fft(5, 20, 350, reverse=True, takeoff=True)
def AutoTune(self):
"""Test autotune mode"""
# test roll and pitch FF tuning
self.set_parameters({
"ATC_ANG_RLL_P": 4.5,
"ATC_RAT_RLL_P": 0,
"ATC_RAT_RLL_I": 0.1,
"ATC_RAT_RLL_D": 0,
"ATC_RAT_RLL_FF": 0.15,
"ATC_ANG_PIT_P": 4.5,
"ATC_RAT_PIT_P": 0,
"ATC_RAT_PIT_I": 0.1,
"ATC_RAT_PIT_D": 0,
"ATC_RAT_PIT_FF": 0.15,
"ATC_ANG_YAW_P": 4.5,
"ATC_RAT_YAW_P": 0.18,
"ATC_RAT_YAW_I": 0.024,
"ATC_RAT_YAW_D": 0.003,
"ATC_RAT_YAW_FF": 0.024,
"AUTOTUNE_AXES": 3,
"AUTOTUNE_SEQ": 1,
})
# Conduct testing from althold
self.takeoff(10, mode="ALT_HOLD")
# hold position in loiter
self.change_mode('AUTOTUNE')
tstart = self.get_sim_time()
self.wait_statustext('AutoTune: Success', timeout=1000)
now = self.get_sim_time()
self.progress("AUTOTUNE OK (%u seconds)" % (now - tstart))
self.autotune_land_and_save_gains()
# test pitch rate P and Rate D tuning
self.set_parameters({
"AUTOTUNE_AXES": 2,
"AUTOTUNE_SEQ": 2,
"AUTOTUNE_GN_MAX": 1.8,
})
# Conduct testing from althold
self.takeoff(10, mode="ALT_HOLD")
# hold position in loiter
self.change_mode('AUTOTUNE')
tstart = self.get_sim_time()
self.wait_statustext('AutoTune: Success', timeout=1000)
now = self.get_sim_time()
self.progress("AUTOTUNE OK (%u seconds)" % (now - tstart))
self.autotune_land_and_save_gains()
# test Roll rate P and Rate D tuning
self.set_parameters({
"AUTOTUNE_AXES": 1,
"AUTOTUNE_SEQ": 2,
"AUTOTUNE_GN_MAX": 1.6,
})
# Conduct testing from althold
self.takeoff(10, mode="ALT_HOLD")
# hold position in loiter
self.change_mode('AUTOTUNE')
tstart = self.get_sim_time()
self.wait_statustext('AutoTune: Success', timeout=1000)
now = self.get_sim_time()
self.progress("AUTOTUNE OK (%u seconds)" % (now - tstart))
self.autotune_land_and_save_gains()
# test Roll and pitch angle P tuning
self.set_parameters({
"AUTOTUNE_AXES": 3,
"AUTOTUNE_SEQ": 4,
"AUTOTUNE_FRQ_MIN": 5,
"AUTOTUNE_FRQ_MAX": 50,
"AUTOTUNE_GN_MAX": 1.6,
})
# Conduct testing from althold
self.takeoff(10, mode="ALT_HOLD")
# hold position in loiter
self.change_mode('AUTOTUNE')
tstart = self.get_sim_time()
self.wait_statustext('AutoTune: Success', timeout=1000)
now = self.get_sim_time()
self.progress("AUTOTUNE OK (%u seconds)" % (now - tstart))
self.autotune_land_and_save_gains()
# test yaw FF and rate P and Rate D
self.set_parameters({
"AUTOTUNE_AXES": 4,
"AUTOTUNE_SEQ": 3,
"AUTOTUNE_FRQ_MIN": 10,
"AUTOTUNE_FRQ_MAX": 70,
"AUTOTUNE_GN_MAX": 1.4,
})
# Conduct testing from althold
self.takeoff(10, mode="ALT_HOLD")
# hold position in loiter
self.change_mode('AUTOTUNE')
tstart = self.get_sim_time()
self.wait_statustext('AutoTune: Success', timeout=1000)
now = self.get_sim_time()
self.progress("AUTOTUNE OK (%u seconds)" % (now - tstart))
self.autotune_land_and_save_gains()
# test yaw angle P tuning
self.set_parameters({
"AUTOTUNE_AXES": 4,
"AUTOTUNE_SEQ": 4,
"AUTOTUNE_FRQ_MIN": 5,
"AUTOTUNE_FRQ_MAX": 50,
"AUTOTUNE_GN_MAX": 1.5,
})
# Conduct testing from althold
self.takeoff(10, mode="ALT_HOLD")
# hold position in loiter
self.change_mode('AUTOTUNE')
tstart = self.get_sim_time()
self.wait_statustext('AutoTune: Success', timeout=1000)
now = self.get_sim_time()
self.progress("AUTOTUNE OK (%u seconds)" % (now - tstart))
self.autotune_land_and_save_gains()
# tune check
self.set_parameters({
"AUTOTUNE_AXES": 7,
"AUTOTUNE_SEQ": 16,
"AUTOTUNE_FRQ_MIN": 10,
"AUTOTUNE_FRQ_MAX": 80,
})
# Conduct testing from althold
self.takeoff(10, mode="ALT_HOLD")
# hold position in loiter
self.change_mode('AUTOTUNE')
tstart = self.get_sim_time()
self.wait_statustext('AutoTune: Success', timeout=1000)
now = self.get_sim_time()
self.progress("AUTOTUNE OK (%u seconds)" % (now - tstart))
self.land_and_disarm()
def autotune_land_and_save_gains(self):
self.set_rc(3, 1000)
self.context_collect('STATUSTEXT')
self.wait_statustext(r"SIM Hit ground at ([0-9.]+) m/s",
check_context=True,
regex=True)
self.set_rc(8, 1000)
self.wait_disarmed()
def land_and_disarm(self, **kwargs):
super(AutoTestHelicopter, self).land_and_disarm(**kwargs)
self.progress("Killing rotor speed")
self.set_rc(8, 1000)
def do_RTL(self, **kwargs):
super(AutoTestHelicopter, self).do_RTL(**kwargs)
self.progress("Killing rotor speed")
self.set_rc(8, 1000)
def tests(self):
'''return list of all tests'''
ret = vehicle_test_suite.TestSuite.tests(self)
ret.extend([
self.AVCMission,
self.RotorRunup,
self.PosHoldTakeOff,
self.StabilizeTakeOff,
self.SplineWaypoint,
self.Autorotation,
self.ManAutorotation,
self.governortest,
self.FlyEachFrame,
self.AirspeedDrivers,
self.TurbineStart,
self.TurbineCoolDown,
self.NastyMission,
self.PIDNotches,
self.AutoTune,
self.MountFailsafeAction,
])
return ret
def disabled_tests(self):
return {
}