ardupilot/Tools/autotest/arducopter.py

12523 lines
473 KiB
Python

'''
Fly Copter in SITL
AP_FLAKE8_CLEAN
'''
from __future__ import print_function
import copy
import math
import os
import shutil
import time
import numpy
from pymavlink import quaternion
from pymavlink import mavutil
from pymavlink import mavextra
from pymavlink import rotmat
from pysim import util
from pysim import vehicleinfo
import vehicle_test_suite
from vehicle_test_suite import NotAchievedException, AutoTestTimeoutException, PreconditionFailedException
from vehicle_test_suite import Test
from vehicle_test_suite import MAV_POS_TARGET_TYPE_MASK
from vehicle_test_suite import WaitAndMaintainArmed
from vehicle_test_suite import WaitModeTimeout
from pymavlink.rotmat import Vector3
# get location of scripts
testdir = os.path.dirname(os.path.realpath(__file__))
SITL_START_LOCATION = mavutil.location(-35.362938, 149.165085, 584, 270)
# Flight mode switch positions are set-up in arducopter.param to be
# switch 1 = Circle
# switch 2 = Land
# switch 3 = RTL
# switch 4 = Auto
# switch 5 = Loiter
# switch 6 = Stabilize
class AutoTestCopter(vehicle_test_suite.TestSuite):
@staticmethod
def get_not_armable_mode_list():
return ["AUTO", "AUTOTUNE", "BRAKE", "CIRCLE", "FLIP", "LAND", "RTL", "SMART_RTL", "AVOID_ADSB", "FOLLOW"]
@staticmethod
def get_not_disarmed_settable_modes_list():
return ["FLIP", "AUTOTUNE"]
@staticmethod
def get_no_position_not_settable_modes_list():
return []
@staticmethod
def get_position_armable_modes_list():
return ["DRIFT", "GUIDED", "LOITER", "POSHOLD", "THROW"]
@staticmethod
def get_normal_armable_modes_list():
return ["ACRO", "ALT_HOLD", "STABILIZE", "GUIDED_NOGPS"]
def log_name(self):
return "ArduCopter"
def test_filepath(self):
return os.path.realpath(__file__)
def default_speedup(self):
return 100
def set_current_test_name(self, name):
self.current_test_name_directory = "ArduCopter_Tests/" + name + "/"
def sitl_start_location(self):
return SITL_START_LOCATION
def mavproxy_options(self):
ret = super(AutoTestCopter, self).mavproxy_options()
if self.frame != 'heli':
ret.append('--quadcopter')
return ret
def sitl_streamrate(self):
return 5
def vehicleinfo_key(self):
return 'ArduCopter'
def default_frame(self):
return "+"
def apply_defaultfile_parameters(self):
# Copter passes in a defaults_filepath in place of applying
# parameters afterwards.
pass
def defaults_filepath(self):
return self.model_defaults_filepath(self.frame)
def wait_disarmed_default_wait_time(self):
return 120
def close(self):
super(AutoTestCopter, self).close()
# [2014/05/07] FC Because I'm doing a cross machine build
# (source is on host, build is on guest VM) I cannot hard link
# This flag tells me that I need to copy the data out
if self.copy_tlog:
shutil.copy(self.logfile, self.buildlog)
def is_copter(self):
return True
def get_stick_arming_channel(self):
return int(self.get_parameter("RCMAP_YAW"))
def get_disarm_delay(self):
return int(self.get_parameter("DISARM_DELAY"))
def set_autodisarm_delay(self, delay):
self.set_parameter("DISARM_DELAY", delay)
def takeoff(self,
alt_min=30,
takeoff_throttle=1700,
require_absolute=True,
mode="STABILIZE",
timeout=120,
max_err=5):
"""Takeoff get to 30m altitude."""
self.progress("TAKEOFF")
self.change_mode(mode)
if not self.armed():
self.wait_ready_to_arm(require_absolute=require_absolute, timeout=timeout)
self.zero_throttle()
self.arm_vehicle()
if mode == 'GUIDED':
self.user_takeoff(alt_min=alt_min, timeout=timeout, max_err=max_err)
else:
self.set_rc(3, takeoff_throttle)
self.wait_altitude(alt_min-1, alt_min+max_err, relative=True, timeout=timeout)
self.hover()
self.progress("TAKEOFF COMPLETE")
def land_and_disarm(self, timeout=60):
"""Land the quad."""
self.progress("STARTING LANDING")
self.change_mode("LAND")
self.wait_landed_and_disarmed(timeout=timeout)
def wait_landed_and_disarmed(self, min_alt=6, timeout=60):
"""Wait to be landed and disarmed"""
m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
alt = m.relative_alt / 1000.0 # mm -> m
if alt > min_alt:
self.wait_altitude(min_alt-1, min_alt+5, relative=True, timeout=timeout)
# self.wait_statustext("SIM Hit ground", timeout=timeout)
self.wait_disarmed()
def hover(self, hover_throttle=1500):
self.set_rc(3, hover_throttle)
# Climb/descend to a given altitude
def setAlt(self, desiredAlt=50):
pos = self.mav.location(relative_alt=True)
if pos.alt > desiredAlt:
self.set_rc(3, 1300)
self.wait_altitude((desiredAlt-5), desiredAlt, relative=True)
if pos.alt < (desiredAlt-5):
self.set_rc(3, 1800)
self.wait_altitude((desiredAlt-5), desiredAlt, relative=True)
self.hover()
# Takeoff, climb to given altitude, and fly east for 10 seconds
def takeoffAndMoveAway(self, dAlt=50, dDist=50):
self.progress("Centering sticks")
self.set_rc_from_map({
1: 1500,
2: 1500,
3: 1000,
4: 1500,
})
self.takeoff(alt_min=dAlt, mode='GUIDED')
self.change_mode("ALT_HOLD")
self.progress("Yaw to east")
self.set_rc(4, 1580)
self.wait_heading(90)
self.set_rc(4, 1500)
self.progress("Fly eastbound away from home")
self.set_rc(2, 1800)
self.delay_sim_time(10)
self.set_rc(2, 1500)
self.hover()
self.progress("Copter staging 50 meters east of home at 50 meters altitude In mode Alt Hold")
# loiter - fly south west, then loiter within 5m position and altitude
def ModeLoiter(self, holdtime=10, maxaltchange=5, maxdistchange=5):
"""Hold loiter position."""
self.takeoff(10, mode="LOITER")
# first aim south east
self.progress("turn south east")
self.set_rc(4, 1580)
self.wait_heading(170)
self.set_rc(4, 1500)
# fly south east 50m
self.set_rc(2, 1100)
self.wait_distance(50)
self.set_rc(2, 1500)
# wait for copter to slow moving
self.wait_groundspeed(0, 2)
m = self.mav.recv_match(type='VFR_HUD', blocking=True)
start_altitude = m.alt
start = self.mav.location()
tstart = self.get_sim_time()
self.progress("Holding loiter at %u meters for %u seconds" %
(start_altitude, holdtime))
while self.get_sim_time_cached() < tstart + holdtime:
m = self.mav.recv_match(type='VFR_HUD', blocking=True)
pos = self.mav.location()
delta = self.get_distance(start, pos)
alt_delta = math.fabs(m.alt - start_altitude)
self.progress("Loiter Dist: %.2fm, alt:%u" % (delta, m.alt))
if alt_delta > maxaltchange:
raise NotAchievedException(
"Loiter alt shifted %u meters (> limit %u)" %
(alt_delta, maxaltchange))
if delta > maxdistchange:
raise NotAchievedException(
"Loiter shifted %u meters (> limit of %u)" %
(delta, maxdistchange))
self.progress("Loiter OK for %u seconds" % holdtime)
self.progress("Climb to 30m")
self.change_alt(30)
self.progress("Descend to 20m")
self.change_alt(20)
self.do_RTL()
def ModeAltHold(self):
'''Test AltHold Mode'''
self.takeoff(10, mode="ALT_HOLD")
self.watch_altitude_maintained(altitude_min=9, altitude_max=11)
# feed in full elevator and aileron input and make sure we
# retain altitude:
self.set_rc_from_map({
1: 1000,
2: 1000,
})
self.watch_altitude_maintained(altitude_min=9, altitude_max=11)
self.set_rc_from_map({
1: 1500,
2: 1500,
})
self.do_RTL()
def fly_to_origin(self, final_alt=10):
origin = self.poll_message("GPS_GLOBAL_ORIGIN")
self.change_mode("GUIDED")
self.guided_move_global_relative_alt(origin.latitude,
origin.longitude,
final_alt)
def change_alt(self, alt_min, climb_throttle=1920, descend_throttle=1080):
"""Change altitude."""
def adjust_altitude(current_alt, target_alt, accuracy):
if math.fabs(current_alt - target_alt) <= accuracy:
self.hover()
elif current_alt < target_alt:
self.set_rc(3, climb_throttle)
else:
self.set_rc(3, descend_throttle)
self.wait_altitude(
(alt_min - 5),
alt_min,
relative=True,
called_function=lambda current_alt, target_alt: adjust_altitude(current_alt, target_alt, 1)
)
self.hover()
def RecordThenPlayMission(self, side=50, timeout=300):
'''Use switches to toggle in mission, then fly it'''
self.takeoff(20, mode="ALT_HOLD")
"""Fly a square, flying N then E ."""
tstart = self.get_sim_time()
# ensure all sticks in the middle
self.set_rc_from_map({
1: 1500,
2: 1500,
3: 1500,
4: 1500,
})
# switch to loiter mode temporarily to stop us from rising
self.change_mode('LOITER')
# first aim north
self.progress("turn right towards north")
self.set_rc(4, 1580)
self.wait_heading(10)
self.set_rc(4, 1500)
# save bottom left corner of box as waypoint
self.progress("Save WP 1 & 2")
self.save_wp()
# switch back to ALT_HOLD mode
self.change_mode('ALT_HOLD')
# pitch forward to fly north
self.progress("Going north %u meters" % side)
self.set_rc(2, 1300)
self.wait_distance(side)
self.set_rc(2, 1500)
# save top left corner of square as waypoint
self.progress("Save WP 3")
self.save_wp()
# roll right to fly east
self.progress("Going east %u meters" % side)
self.set_rc(1, 1700)
self.wait_distance(side)
self.set_rc(1, 1500)
# save top right corner of square as waypoint
self.progress("Save WP 4")
self.save_wp()
# pitch back to fly south
self.progress("Going south %u meters" % side)
self.set_rc(2, 1700)
self.wait_distance(side)
self.set_rc(2, 1500)
# save bottom right corner of square as waypoint
self.progress("Save WP 5")
self.save_wp()
# roll left to fly west
self.progress("Going west %u meters" % side)
self.set_rc(1, 1300)
self.wait_distance(side)
self.set_rc(1, 1500)
# save bottom left corner of square (should be near home) as waypoint
self.progress("Save WP 6")
self.save_wp()
# reduce throttle again
self.set_rc(3, 1500)
# descend to 10m
self.progress("Descend to 10m in Loiter")
self.change_mode('LOITER')
self.set_rc(3, 1200)
time_left = timeout - (self.get_sim_time() - tstart)
self.progress("timeleft = %u" % time_left)
if time_left < 20:
time_left = 20
self.wait_altitude(-10, 10, timeout=time_left, relative=True)
self.set_rc(3, 1500)
self.save_wp()
# save the stored mission to file
mavproxy = self.start_mavproxy()
num_wp = self.save_mission_to_file_using_mavproxy(
mavproxy,
os.path.join(testdir, "ch7_mission.txt"))
self.stop_mavproxy(mavproxy)
if not num_wp:
raise NotAchievedException("save_mission_to_file failed")
self.progress("test: Fly a mission from 1 to %u" % num_wp)
self.change_mode('AUTO')
self.set_current_waypoint(1)
self.wait_waypoint(0, num_wp-1, timeout=500)
self.progress("test: MISSION COMPLETE: passed!")
self.land_and_disarm()
# enter RTL mode and wait for the vehicle to disarm
def do_RTL(self, distance_min=None, check_alt=True, distance_max=10, timeout=250, quiet=False):
"""Enter RTL mode and wait for the vehicle to disarm at Home."""
self.change_mode("RTL")
self.hover()
self.wait_rtl_complete(check_alt=check_alt, distance_max=distance_max, timeout=timeout, quiet=True)
def wait_rtl_complete(self, check_alt=True, distance_max=10, timeout=250, quiet=False):
"""Wait for RTL to reach home and disarm"""
self.progress("Waiting RTL to reach Home and disarm")
tstart = self.get_sim_time()
while self.get_sim_time_cached() < tstart + timeout:
m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
alt = m.relative_alt / 1000.0 # mm -> m
home_distance = self.distance_to_home(use_cached_home=True)
home = ""
alt_valid = alt <= 1
distance_valid = home_distance < distance_max
if check_alt:
if alt_valid and distance_valid:
home = "HOME"
else:
if distance_valid:
home = "HOME"
if not quiet:
self.progress("Alt: %.02f HomeDist: %.02f %s" %
(alt, home_distance, home))
# our post-condition is that we are disarmed:
if not self.armed():
if home == "":
raise NotAchievedException("Did not get home")
# success!
return
raise AutoTestTimeoutException("Did not get home and disarm")
def LoiterToAlt(self):
"""Loiter-To-Alt"""
self.context_push()
self.set_parameters({
"PLND_ENABLED": 1,
"PLND_TYPE": 4,
})
self.set_analog_rangefinder_parameters()
self.reboot_sitl()
num_wp = self.load_mission("copter_loiter_to_alt.txt")
self.change_mode('LOITER')
self.install_terrain_handlers_context()
self.wait_ready_to_arm()
self.arm_vehicle()
self.change_mode('AUTO')
self.set_rc(3, 1550)
self.wait_current_waypoint(2)
self.set_rc(3, 1500)
self.wait_waypoint(0, num_wp-1, timeout=500)
self.wait_disarmed()
self.context_pop()
self.reboot_sitl()
# Tests all actions and logic behind the radio failsafe
def ThrottleFailsafe(self, side=60, timeout=360):
'''Test Throttle Failsafe'''
self.start_subtest("If you haven't taken off yet RC failure should be instant disarm")
self.change_mode("STABILIZE")
self.set_parameter("DISARM_DELAY", 0)
self.arm_vehicle()
self.set_parameter("SIM_RC_FAIL", 1)
self.disarm_wait(timeout=1)
self.set_parameter("SIM_RC_FAIL", 0)
self.set_parameter("DISARM_DELAY", 10)
# Trigger an RC failure with the failsafe disabled. Verify no action taken.
self.start_subtest("Radio failsafe disabled test: FS_THR_ENABLE=0 should take no failsafe action")
self.set_parameter('FS_THR_ENABLE', 0)
self.set_parameter('FS_OPTIONS', 0)
self.takeoffAndMoveAway()
self.set_parameter("SIM_RC_FAIL", 1)
self.delay_sim_time(5)
self.wait_mode("ALT_HOLD")
self.set_parameter("SIM_RC_FAIL", 0)
self.delay_sim_time(5)
self.wait_mode("ALT_HOLD")
self.end_subtest("Completed Radio failsafe disabled test")
# Trigger an RC failure, verify radio failsafe triggers,
# restore radio, verify RC function by changing modes to cicle
# and stabilize.
self.start_subtest("Radio failsafe recovery test")
self.set_parameter('FS_THR_ENABLE', 1)
self.set_parameter("SIM_RC_FAIL", 1)
self.wait_mode("RTL")
self.delay_sim_time(5)
self.set_parameter("SIM_RC_FAIL", 0)
self.delay_sim_time(5)
self.set_rc(5, 1050)
self.wait_mode("CIRCLE")
self.set_rc(5, 1950)
self.wait_mode("STABILIZE")
self.end_subtest("Completed Radio failsafe recovery test")
# Trigger and RC failure, verify failsafe triggers and RTL completes
self.start_subtest("Radio failsafe RTL with no options test: FS_THR_ENABLE=1 & FS_OPTIONS=0")
self.set_parameter("SIM_RC_FAIL", 1)
self.wait_mode("RTL")
self.wait_rtl_complete()
self.set_parameter("SIM_RC_FAIL", 0)
self.end_subtest("Completed Radio failsafe RTL with no options test")
# Trigger and RC failure, verify failsafe triggers and land completes
self.start_subtest("Radio failsafe LAND with no options test: FS_THR_ENABLE=3 & FS_OPTIONS=0")
self.set_parameter('FS_THR_ENABLE', 3)
self.takeoffAndMoveAway()
self.set_parameter("SIM_RC_FAIL", 1)
self.wait_mode("LAND")
self.wait_landed_and_disarmed()
self.set_parameter("SIM_RC_FAIL", 0)
self.end_subtest("Completed Radio failsafe LAND with no options test")
# Trigger and RC failure, verify failsafe triggers and SmartRTL completes
self.start_subtest("Radio failsafe SmartRTL->RTL with no options test: FS_THR_ENABLE=4 & FS_OPTIONS=0")
self.set_parameter('FS_THR_ENABLE', 4)
self.takeoffAndMoveAway()
self.set_parameter("SIM_RC_FAIL", 1)
self.wait_mode("SMART_RTL")
self.wait_disarmed()
self.set_parameter("SIM_RC_FAIL", 0)
self.end_subtest("Completed Radio failsafe SmartRTL->RTL with no options test")
# Trigger and RC failure, verify failsafe triggers and SmartRTL completes
self.start_subtest("Radio failsafe SmartRTL->Land with no options test: FS_THR_ENABLE=5 & FS_OPTIONS=0")
self.set_parameter('FS_THR_ENABLE', 5)
self.takeoffAndMoveAway()
self.set_parameter("SIM_RC_FAIL", 1)
self.wait_mode("SMART_RTL")
self.wait_disarmed()
self.set_parameter("SIM_RC_FAIL", 0)
self.end_subtest("Completed Radio failsafe SmartRTL_Land with no options test")
# Trigger a GPS failure and RC failure, verify RTL fails into
# land mode and completes
self.start_subtest("Radio failsafe RTL fails into land mode due to bad position.")
self.set_parameter('FS_THR_ENABLE', 1)
self.takeoffAndMoveAway()
self.set_parameter('SIM_GPS1_ENABLE', 0)
self.delay_sim_time(5)
self.set_parameter("SIM_RC_FAIL", 1)
self.wait_mode("LAND")
self.wait_landed_and_disarmed()
self.set_parameter("SIM_RC_FAIL", 0)
self.set_parameter('SIM_GPS1_ENABLE', 1)
self.wait_ekf_happy()
self.end_subtest("Completed Radio failsafe RTL fails into land mode due to bad position.")
# Trigger a GPS failure and RC failure, verify SmartRTL fails
# into land mode and completes
self.start_subtest("Radio failsafe SmartRTL->RTL fails into land mode due to bad position.")
self.set_parameter('FS_THR_ENABLE', 4)
self.takeoffAndMoveAway()
self.set_parameter('SIM_GPS1_ENABLE', 0)
self.delay_sim_time(5)
self.set_parameter("SIM_RC_FAIL", 1)
self.wait_mode("LAND")
self.wait_landed_and_disarmed()
self.set_parameter("SIM_RC_FAIL", 0)
self.set_parameter('SIM_GPS1_ENABLE', 1)
self.wait_ekf_happy()
self.end_subtest("Completed Radio failsafe SmartRTL->RTL fails into land mode due to bad position.")
# Trigger a GPS failure and RC failure, verify SmartRTL fails
# into land mode and completes
self.start_subtest("Radio failsafe SmartRTL->LAND fails into land mode due to bad position.")
self.set_parameter('FS_THR_ENABLE', 5)
self.takeoffAndMoveAway()
self.set_parameter('SIM_GPS1_ENABLE', 0)
self.delay_sim_time(5)
self.set_parameter("SIM_RC_FAIL", 1)
self.wait_mode("LAND")
self.wait_landed_and_disarmed()
self.set_parameter("SIM_RC_FAIL", 0)
self.set_parameter('SIM_GPS1_ENABLE', 1)
self.wait_ekf_happy()
self.end_subtest("Completed Radio failsafe SmartRTL->LAND fails into land mode due to bad position.")
# Trigger a GPS failure, then restore the GPS. Trigger an RC
# failure, verify SmartRTL fails into RTL and completes
self.start_subtest("Radio failsafe SmartRTL->RTL fails into RTL mode due to no path.")
self.set_parameter('FS_THR_ENABLE', 4)
self.takeoffAndMoveAway()
self.set_parameter('SIM_GPS1_ENABLE', 0)
self.wait_statustext("SmartRTL deactivated: bad position", timeout=60)
self.set_parameter('SIM_GPS1_ENABLE', 1)
self.wait_ekf_happy()
self.delay_sim_time(5)
self.set_parameter("SIM_RC_FAIL", 1)
self.wait_mode("RTL")
self.wait_rtl_complete()
self.set_parameter("SIM_RC_FAIL", 0)
self.end_subtest("Completed Radio failsafe SmartRTL->RTL fails into RTL mode due to no path.")
# Trigger a GPS failure, then restore the GPS. Trigger an RC
# failure, verify SmartRTL fails into Land and completes
self.start_subtest("Radio failsafe SmartRTL->LAND fails into land mode due to no path.")
self.set_parameter('FS_THR_ENABLE', 5)
self.takeoffAndMoveAway()
self.set_parameter('SIM_GPS1_ENABLE', 0)
self.wait_statustext("SmartRTL deactivated: bad position", timeout=60)
self.set_parameter('SIM_GPS1_ENABLE', 1)
self.wait_ekf_happy()
self.delay_sim_time(5)
self.set_parameter("SIM_RC_FAIL", 1)
self.wait_mode("LAND")
self.wait_landed_and_disarmed()
self.set_parameter("SIM_RC_FAIL", 0)
self.end_subtest("Completed Radio failsafe SmartRTL->LAND fails into land mode due to no path.")
# Trigger an RC failure in guided mode with the option enabled
# to continue in guided. Verify no failsafe action takes place
self.start_subtest("Radio failsafe with option to continue in guided mode: FS_THR_ENABLE=1 & FS_OPTIONS=4")
self.set_parameter("SYSID_MYGCS", self.mav.source_system)
self.setGCSfailsafe(1)
self.set_parameter('FS_THR_ENABLE', 1)
self.set_parameter('FS_OPTIONS', 4)
self.takeoffAndMoveAway()
self.change_mode("GUIDED")
self.set_parameter("SIM_RC_FAIL", 1)
self.delay_sim_time(5)
self.wait_mode("GUIDED")
self.set_parameter("SIM_RC_FAIL", 0)
self.delay_sim_time(5)
self.change_mode("ALT_HOLD")
self.setGCSfailsafe(0)
# self.change_mode("RTL")
# self.wait_disarmed()
self.end_subtest("Completed Radio failsafe with option to continue in guided mode")
# Trigger an RC failure in AUTO mode with the option enabled
# to continue the mission. Verify no failsafe action takes
# place
self.start_subtest("Radio failsafe RTL with option to continue mission: FS_THR_ENABLE=1 & FS_OPTIONS=1")
self.set_parameter('FS_OPTIONS', 1)
self.progress("# Load copter_mission")
num_wp = self.load_mission("copter_mission.txt", strict=False)
if not num_wp:
raise NotAchievedException("load copter_mission failed")
# self.takeoffAndMoveAway()
self.change_mode("AUTO")
self.set_parameter("SIM_RC_FAIL", 1)
self.delay_sim_time(5)
self.wait_mode("AUTO")
self.set_parameter("SIM_RC_FAIL", 0)
self.delay_sim_time(5)
self.wait_mode("AUTO")
# self.change_mode("RTL")
# self.wait_disarmed()
self.end_subtest("Completed Radio failsafe RTL with option to continue mission")
# Trigger an RC failure in AUTO mode without the option
# enabled to continue. Verify failsafe triggers and RTL
# completes
self.start_subtest("Radio failsafe RTL in mission without "
"option to continue should RTL: FS_THR_ENABLE=1 & FS_OPTIONS=0")
self.set_parameter('FS_OPTIONS', 0)
self.set_parameter("SIM_RC_FAIL", 1)
self.wait_mode("RTL")
self.wait_rtl_complete()
self.clear_mission(mavutil.mavlink.MAV_MISSION_TYPE_MISSION)
self.set_parameter("SIM_RC_FAIL", 0)
self.end_subtest("Completed Radio failsafe RTL in mission without option to continue")
self.progress("All radio failsafe tests complete")
self.set_parameter('FS_THR_ENABLE', 0)
self.reboot_sitl()
def ThrottleFailsafePassthrough(self):
'''check servo passthrough on RC failsafe. Make sure it doesn't glitch to the bad RC input value'''
channel = 7
trim_value = 1450
self.set_parameters({
'RC%u_MIN' % channel: 1000,
'RC%u_MAX' % channel: 2000,
'SERVO%u_MIN' % channel: 1000,
'SERVO%u_MAX' % channel: 2000,
'SERVO%u_TRIM' % channel: trim_value,
'SERVO%u_FUNCTION' % channel: 146, # scaled passthrough for channel 7
'FS_THR_ENABLE': 1,
'RC_FS_TIMEOUT': 10,
'SERVO_RC_FS_MSK': 1 << (channel-1),
})
self.reboot_sitl()
self.context_set_message_rate_hz('SERVO_OUTPUT_RAW', 200)
self.set_rc(channel, 1799)
expected_servo_output_value = 1778 # 1778 because of weird trim
self.wait_servo_channel_value(channel, expected_servo_output_value)
# receiver goes into failsafe with wild override values:
def ensure_SERVO_values_never_input(mav, m):
if m.get_type() != "SERVO_OUTPUT_RAW":
return
value = getattr(m, "servo%u_raw" % channel)
if value != expected_servo_output_value and value != trim_value:
raise NotAchievedException("Bad servo value %u received" % value)
self.install_message_hook_context(ensure_SERVO_values_never_input)
self.progress("Forcing receiver into failsafe")
self.set_rc_from_map({
3: 800,
channel: 1300,
})
self.wait_servo_channel_value(channel, trim_value)
self.delay_sim_time(10)
# Tests all actions and logic behind the GCS failsafe
def GCSFailsafe(self, side=60, timeout=360):
'''Test GCS Failsafe'''
try:
self.test_gcs_failsafe(side=side, timeout=timeout)
except Exception as ex:
self.setGCSfailsafe(0)
self.set_parameter('FS_OPTIONS', 0)
self.disarm_vehicle(force=True)
self.reboot_sitl()
raise ex
def test_gcs_failsafe(self, side=60, timeout=360):
# Test double-SmartRTL; ensure we do SmarRTL twice rather than
# landing (tests fix for actual bug)
self.set_parameter("SYSID_MYGCS", self.mav.source_system)
self.context_push()
self.start_subtest("GCS failsafe SmartRTL twice")
self.setGCSfailsafe(3)
self.set_parameter('FS_OPTIONS', 8)
self.takeoffAndMoveAway()
self.set_heartbeat_rate(0)
self.wait_mode("SMART_RTL")
self.wait_disarmed()
self.set_heartbeat_rate(self.speedup)
self.wait_statustext("GCS Failsafe Cleared", timeout=60)
self.takeoffAndMoveAway()
self.set_heartbeat_rate(0)
self.wait_statustext("GCS Failsafe")
def ensure_smartrtl(mav, m):
if m.get_type() != "HEARTBEAT":
return
# can't use mode_is here because we're in the message hook
print("Mode: %s" % self.mav.flightmode)
if self.mav.flightmode != "SMART_RTL":
raise NotAchievedException("Not in SMART_RTL")
self.install_message_hook_context(ensure_smartrtl)
self.set_heartbeat_rate(self.speedup)
self.wait_statustext("GCS Failsafe Cleared", timeout=60)
self.set_heartbeat_rate(0)
self.wait_statustext("GCS Failsafe")
self.wait_disarmed()
self.end_subtest("GCS failsafe SmartRTL twice")
self.set_heartbeat_rate(self.speedup)
self.wait_statustext("GCS Failsafe Cleared", timeout=60)
self.context_pop()
# Trigger telemetry loss with failsafe disabled. Verify no action taken.
self.start_subtest("GCS failsafe disabled test: FS_GCS_ENABLE=0 should take no failsafe action")
self.setGCSfailsafe(0)
self.takeoffAndMoveAway()
self.set_heartbeat_rate(0)
self.delay_sim_time(5)
self.wait_mode("ALT_HOLD")
self.set_heartbeat_rate(self.speedup)
self.delay_sim_time(5)
self.wait_mode("ALT_HOLD")
self.end_subtest("Completed GCS failsafe disabled test")
# Trigger telemetry loss with failsafe enabled. Verify
# failsafe triggers to RTL. Restore telemetry, verify failsafe
# clears, and change modes.
self.start_subtest("GCS failsafe recovery test: FS_GCS_ENABLE=1 & FS_OPTIONS=0")
self.setGCSfailsafe(1)
self.set_parameter('FS_OPTIONS', 0)
self.set_heartbeat_rate(0)
self.wait_mode("RTL")
self.set_heartbeat_rate(self.speedup)
self.wait_statustext("GCS Failsafe Cleared", timeout=60)
self.change_mode("LOITER")
self.end_subtest("Completed GCS failsafe recovery test")
# Trigger telemetry loss with failsafe enabled. Verify
# failsafe triggers to RTL. Restore telemetry, verify failsafe
# clears, and change modes.
self.start_subtest("GCS failsafe recovery test: FS_GCS_ENABLE=1 & FS_OPTIONS=0 & FS_GCS_TIMEOUT=10")
self.setGCSfailsafe(1)
self.set_parameter('FS_OPTIONS', 0)
old_gcs_timeout = self.get_parameter("FS_GCS_TIMEOUT")
new_gcs_timeout = old_gcs_timeout * 2
self.set_parameter("FS_GCS_TIMEOUT", new_gcs_timeout)
self.set_heartbeat_rate(0)
self.delay_sim_time(old_gcs_timeout + (new_gcs_timeout - old_gcs_timeout) / 2)
self.assert_mode("LOITER")
self.wait_mode("RTL")
self.set_heartbeat_rate(self.speedup)
self.wait_statustext("GCS Failsafe Cleared", timeout=60)
self.change_mode("LOITER")
self.set_parameter('FS_GCS_TIMEOUT', old_gcs_timeout)
self.end_subtest("Completed GCS failsafe recovery test")
# Trigger telemetry loss with failsafe enabled. Verify failsafe triggers and RTL completes
self.start_subtest("GCS failsafe RTL with no options test: FS_GCS_ENABLE=1 & FS_OPTIONS=0")
self.setGCSfailsafe(1)
self.set_parameter('FS_OPTIONS', 0)
self.set_heartbeat_rate(0)
self.wait_mode("RTL")
self.wait_rtl_complete()
self.set_heartbeat_rate(self.speedup)
self.wait_statustext("GCS Failsafe Cleared", timeout=60)
self.end_subtest("Completed GCS failsafe RTL with no options test")
# Trigger telemetry loss with failsafe enabled. Verify failsafe triggers and land completes
self.start_subtest("GCS failsafe LAND with no options test: FS_GCS_ENABLE=5 & FS_OPTIONS=0")
self.setGCSfailsafe(5)
self.takeoffAndMoveAway()
self.set_heartbeat_rate(0)
self.wait_mode("LAND")
self.wait_landed_and_disarmed()
self.set_heartbeat_rate(self.speedup)
self.wait_statustext("GCS Failsafe Cleared", timeout=60)
self.end_subtest("Completed GCS failsafe land with no options test")
# Trigger telemetry loss with failsafe enabled. Verify failsafe triggers and SmartRTL completes
self.start_subtest("GCS failsafe SmartRTL->RTL with no options test: FS_GCS_ENABLE=3 & FS_OPTIONS=0")
self.setGCSfailsafe(3)
self.takeoffAndMoveAway()
self.set_heartbeat_rate(0)
self.wait_mode("SMART_RTL")
self.wait_disarmed()
self.set_heartbeat_rate(self.speedup)
self.wait_statustext("GCS Failsafe Cleared", timeout=60)
self.end_subtest("Completed GCS failsafe SmartRTL->RTL with no options test")
# Trigger telemetry loss with failsafe enabled. Verify failsafe triggers and SmartRTL completes
self.start_subtest("GCS failsafe SmartRTL->Land with no options test: FS_GCS_ENABLE=4 & FS_OPTIONS=0")
self.setGCSfailsafe(4)
self.takeoffAndMoveAway()
self.set_heartbeat_rate(0)
self.wait_mode("SMART_RTL")
self.wait_disarmed()
self.set_heartbeat_rate(self.speedup)
self.wait_statustext("GCS Failsafe Cleared", timeout=60)
self.end_subtest("Completed GCS failsafe SmartRTL->Land with no options test")
# Trigger telemetry loss with an invalid failsafe value. Verify failsafe triggers and RTL completes
self.start_subtest("GCS failsafe invalid value with no options test: FS_GCS_ENABLE=99 & FS_OPTIONS=0")
self.setGCSfailsafe(99)
self.takeoffAndMoveAway()
self.set_heartbeat_rate(0)
self.wait_mode("RTL")
self.wait_rtl_complete()
self.set_heartbeat_rate(self.speedup)
self.wait_statustext("GCS Failsafe Cleared", timeout=60)
self.end_subtest("Completed GCS failsafe invalid value with no options test")
# Trigger telemetry loss with failsafe enabled to test FS_OPTIONS settings
self.start_subtest("GCS failsafe with option bit tests: FS_GCS_ENABLE=1 & FS_OPTIONS=64/2/16")
num_wp = self.load_mission("copter_mission.txt", strict=False)
if not num_wp:
raise NotAchievedException("load copter_mission failed")
self.setGCSfailsafe(1)
self.set_parameter('FS_OPTIONS', 16)
self.takeoffAndMoveAway()
self.progress("Testing continue in pilot controlled modes")
self.set_heartbeat_rate(0)
self.wait_statustext("GCS Failsafe - Continuing Pilot Control", timeout=60)
self.delay_sim_time(5)
self.wait_mode("ALT_HOLD")
self.set_heartbeat_rate(self.speedup)
self.wait_statustext("GCS Failsafe Cleared", timeout=60)
self.progress("Testing continue in auto mission")
self.set_parameter('FS_OPTIONS', 2)
self.change_mode("AUTO")
self.delay_sim_time(5)
self.set_heartbeat_rate(0)
self.wait_statustext("GCS Failsafe - Continuing Auto Mode", timeout=60)
self.delay_sim_time(5)
self.wait_mode("AUTO")
self.set_heartbeat_rate(self.speedup)
self.wait_statustext("GCS Failsafe Cleared", timeout=60)
self.progress("Testing continue landing in land mode")
self.set_parameter('FS_OPTIONS', 8)
self.change_mode("LAND")
self.delay_sim_time(5)
self.set_heartbeat_rate(0)
self.wait_statustext("GCS Failsafe - Continuing Landing", timeout=60)
self.delay_sim_time(5)
self.wait_mode("LAND")
self.wait_landed_and_disarmed()
self.set_heartbeat_rate(self.speedup)
self.wait_statustext("GCS Failsafe Cleared", timeout=60)
self.end_subtest("Completed GCS failsafe with option bits")
self.setGCSfailsafe(0)
self.set_parameter('FS_OPTIONS', 0)
self.progress("All GCS failsafe tests complete")
def CustomController(self, timeout=300):
'''Test Custom Controller'''
self.progress("Configure custom controller parameters")
self.set_parameters({
'CC_TYPE': 2,
'CC_AXIS_MASK': 7,
'RC6_OPTION': 109,
})
self.set_rc(6, 1000)
self.reboot_sitl()
if self.get_parameter("CC_TYPE") != 2 :
raise NotAchievedException("Custom controller is not switched to PID backend.")
# check if we can retrive any param inside PID backend
self.get_parameter("CC2_RAT_YAW_P")
# takeoff in GPS mode and switch to CIRCLE
self.takeoff(10, mode="LOITER", takeoff_throttle=2000)
self.change_mode("CIRCLE")
self.context_push()
self.context_collect('STATUSTEXT')
# switch custom controller on
self.set_rc(6, 2000)
self.wait_statustext("Custom controller is ON", check_context=True)
# wait 20 second to see if the custom controller destabilize the aircraft
if self.wait_altitude(7, 13, relative=True, minimum_duration=20) :
raise NotAchievedException("Custom controller is not stable.")
# switch custom controller off
self.set_rc(6, 1000)
self.wait_statustext("Custom controller is OFF", check_context=True)
self.context_pop()
self.do_RTL()
self.progress("Custom controller test complete")
# Tests all actions and logic behind the battery failsafe
def BatteryFailsafe(self, timeout=300):
'''Fly Battery Failsafe'''
self.progress("Configure battery failsafe parameters")
self.set_parameters({
'SIM_SPEEDUP': 4,
'BATT_LOW_VOLT': 11.5,
'BATT_CRT_VOLT': 10.1,
'BATT_FS_LOW_ACT': 0,
'BATT_FS_CRT_ACT': 0,
'FS_OPTIONS': 0,
'SIM_BATT_VOLTAGE': 12.5,
})
# Trigger low battery condition with failsafe disabled. Verify
# no action taken.
self.start_subtest("Batt failsafe disabled test")
self.takeoffAndMoveAway()
m = self.mav.recv_match(type='BATTERY_STATUS', blocking=True, timeout=1)
if m.charge_state != mavutil.mavlink.MAV_BATTERY_CHARGE_STATE_OK:
raise NotAchievedException("Expected state ok")
self.set_parameter('SIM_BATT_VOLTAGE', 11.4)
self.wait_statustext("Battery 1 is low", timeout=60)
m = self.mav.recv_match(type='BATTERY_STATUS', blocking=True, timeout=1)
if m.charge_state != mavutil.mavlink.MAV_BATTERY_CHARGE_STATE_LOW:
raise NotAchievedException("Expected state low")
self.delay_sim_time(5)
self.wait_mode("ALT_HOLD")
self.set_parameter('SIM_BATT_VOLTAGE', 10.0)
self.wait_statustext("Battery 1 is critical", timeout=60)
m = self.mav.recv_match(type='BATTERY_STATUS', blocking=True, timeout=1)
if m.charge_state != mavutil.mavlink.MAV_BATTERY_CHARGE_STATE_CRITICAL:
raise NotAchievedException("Expected state critical")
self.delay_sim_time(5)
self.wait_mode("ALT_HOLD")
self.change_mode("RTL")
self.wait_rtl_complete()
self.set_parameter('SIM_BATT_VOLTAGE', 12.5)
self.reboot_sitl()
self.end_subtest("Completed Batt failsafe disabled test")
# TWO STAGE BATTERY FAILSAFE: Trigger low battery condition,
# then critical battery condition. Verify RTL and Land actions
# complete.
self.start_subtest("Two stage battery failsafe test with RTL and Land")
self.takeoffAndMoveAway()
self.delay_sim_time(3)
self.set_parameters({
'BATT_FS_LOW_ACT': 2,
'BATT_FS_CRT_ACT': 1,
'SIM_BATT_VOLTAGE': 11.4,
})
self.wait_statustext("Battery 1 is low", timeout=60)
self.delay_sim_time(5)
self.wait_mode("RTL")
self.delay_sim_time(10)
self.set_parameter('SIM_BATT_VOLTAGE', 10.0)
self.wait_statustext("Battery 1 is critical", timeout=60)
self.delay_sim_time(5)
self.wait_mode("LAND")
self.wait_landed_and_disarmed()
self.set_parameter('SIM_BATT_VOLTAGE', 12.5)
self.reboot_sitl()
self.end_subtest("Completed two stage battery failsafe test with RTL and Land")
# TWO STAGE BATTERY FAILSAFE: Trigger low battery condition,
# then critical battery condition. Verify both SmartRTL
# actions complete
self.start_subtest("Two stage battery failsafe test with SmartRTL")
self.takeoffAndMoveAway()
self.set_parameter('BATT_FS_LOW_ACT', 3)
self.set_parameter('BATT_FS_CRT_ACT', 4)
self.delay_sim_time(10)
self.set_parameter('SIM_BATT_VOLTAGE', 11.4)
self.wait_statustext("Battery 1 is low", timeout=60)
self.delay_sim_time(5)
self.wait_mode("SMART_RTL")
self.change_mode("LOITER")
self.delay_sim_time(10)
self.set_parameter('SIM_BATT_VOLTAGE', 10.0)
self.wait_statustext("Battery 1 is critical", timeout=60)
self.delay_sim_time(5)
self.wait_mode("SMART_RTL")
self.wait_disarmed()
self.set_parameter('SIM_BATT_VOLTAGE', 12.5)
self.reboot_sitl()
self.end_subtest("Completed two stage battery failsafe test with SmartRTL")
# Trigger low battery condition in land mode with FS_OPTIONS
# set to allow land mode to continue. Verify landing completes
# uninterrupted.
self.start_subtest("Battery failsafe with FS_OPTIONS set to continue landing")
self.takeoffAndMoveAway()
self.set_parameter('FS_OPTIONS', 8)
self.change_mode("LAND")
self.delay_sim_time(5)
self.set_parameter('SIM_BATT_VOLTAGE', 11.4)
self.wait_statustext("Battery 1 is low", timeout=60)
self.delay_sim_time(5)
self.wait_mode("LAND")
self.wait_landed_and_disarmed()
self.set_parameter('SIM_BATT_VOLTAGE', 12.5)
self.reboot_sitl()
self.end_subtest("Completed battery failsafe with FS_OPTIONS set to continue landing")
# Trigger a critical battery condition, which triggers a land
# mode failsafe. Trigger an RC failure. Verify the RC failsafe
# is prevented from stopping the low battery landing.
self.start_subtest("Battery failsafe critical landing")
self.takeoffAndMoveAway(100, 50)
self.set_parameters({
'FS_OPTIONS': 0,
'BATT_FS_LOW_ACT': 1,
'BATT_FS_CRT_ACT': 1,
'FS_THR_ENABLE': 1,
})
self.delay_sim_time(5)
self.set_parameter('SIM_BATT_VOLTAGE', 10.0)
self.wait_statustext("Battery 1 is critical", timeout=60)
self.wait_mode("LAND")
self.delay_sim_time(10)
self.set_parameter("SIM_RC_FAIL", 1)
self.delay_sim_time(10)
self.wait_mode("LAND")
self.wait_landed_and_disarmed()
self.set_parameter('SIM_BATT_VOLTAGE', 12.5)
self.set_parameter("SIM_RC_FAIL", 0)
self.reboot_sitl()
self.end_subtest("Completed battery failsafe critical landing")
# Trigger low battery condition with failsafe set to terminate. Copter will disarm and crash.
self.start_subtest("Battery failsafe terminate")
self.takeoffAndMoveAway()
self.set_parameter('BATT_FS_LOW_ACT', 5)
self.delay_sim_time(10)
self.set_parameter('SIM_BATT_VOLTAGE', 11.4)
self.wait_statustext("Battery 1 is low", timeout=60)
self.wait_disarmed()
self.end_subtest("Completed terminate failsafe test")
self.progress("All Battery failsafe tests complete")
def BatteryMissing(self):
''' Test battery health pre-arm and missing failsafe'''
self.context_push()
# Should be good to arm with no changes
self.wait_ready_to_arm()
# Make monitor unhealthy, this should result in unhealthy prearm
self.set_parameters({
'BATT_VOLT_PIN': -1,
})
self.drain_mav()
# Battery should go unhealthy immediately
self.assert_prearm_failure("Battery 1 unhealthy", other_prearm_failures_fatal=False)
# Return monitor to health
self.context_pop()
self.context_push()
self.wait_ready_to_arm()
# take off and then trigger in flight
self.takeoff(10, mode="LOITER")
self.set_parameters({
'BATT_VOLT_PIN': -1,
})
# Should trigger missing failsafe
self.wait_statustext("Battery 1 is missing")
# Done, reset params and reboot to clear failsafe
self.land_and_disarm()
self.context_pop()
self.reboot_sitl()
def VibrationFailsafe(self):
'''Test Vibration Failsafe'''
self.context_push()
# takeoff in Loiter to 20m
self.takeoff(20, mode="LOITER")
# simulate accel bias caused by high vibration
self.set_parameters({
'SIM_ACC1_BIAS_Z': 2,
'SIM_ACC2_BIAS_Z': 2,
'SIM_ACC3_BIAS_Z': 2,
})
# wait for Vibration compensation warning and change to LAND mode
self.wait_statustext("Vibration compensation ON", timeout=30)
self.change_mode("LAND")
# check vehicle descends to 2m or less within 40 seconds
self.wait_altitude(-5, 2, timeout=50, relative=True)
# force disarm of vehicle (it will likely not automatically disarm)
self.disarm_vehicle(force=True)
# revert simulated accel bias and reboot to restore EKF health
self.context_pop()
self.reboot_sitl()
def test_takeoff_check_mode(self, mode, user_takeoff=False):
# stabilize check
self.progress("Motor takeoff check in %s" % mode)
self.change_mode(mode)
self.zero_throttle()
self.wait_ready_to_arm()
self.context_push()
self.context_collect('STATUSTEXT')
self.arm_vehicle()
if user_takeoff:
self.run_cmd(
mavutil.mavlink.MAV_CMD_NAV_TAKEOFF,
p7=10,
)
else:
self.set_rc(3, 1700)
# we may never see ourselves as armed in a heartbeat
self.wait_statustext("Takeoff blocked: ESC RPM out of range", check_context=True)
self.context_pop()
self.zero_throttle()
self.disarm_vehicle()
self.wait_disarmed()
# Tests the motor failsafe
def TakeoffCheck(self):
'''Test takeoff check'''
self.set_parameters({
"AHRS_EKF_TYPE": 10,
'SIM_ESC_TELEM': 1,
'SIM_ESC_ARM_RPM': 500,
'TKOFF_RPM_MIN': 1000,
})
self.test_takeoff_check_mode("STABILIZE")
self.test_takeoff_check_mode("ACRO")
self.test_takeoff_check_mode("LOITER")
self.test_takeoff_check_mode("ALT_HOLD")
# self.test_takeoff_check_mode("FLOWHOLD")
self.test_takeoff_check_mode("GUIDED", True)
self.test_takeoff_check_mode("POSHOLD")
# self.test_takeoff_check_mode("SPORT")
self.set_parameters({
"AHRS_EKF_TYPE": 10,
'SIM_ESC_TELEM': 1,
'TKOFF_RPM_MIN': 1,
'TKOFF_RPM_MAX': 3,
})
self.test_takeoff_check_mode("STABILIZE")
self.test_takeoff_check_mode("ACRO")
self.test_takeoff_check_mode("LOITER")
self.test_takeoff_check_mode("ALT_HOLD")
# self.test_takeoff_check_mode("FLOWHOLD")
self.test_takeoff_check_mode("GUIDED", True)
self.test_takeoff_check_mode("POSHOLD")
# self.test_takeoff_check_mode("SPORT")
def assert_dataflash_message_field_level_at(self,
mtype,
field,
level,
maintain=1,
tolerance=0.05,
timeout=30,
condition=None,
dfreader_start_timestamp=None,
verbose=False):
'''wait for EKF's accel bias to reach a level and maintain it'''
if verbose:
self.progress("current onboard log filepath: %s" % self.current_onboard_log_filepath())
dfreader = self.dfreader_for_current_onboard_log()
achieve_start = None
current_value = None
while True:
m = dfreader.recv_match(type=mtype, condition=condition)
if m is None:
raise NotAchievedException("%s.%s did not maintain %f" %
(mtype, field, level))
if dfreader_start_timestamp is not None:
if m.TimeUS < dfreader_start_timestamp:
continue
if verbose:
print("m=%s" % str(m))
current_value = getattr(m, field)
if abs(current_value - level) > tolerance:
if achieve_start is not None:
self.progress("Achieve stop at %u" % m.TimeUS)
achieve_start = None
continue
dfreader_now = m.TimeUS
if achieve_start is None:
self.progress("Achieve start at %u (got=%f want=%f)" %
(dfreader_now, current_value, level))
if maintain is None:
return
achieve_start = m.TimeUS
continue
# we're achieving....
if dfreader_now - achieve_start > maintain*1e6:
return dfreader_now
# Tests any EK3 accel bias is subtracted from the correct IMU data
def EK3AccelBias(self):
'''Test EK3 Accel Bias data'''
self.context_push()
self.start_test("Test zero bias")
dfreader_tstart = self.assert_dataflash_message_field_level_at(
"XKF2",
"AZ",
0.0,
condition="XKF2.C==1",
)
# Add 2m/s/s bias to the second IMU
self.set_parameters({
'SIM_ACC2_BIAS_Z': 0.7,
})
self.start_subtest("Ensuring second core has bias")
self.delay_sim_time(30)
dfreader_tstart = self.assert_dataflash_message_field_level_at(
"XKF2", "AZ", 0.7,
condition="XKF2.C==1",
)
self.start_subtest("Ensuring earth frame is compensated")
self.assert_dataflash_message_field_level_at(
"RATE", "A", 0,
maintain=1,
tolerance=2, # RATE.A is in cm/s/s
dfreader_start_timestamp=dfreader_tstart,
)
# now switch the EKF to only using the second core:
self.set_parameters({
'SIM_ACC2_BIAS_Z': 0.0,
"EK3_IMU_MASK": 0b10,
})
self.reboot_sitl()
self.delay_sim_time(30)
dfreader_tstart = self.assert_dataflash_message_field_level_at(
"XKF2", "AZ", 0.0,
condition="XKF2.C==0",
)
# Add 2m/s/s bias to the second IMU
self.set_parameters({
'SIM_ACC2_BIAS_Z': 0.7,
})
self.start_subtest("Ensuring first core now has bias")
self.delay_sim_time(30)
dfreader_tstart = self.assert_dataflash_message_field_level_at(
"XKF2", "AZ", 0.7,
condition="XKF2.C==0",
)
self.start_subtest("Ensuring earth frame is compensated")
self.assert_dataflash_message_field_level_at(
"RATE", "A", 0,
maintain=1,
tolerance=2, # RATE.A is in cm/s/s
dfreader_start_timestamp=dfreader_tstart,
verbose=True,
)
# revert simulated accel bias and reboot to restore EKF health
self.context_pop()
self.reboot_sitl()
# StabilityPatch - fly south, then hold loiter within 5m
# position and altitude and reduce 1 motor to 60% efficiency
def StabilityPatch(self,
holdtime=30,
maxaltchange=5,
maxdistchange=10):
'''Fly stability patch'''
self.takeoff(10, mode="LOITER")
# first south
self.progress("turn south")
self.set_rc(4, 1580)
self.wait_heading(180)
self.set_rc(4, 1500)
# fly west 80m
self.set_rc(2, 1100)
self.wait_distance(80)
self.set_rc(2, 1500)
# wait for copter to slow moving
self.wait_groundspeed(0, 2)
m = self.mav.recv_match(type='VFR_HUD', blocking=True)
start_altitude = m.alt
start = self.mav.location()
tstart = self.get_sim_time()
self.progress("Holding loiter at %u meters for %u seconds" %
(start_altitude, holdtime))
# cut motor 1's to efficiency
self.progress("Cutting motor 1 to 65% efficiency")
self.set_parameters({
"SIM_ENGINE_MUL": 0.65,
"SIM_ENGINE_FAIL": 1 << 0, # motor 1
})
while self.get_sim_time_cached() < tstart + holdtime:
m = self.mav.recv_match(type='VFR_HUD', blocking=True)
pos = self.mav.location()
delta = self.get_distance(start, pos)
alt_delta = math.fabs(m.alt - start_altitude)
self.progress("Loiter Dist: %.2fm, alt:%u" % (delta, m.alt))
if alt_delta > maxaltchange:
raise NotAchievedException(
"Loiter alt shifted %u meters (> limit %u)" %
(alt_delta, maxaltchange))
if delta > maxdistchange:
raise NotAchievedException(
("Loiter shifted %u meters (> limit of %u)" %
(delta, maxdistchange)))
# restore motor 1 to 100% efficiency
self.set_parameter("SIM_ENGINE_MUL", 1.0)
self.progress("Stability patch and Loiter OK for %us" % holdtime)
self.progress("RTL after stab patch")
self.do_RTL()
def debug_arming_issue(self):
while True:
self.send_mavlink_arm_command()
m = self.mav.recv_match(blocking=True, timeout=1)
if m is None:
continue
if m.get_type() in ["STATUSTEXT", "COMMAND_ACK"]:
print("Got: %s" % str(m))
if self.mav.motors_armed():
self.progress("Armed")
return
# fly_fence_test - fly east until you hit the horizontal circular fence
avoid_behave_slide = 0
def fly_fence_avoid_test_radius_check(self, timeout=180, avoid_behave=avoid_behave_slide):
using_mode = "LOITER" # must be something which adjusts velocity!
self.change_mode(using_mode)
fence_radius = 15
fence_margin = 3
self.set_parameters({
"FENCE_ENABLE": 1, # fence
"FENCE_TYPE": 2, # circle
"FENCE_RADIUS": fence_radius,
"FENCE_MARGIN": fence_margin,
"AVOID_ENABLE": 1,
"AVOID_BEHAVE": avoid_behave,
"RC10_OPTION": 40, # avoid-enable
})
self.wait_ready_to_arm()
self.set_rc(10, 2000)
home_distance = self.distance_to_home(use_cached_home=True)
if home_distance > 5:
raise PreconditionFailedException("Expected to be within 5m of home")
self.zero_throttle()
self.arm_vehicle()
self.set_rc(3, 1700)
self.wait_altitude(10, 100, relative=True)
self.set_rc(3, 1500)
self.set_rc(2, 1400)
self.wait_distance_to_home(12, 20, timeout=30)
tstart = self.get_sim_time()
push_time = 70 # push against barrier for 60 seconds
failed_max = False
failed_min = False
while True:
if self.get_sim_time() - tstart > push_time:
self.progress("Push time up")
break
# make sure we don't RTL:
if not self.mode_is(using_mode):
raise NotAchievedException("Changed mode away from %s" % using_mode)
distance = self.distance_to_home(use_cached_home=True)
inner_radius = fence_radius - fence_margin
want_min = inner_radius - 1 # allow 1m either way
want_max = inner_radius + 1 # allow 1m either way
self.progress("Push: distance=%f %f<want<%f" %
(distance, want_min, want_max))
if distance < want_min:
if failed_min is False:
self.progress("Failed min")
failed_min = True
if distance > want_max:
if failed_max is False:
self.progress("Failed max")
failed_max = True
if failed_min and failed_max:
raise NotAchievedException("Failed both min and max checks. Clever")
if failed_min:
raise NotAchievedException("Failed min")
if failed_max:
raise NotAchievedException("Failed max")
self.set_rc(2, 1500)
self.do_RTL()
def HorizontalAvoidFence(self, timeout=180):
'''Test horizontal Avoidance fence'''
self.fly_fence_avoid_test_radius_check(avoid_behave=1, timeout=timeout)
self.fly_fence_avoid_test_radius_check(avoid_behave=0, timeout=timeout)
# fly_fence_test - fly east until you hit the horizontal circular fence
def HorizontalFence(self, timeout=180):
'''Test horizontal fence'''
# enable fence, disable avoidance
self.set_parameters({
"FENCE_ENABLE": 1,
"AVOID_ENABLE": 0,
})
self.change_mode("LOITER")
self.wait_ready_to_arm()
# fence requires home to be set:
m = self.poll_home_position(quiet=False)
self.start_subtest("ensure we can't arm if outside fence")
self.load_fence("fence-in-middle-of-nowhere.txt")
self.delay_sim_time(5) # let fence check run so it loads-from-eeprom
self.assert_prearm_failure("Vehicle breaching Polygon fence")
self.progress("Failed to arm outside fence (good!)")
self.clear_fence()
self.delay_sim_time(5) # let fence breach clear
self.drain_mav()
self.end_subtest("ensure we can't arm if outside fence")
self.start_subtest("ensure we can't arm with bad radius")
self.context_push()
self.set_parameter("FENCE_RADIUS", -1)
self.assert_prearm_failure("Invalid Circle FENCE_RADIUS value")
self.context_pop()
self.progress("Failed to arm with bad radius")
self.drain_mav()
self.end_subtest("ensure we can't arm with bad radius")
self.start_subtest("ensure we can't arm with bad alt")
self.context_push()
self.set_parameter("FENCE_ALT_MAX", -1)
self.assert_prearm_failure("Invalid FENCE_ALT_MAX value")
self.context_pop()
self.progress("Failed to arm with bad altitude")
self.end_subtest("ensure we can't arm with bad radius")
self.start_subtest("Check breach-fence behaviour")
self.set_parameter("FENCE_TYPE", 2)
self.takeoff(10, mode="LOITER")
# first east
self.progress("turn east")
self.set_rc(4, 1580)
self.wait_heading(160, timeout=60)
self.set_rc(4, 1500)
fence_radius = self.get_parameter("FENCE_RADIUS")
self.progress("flying forward (east) until we hit fence")
pitching_forward = True
self.set_rc(2, 1100)
self.progress("Waiting for fence breach")
tstart = self.get_sim_time()
while not self.mode_is("RTL"):
if self.get_sim_time_cached() - tstart > 30:
raise NotAchievedException("Did not breach fence")
m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
alt = m.relative_alt / 1000.0 # mm -> m
home_distance = self.distance_to_home(use_cached_home=True)
self.progress("Alt: %.02f HomeDistance: %.02f (fence radius=%f)" %
(alt, home_distance, fence_radius))
self.progress("Waiting until we get home and disarm")
tstart = self.get_sim_time()
while self.get_sim_time_cached() < tstart + timeout:
m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
alt = m.relative_alt / 1000.0 # mm -> m
home_distance = self.distance_to_home(use_cached_home=True)
self.progress("Alt: %.02f HomeDistance: %.02f" %
(alt, home_distance))
# recenter pitch sticks once we're home so we don't fly off again
if pitching_forward and home_distance < 50:
pitching_forward = False
self.set_rc(2, 1475)
# disable fence
self.set_parameter("FENCE_ENABLE", 0)
if (alt <= 1 and home_distance < 10) or (not self.armed() and home_distance < 10):
# reduce throttle
self.zero_throttle()
self.change_mode("LAND")
self.wait_landed_and_disarmed()
self.progress("Reached home OK")
self.zero_throttle()
return
# give we're testing RTL, doing one here probably doesn't make sense
home_distance = self.distance_to_home(use_cached_home=True)
raise AutoTestTimeoutException(
"Fence test failed to reach home (%fm distance) - "
"timed out after %u seconds" % (home_distance, timeout,))
# MaxAltFence - fly up until you hit the fence ceiling
def MaxAltFence(self):
'''Test Max Alt Fence'''
self.takeoff(10, mode="LOITER")
"""Hold loiter position."""
# enable fence, disable avoidance
self.set_parameters({
"FENCE_ENABLE": 1,
"AVOID_ENABLE": 0,
"FENCE_TYPE": 1,
"FENCE_ENABLE" : 1,
})
self.change_alt(10)
# first east
self.progress("turning east")
self.set_rc(4, 1580)
self.wait_heading(160, timeout=60)
self.set_rc(4, 1500)
self.progress("flying east 20m")
self.set_rc(2, 1100)
self.wait_distance(20)
self.progress("flying up")
self.set_rc_from_map({
2: 1500,
3: 1800,
})
# wait for fence to trigger
self.wait_mode('RTL', timeout=120)
self.wait_rtl_complete()
self.zero_throttle()
# MaxAltFence - fly up and make sure fence action does not trigger
# Also check that the vehicle will not try and descend too fast when trying to backup from a max alt fence due to avoidance
def MaxAltFenceAvoid(self):
'''Test Max Alt Fence Avoidance'''
self.takeoff(10, mode="LOITER")
"""Hold loiter position."""
# enable fence, only max altitude, defualt is 100m
# No action, rely on avoidance to prevent the breach
self.set_parameters({
"FENCE_ENABLE": 1,
"FENCE_TYPE": 1,
"FENCE_ACTION": 0,
})
# Try and fly past the fence
self.set_rc(3, 1920)
# Avoid should prevent the vehicle flying past the fence, so the altitude wait should timeouts
try:
self.wait_altitude(140, 150, timeout=90, relative=True)
raise NotAchievedException("Avoid should prevent reaching altitude")
except AutoTestTimeoutException:
pass
except Exception as e:
raise e
# Check descent is not too fast, allow 10% above the configured backup speed
max_descent_rate = -self.get_parameter("AVOID_BACKUP_SPD") * 1.1
def get_climb_rate(mav, m):
m_type = m.get_type()
if m_type != 'VFR_HUD':
return
if m.climb < max_descent_rate:
raise NotAchievedException("Decending too fast want %f got %f" % (max_descent_rate, m.climb))
self.context_push()
self.install_message_hook_context(get_climb_rate)
# Reduce fence alt, this will result in a fence breach, but there is no action.
# Avoid should then backup the vehicle to be under the new fence alt.
self.set_parameters({
"FENCE_ALT_MAX": 50,
})
self.wait_altitude(40, 50, timeout=90, relative=True)
self.context_pop()
self.set_rc(3, 1500)
self.do_RTL()
# fly_alt_min_fence_test - fly down until you hit the fence floor
def MinAltFence(self):
'''Test Min Alt Fence'''
self.takeoff(30, mode="LOITER", timeout=60)
# enable fence, disable avoidance
self.set_parameters({
"AVOID_ENABLE": 0,
"FENCE_ENABLE" : 1,
"FENCE_TYPE": 8,
"FENCE_ALT_MIN": 20,
})
self.change_alt(30)
# Activate the floor fence
# TODO this test should run without requiring this
self.do_fence_enable()
# first east
self.progress("turn east")
self.set_rc(4, 1580)
self.wait_heading(160, timeout=60)
self.set_rc(4, 1500)
# fly forward (east) at least 20m
self.set_rc(2, 1100)
self.wait_distance(20)
# stop flying forward and start flying down:
self.set_rc_from_map({
2: 1500,
3: 1200,
})
# wait for fence to trigger
self.wait_mode('RTL', timeout=120)
self.wait_rtl_complete()
# Disable the fence using mavlink command to ensure cleaned up SITL state
self.do_fence_disable()
self.zero_throttle()
# MinAltFenceAvoid - fly down and make sure fence action does not trigger
# Also check that the vehicle will not try and ascend too fast when trying to backup from a min alt fence due to avoidance
def MinAltFenceAvoid(self):
'''Test Min Alt Fence Avoidance'''
# enable fence, only min altitude
# No action, rely on avoidance to prevent the breach
self.set_parameters({
"FENCE_ENABLE": 1,
"FENCE_TYPE": 8,
"FENCE_ALT_MIN": 20,
"FENCE_ACTION": 0,
})
self.reboot_sitl()
self.takeoff(30, mode="LOITER")
"""Hold loiter position."""
# Try and fly past the fence
self.set_rc(3, 1120)
# Avoid should prevent the vehicle flying past the fence, so the altitude wait should timeouts
try:
self.wait_altitude(10, 15, timeout=90, relative=True)
raise NotAchievedException("Avoid should prevent reaching altitude")
except AutoTestTimeoutException:
pass
except Exception as e:
raise e
# Check ascent is not too fast, allow 10% above the configured backup speed
max_ascent_rate = self.get_parameter("AVOID_BACKUP_SPD") * 1.1
def get_climb_rate(mav, m):
m_type = m.get_type()
if m_type != 'VFR_HUD':
return
if m.climb > max_ascent_rate:
raise NotAchievedException("Ascending too fast want %f got %f" % (max_ascent_rate, m.climb))
self.context_push()
self.install_message_hook_context(get_climb_rate)
# Reduce fence alt, this will result in a fence breach, but there is no action.
# Avoid should then backup the vehicle to be over the new fence alt.
self.set_parameters({
"FENCE_ALT_MIN": 30,
})
self.wait_altitude(30, 40, timeout=90, relative=True)
self.context_pop()
self.set_rc(3, 1500)
self.do_RTL()
def FenceFloorEnabledLanding(self):
"""Ensures we can initiate and complete an RTL while the fence is
enabled.
"""
fence_bit = mavutil.mavlink.MAV_SYS_STATUS_GEOFENCE
self.progress("Test Landing while fence floor enabled")
self.set_parameters({
"AVOID_ENABLE": 0,
"FENCE_ENABLE" : 1,
"FENCE_TYPE": 15,
"FENCE_ALT_MIN": 20,
"FENCE_ALT_MAX": 30,
})
self.change_mode("GUIDED")
self.wait_ready_to_arm()
self.arm_vehicle()
self.user_takeoff(alt_min=25)
# Check fence is enabled
self.assert_fence_enabled()
# Change to RC controlled mode
self.change_mode('LOITER')
self.set_rc(3, 1800)
self.wait_mode('RTL', timeout=120)
# center throttle
self.set_rc(3, 1500)
# wait until we are below the fence floor and re-enter loiter
self.wait_altitude(5, 15, relative=True)
self.change_mode('LOITER')
# wait for manual recovery to expire
self.delay_sim_time(15)
# lower throttle and try and land
self.set_rc(3, 1300)
self.wait_altitude(0, 2, relative=True)
self.zero_throttle()
self.wait_landed_and_disarmed()
self.assert_fence_enabled()
# must not be in RTL
self.assert_mode("LOITER")
# Assert fence is healthy since it was enabled automatically
self.assert_sensor_state(fence_bit, healthy=True)
# Disable the fence using mavlink command to ensure cleaned up SITL state
self.do_fence_disable()
self.assert_fence_disabled()
def FenceFloorAutoDisableLanding(self):
"""Ensures we can initiate and complete an RTL while the fence is enabled"""
fence_bit = mavutil.mavlink.MAV_SYS_STATUS_GEOFENCE
self.progress("Test Landing while fence floor enabled")
self.set_parameters({
"AVOID_ENABLE": 0,
"FENCE_TYPE": 11,
"FENCE_ALT_MIN": 10,
"FENCE_ALT_MAX": 20,
"FENCE_AUTOENABLE" : 1,
})
self.change_mode("GUIDED")
self.wait_ready_to_arm()
self.arm_vehicle()
self.takeoff(alt_min=15, mode="GUIDED")
# Check fence is enabled
self.assert_fence_enabled()
# Change to RC controlled mode
self.change_mode('LOITER')
self.set_rc(3, 1800)
self.wait_mode('RTL', timeout=120)
self.wait_landed_and_disarmed(0)
# the breach should have cleared since we auto-disable the
# fence on landing
self.assert_fence_disabled()
# Assert fences have gone now that we have landed and disarmed
self.assert_sensor_state(fence_bit, present=True, enabled=False)
def FenceFloorAutoEnableOnArming(self):
"""Ensures we can auto-enable fences on arming and still takeoff and land"""
fence_bit = mavutil.mavlink.MAV_SYS_STATUS_GEOFENCE
self.set_parameters({
"AVOID_ENABLE": 0,
"FENCE_TYPE": 11,
"FENCE_ALT_MIN": 10,
"FENCE_ALT_MAX": 20,
"FENCE_AUTOENABLE" : 3,
})
self.change_mode("GUIDED")
# Check fence is not enabled
self.assert_fence_disabled()
self.wait_ready_to_arm()
self.arm_vehicle()
self.takeoff(alt_min=15, mode="GUIDED")
# Check fence is enabled
self.assert_fence_enabled()
# Change to RC controlled mode
self.change_mode('LOITER')
self.set_rc(3, 1800)
self.wait_mode('RTL', timeout=120)
# Assert fence is not healthy now that we are in RTL
self.assert_sensor_state(fence_bit, healthy=False)
self.wait_landed_and_disarmed(0)
# the breach should have cleared since we auto-disable the
# fence on landing
self.assert_fence_disabled()
# Assert fences have gone now that we have landed and disarmed
self.assert_sensor_state(fence_bit, present=True, enabled=False)
# Disable the fence using mavlink command to ensure cleaned up SITL state
self.assert_fence_disabled()
def GPSGlitchLoiter(self, timeout=30, max_distance=20):
"""fly_gps_glitch_loiter_test. Fly south east in loiter and test
reaction to gps glitch."""
self.takeoff(10, mode="LOITER")
# turn on simulator display of gps and actual position
if self.use_map:
self.show_gps_and_sim_positions(True)
# set-up gps glitch array
glitch_lat = [0.0002996,
0.0006958,
0.0009431,
0.0009991,
0.0009444,
0.0007716,
0.0006221]
glitch_lon = [0.0000717,
0.0000912,
0.0002761,
0.0002626,
0.0002807,
0.0002049,
0.0001304]
glitch_num = len(glitch_lat)
self.progress("GPS Glitches:")
for i in range(1, glitch_num):
self.progress("glitch %d %.7f %.7f" %
(i, glitch_lat[i], glitch_lon[i]))
# turn south east
self.progress("turn south east")
self.set_rc(4, 1580)
try:
self.wait_heading(150)
self.set_rc(4, 1500)
# fly forward (south east) at least 60m
self.set_rc(2, 1100)
self.wait_distance(60)
self.set_rc(2, 1500)
# wait for copter to slow down
except Exception as e:
if self.use_map:
self.show_gps_and_sim_positions(False)
raise e
# record time and position
tstart = self.get_sim_time()
tnow = tstart
start_pos = self.sim_location()
# initialise current glitch
glitch_current = 0
self.progress("Apply first glitch")
self.set_parameters({
"SIM_GPS1_GLTCH_X": glitch_lat[glitch_current],
"SIM_GPS1_GLTCH_Y": glitch_lon[glitch_current],
})
# record position for 30 seconds
while tnow < tstart + timeout:
tnow = self.get_sim_time_cached()
desired_glitch_num = int((tnow - tstart) * 2.2)
if desired_glitch_num > glitch_current and glitch_current != -1:
glitch_current = desired_glitch_num
# turn off glitching if we've reached the end of glitch list
if glitch_current >= glitch_num:
glitch_current = -1
self.progress("Completed Glitches")
self.set_parameters({
"SIM_GPS1_GLTCH_X": 0,
"SIM_GPS1_GLTCH_Y": 0,
})
else:
self.progress("Applying glitch %u" % glitch_current)
# move onto the next glitch
self.set_parameters({
"SIM_GPS1_GLTCH_X": glitch_lat[glitch_current],
"SIM_GPS1_GLTCH_Y": glitch_lon[glitch_current],
})
# start displaying distance moved after all glitches applied
if glitch_current == -1:
m = self.mav.recv_match(type='GLOBAL_POSITION_INT',
blocking=True)
alt = m.alt/1000.0 # mm -> m
curr_pos = self.sim_location()
moved_distance = self.get_distance(curr_pos, start_pos)
self.progress("Alt: %.02f Moved: %.0f" %
(alt, moved_distance))
if moved_distance > max_distance:
raise NotAchievedException(
"Moved over %u meters, Failed!" % max_distance)
else:
self.drain_mav()
# disable gps glitch
if glitch_current != -1:
self.set_parameters({
"SIM_GPS1_GLTCH_X": 0,
"SIM_GPS1_GLTCH_Y": 0,
})
if self.use_map:
self.show_gps_and_sim_positions(False)
self.progress("GPS glitch test passed!"
" stayed within %u meters for %u seconds" %
(max_distance, timeout))
self.do_RTL()
# re-arming is problematic because the GPS is glitching!
self.reboot_sitl()
def GPSGlitchLoiter2(self):
"""test vehicle handles GPS glitch (aka EKF Reset) without twitching"""
self.context_push()
self.takeoff(10, mode="LOITER")
# wait for vehicle to level
self.wait_attitude(desroll=0, despitch=0, timeout=10, tolerance=1)
# apply glitch
self.set_parameter("SIM_GPS1_GLTCH_X", 0.001)
# check lean angles remain stable for 20 seconds
tstart = self.get_sim_time()
while self.get_sim_time_cached() - tstart < 20:
m = self.mav.recv_match(type='ATTITUDE', blocking=True)
roll_deg = math.degrees(m.roll)
pitch_deg = math.degrees(m.pitch)
self.progress("checking att: roll=%f pitch=%f " % (roll_deg, pitch_deg))
if abs(roll_deg) > 2 or abs(pitch_deg) > 2:
raise NotAchievedException("fly_gps_glitch_loiter_test2 failed, roll or pitch moved during GPS glitch")
# RTL, remove glitch and reboot sitl
self.do_RTL()
self.context_pop()
self.reboot_sitl()
def GPSGlitchAuto(self, timeout=180):
'''fly mission and test reaction to gps glitch'''
# set-up gps glitch array
glitch_lat = [0.0002996,
0.0006958,
0.0009431,
0.0009991,
0.0009444,
0.0007716,
0.0006221]
glitch_lon = [0.0000717,
0.0000912,
0.0002761,
0.0002626,
0.0002807,
0.0002049,
0.0001304]
glitch_num = len(glitch_lat)
self.progress("GPS Glitches:")
for i in range(1, glitch_num):
self.progress("glitch %d %.7f %.7f" %
(i, glitch_lat[i], glitch_lon[i]))
# Fly mission #1
self.progress("# Load copter_glitch_mission")
# load the waypoint count
num_wp = self.load_mission("copter_glitch_mission.txt", strict=False)
if not num_wp:
raise NotAchievedException("load copter_glitch_mission failed")
# turn on simulator display of gps and actual position
if self.use_map:
self.show_gps_and_sim_positions(True)
self.progress("test: Fly a mission from 1 to %u" % num_wp)
self.set_current_waypoint(1)
self.change_mode("STABILIZE")
self.wait_ready_to_arm()
self.zero_throttle()
self.arm_vehicle()
# switch into AUTO mode and raise throttle
self.change_mode('AUTO')
self.set_rc(3, 1500)
# wait until 100m from home
try:
self.wait_distance(100, 5, 90)
except Exception as e:
if self.use_map:
self.show_gps_and_sim_positions(False)
raise e
# stop and test loss of GPS for a short time - it should resume GPS use without falling back into a non aiding mode
self.change_mode("LOITER")
self.set_parameters({
"SIM_GPS1_ENABLE": 0,
})
self.delay_sim_time(2)
self.set_parameters({
"SIM_GPS1_ENABLE": 1,
})
# regaining GPS should not result in it falling back to a non-navigation mode
self.wait_ekf_flags(mavutil.mavlink.ESTIMATOR_POS_HORIZ_ABS, 0, timeout=1)
# It should still be navigating after enougnh time has passed for any pending timeouts to activate.
self.delay_sim_time(10)
self.wait_ekf_flags(mavutil.mavlink.ESTIMATOR_POS_HORIZ_ABS, 0, timeout=1)
self.change_mode("AUTO")
# record time and position
tstart = self.get_sim_time()
# initialise current glitch
glitch_current = 0
self.progress("Apply first glitch")
self.set_parameters({
"SIM_GPS1_GLTCH_X": glitch_lat[glitch_current],
"SIM_GPS1_GLTCH_Y": glitch_lon[glitch_current],
})
# record position for 30 seconds
while glitch_current < glitch_num:
tnow = self.get_sim_time()
desired_glitch_num = int((tnow - tstart) * 2.2)
if desired_glitch_num > glitch_current and glitch_current != -1:
glitch_current = desired_glitch_num
# apply next glitch
if glitch_current < glitch_num:
self.progress("Applying glitch %u" % glitch_current)
self.set_parameters({
"SIM_GPS1_GLTCH_X": glitch_lat[glitch_current],
"SIM_GPS1_GLTCH_Y": glitch_lon[glitch_current],
})
# turn off glitching
self.progress("Completed Glitches")
self.set_parameters({
"SIM_GPS1_GLTCH_X": 0,
"SIM_GPS1_GLTCH_Y": 0,
})
# continue with the mission
self.wait_waypoint(0, num_wp-1, timeout=500)
# wait for arrival back home
self.wait_distance_to_home(0, 10, timeout=timeout)
# turn off simulator display of gps and actual position
if self.use_map:
self.show_gps_and_sim_positions(False)
self.progress("GPS Glitch test Auto completed: passed!")
self.wait_disarmed()
# re-arming is problematic because the GPS is glitching!
self.reboot_sitl()
# fly_simple - assumes the simple bearing is initialised to be
# directly north flies a box with 100m west, 15 seconds north,
# 50 seconds east, 15 seconds south
def SimpleMode(self, side=50):
'''Fly in SIMPLE mode'''
self.takeoff(10, mode="LOITER")
# set SIMPLE mode for all flight modes
self.set_parameter("SIMPLE", 63)
# switch to stabilize mode
self.change_mode('STABILIZE')
self.set_rc(3, 1545)
# fly south 50m
self.progress("# Flying south %u meters" % side)
self.set_rc(1, 1300)
self.wait_distance(side, 5, 60)
self.set_rc(1, 1500)
# fly west 8 seconds
self.progress("# Flying west for 8 seconds")
self.set_rc(2, 1300)
tstart = self.get_sim_time()
while self.get_sim_time_cached() < (tstart + 8):
self.mav.recv_match(type='VFR_HUD', blocking=True)
self.set_rc(2, 1500)
# fly north 25 meters
self.progress("# Flying north %u meters" % (side/2.0))
self.set_rc(1, 1700)
self.wait_distance(side/2, 5, 60)
self.set_rc(1, 1500)
# fly east 8 seconds
self.progress("# Flying east for 8 seconds")
self.set_rc(2, 1700)
tstart = self.get_sim_time()
while self.get_sim_time_cached() < (tstart + 8):
self.mav.recv_match(type='VFR_HUD', blocking=True)
self.set_rc(2, 1500)
# hover in place
self.hover()
self.do_RTL(timeout=500)
# fly_super_simple - flies a circle around home for 45 seconds
def SuperSimpleCircle(self, timeout=45):
'''Fly a circle in SUPER SIMPLE mode'''
self.takeoff(10, mode="LOITER")
# fly forward 20m
self.progress("# Flying forward 20 meters")
self.set_rc(2, 1300)
self.wait_distance(20, 5, 60)
self.set_rc(2, 1500)
# set SUPER SIMPLE mode for all flight modes
self.set_parameter("SUPER_SIMPLE", 63)
# switch to stabilize mode
self.change_mode("ALT_HOLD")
self.set_rc(3, 1500)
# start copter yawing slowly
self.set_rc(4, 1550)
# roll left for timeout seconds
self.progress("# rolling left from pilot's POV for %u seconds"
% timeout)
self.set_rc(1, 1300)
tstart = self.get_sim_time()
while self.get_sim_time_cached() < (tstart + timeout):
self.mav.recv_match(type='VFR_HUD', blocking=True)
# stop rolling and yawing
self.set_rc(1, 1500)
self.set_rc(4, 1500)
# restore simple mode parameters to default
self.set_parameter("SUPER_SIMPLE", 0)
# hover in place
self.hover()
self.do_RTL()
# fly_circle - flies a circle with 20m radius
def ModeCircle(self, holdtime=36):
'''Fly CIRCLE mode'''
# the following should not be required. But there appears to
# be a physics failure in the simulation which is causing CI
# to fall over a lot. -pb 202007021209
self.reboot_sitl()
self.takeoff(10, mode="LOITER")
# face west
self.progress("turn west")
self.set_rc(4, 1580)
self.wait_heading(270)
self.set_rc(4, 1500)
# set CIRCLE radius
self.set_parameter("CIRCLE_RADIUS", 3000)
# fly forward (east) at least 100m
self.set_rc(2, 1100)
self.wait_distance(100)
# return pitch stick back to middle
self.set_rc(2, 1500)
# set CIRCLE mode
self.change_mode('CIRCLE')
# wait
m = self.mav.recv_match(type='VFR_HUD', blocking=True)
start_altitude = m.alt
tstart = self.get_sim_time()
self.progress("Circle at %u meters for %u seconds" %
(start_altitude, holdtime))
while self.get_sim_time_cached() < tstart + holdtime:
m = self.mav.recv_match(type='VFR_HUD', blocking=True)
self.progress("heading %d" % m.heading)
self.progress("CIRCLE OK for %u seconds" % holdtime)
self.do_RTL()
def CompassMot(self):
'''test code that adjust mag field for motor interference'''
self.run_cmd(
mavutil.mavlink.MAV_CMD_PREFLIGHT_CALIBRATION,
0, # p1
0, # p2
0, # p3
0, # p4
0, # p5
1, # p6
0 # p7
)
self.context_collect("STATUSTEXT")
self.wait_statustext("Starting calibration", check_context=True)
self.wait_statustext("Current", check_context=True)
rc3_min = self.get_parameter('RC3_MIN')
rc3_max = self.get_parameter('RC3_MAX')
rc3_dz = self.get_parameter('RC3_DZ')
def set_rc3_for_throttle_pct(thr_pct):
value = int((rc3_min+rc3_dz) + (thr_pct/100.0) * (rc3_max-(rc3_min+rc3_dz)))
self.progress("Setting rc3 to %u" % value)
self.set_rc(3, value)
throttle_in_pct = 0
set_rc3_for_throttle_pct(throttle_in_pct)
self.assert_received_message_field_values("COMPASSMOT_STATUS", {
"interference": 0,
"throttle": throttle_in_pct
}, verbose=True, very_verbose=True)
tstart = self.get_sim_time()
delta = 5
while True:
if self.get_sim_time_cached() - tstart > 60:
raise NotAchievedException("did not run through entire range")
throttle_in_pct += delta
self.progress("Using throttle %f%%" % throttle_in_pct)
set_rc3_for_throttle_pct(throttle_in_pct)
self.wait_message_field_values("COMPASSMOT_STATUS", {
"throttle": throttle_in_pct * 10.0,
}, verbose=True, very_verbose=True, epsilon=1)
if throttle_in_pct == 0:
# finished counting down
break
if throttle_in_pct == 100:
# start counting down
delta = -delta
m = self.wait_message_field_values("COMPASSMOT_STATUS", {
"throttle": 0,
}, verbose=True)
for axis in "X", "Y", "Z":
fieldname = "Compensation" + axis
if getattr(m, fieldname) <= 0:
raise NotAchievedException("Expected non-zero %s" % fieldname)
# it's kind of crap - but any command-ack will stop the
# calibration
self.mav.mav.command_ack_send(0, 1)
self.wait_statustext("Calibration successful")
def MagFail(self):
'''test failover of compass in EKF'''
# we want both EK2 and EK3
self.set_parameters({
"EK2_ENABLE": 1,
"EK3_ENABLE": 1,
})
self.takeoff(10, mode="LOITER")
self.change_mode('CIRCLE')
self.delay_sim_time(20)
self.context_collect("STATUSTEXT")
self.progress("Failing first compass")
self.set_parameter("SIM_MAG1_FAIL", 1)
# we want for the message twice, one for EK2 and again for EK3
self.wait_statustext("EKF2 IMU0 switching to compass 1", check_context=True)
self.wait_statustext("EKF3 IMU0 switching to compass 1", check_context=True)
self.progress("compass switch 1 OK")
self.delay_sim_time(2)
self.context_clear_collection("STATUSTEXT")
self.progress("Failing 2nd compass")
self.set_parameter("SIM_MAG2_FAIL", 1)
self.wait_statustext("EKF2 IMU0 switching to compass 2", check_context=True)
self.wait_statustext("EKF3 IMU0 switching to compass 2", check_context=True)
self.progress("compass switch 2 OK")
self.delay_sim_time(2)
self.context_clear_collection("STATUSTEXT")
self.progress("Failing 3rd compass")
self.set_parameter("SIM_MAG3_FAIL", 1)
self.delay_sim_time(2)
self.set_parameter("SIM_MAG1_FAIL", 0)
self.wait_statustext("EKF2 IMU0 switching to compass 0", check_context=True)
self.wait_statustext("EKF3 IMU0 switching to compass 0", check_context=True)
self.progress("compass switch 0 OK")
self.do_RTL()
def ModeFlip(self):
'''Fly Flip Mode'''
self.context_set_message_rate_hz(mavutil.mavlink.MAVLINK_MSG_ID_ATTITUDE, 100)
self.takeoff(20)
self.progress("Flipping in roll")
self.set_rc(1, 1700)
self.send_cmd_do_set_mode('FLIP') # don't wait for success
self.wait_attitude(despitch=0, desroll=45, tolerance=30)
self.wait_attitude(despitch=0, desroll=90, tolerance=30)
self.wait_attitude(despitch=0, desroll=-45, tolerance=30)
self.progress("Waiting for level")
self.set_rc(1, 1500) # can't change quickly enough!
self.wait_attitude(despitch=0, desroll=0, tolerance=5)
self.progress("Regaining altitude")
self.change_mode('ALT_HOLD')
self.wait_altitude(19, 60, relative=True)
self.progress("Flipping in pitch")
self.set_rc(2, 1700)
self.send_cmd_do_set_mode('FLIP') # don't wait for success
self.wait_attitude(despitch=45, desroll=0, tolerance=30)
# can't check roll here as it flips from 0 to -180..
self.wait_attitude(despitch=90, tolerance=30)
self.wait_attitude(despitch=-45, tolerance=30)
self.progress("Waiting for level")
self.set_rc(2, 1500) # can't change quickly enough!
self.wait_attitude(despitch=0, desroll=0, tolerance=5)
self.do_RTL()
def configure_EKFs_to_use_optical_flow_instead_of_GPS(self):
'''configure EKF to use optical flow instead of GPS'''
ahrs_ekf_type = self.get_parameter("AHRS_EKF_TYPE")
if ahrs_ekf_type == 2:
self.set_parameter("EK2_GPS_TYPE", 3)
if ahrs_ekf_type == 3:
self.set_parameters({
"EK3_SRC1_POSXY": 0,
"EK3_SRC1_VELXY": 5,
"EK3_SRC1_VELZ": 0,
})
def OpticalFlowLocation(self):
'''test optical flow doesn't supply location'''
self.context_push()
self.assert_sensor_state(mavutil.mavlink.MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW, False, False, False, verbose=True)
self.start_subtest("Make sure no crash if no rangefinder")
self.set_parameter("SIM_FLOW_ENABLE", 1)
self.set_parameter("FLOW_TYPE", 10)
self.configure_EKFs_to_use_optical_flow_instead_of_GPS()
self.reboot_sitl()
self.wait_sensor_state(mavutil.mavlink.MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW, True, True, True, verbose=True)
self.change_mode('LOITER')
self.delay_sim_time(5)
self.wait_statustext("Need Position Estimate", timeout=300)
self.context_pop()
self.reboot_sitl()
def OpticalFlow(self):
'''test OpticalFlow in flight'''
self.start_subtest("Make sure no crash if no rangefinder")
self.set_parameters({
"SIM_FLOW_ENABLE": 1,
"FLOW_TYPE": 10,
})
self.set_analog_rangefinder_parameters()
self.reboot_sitl()
self.change_mode('LOITER')
# ensure OPTICAL_FLOW message is reasonable:
global flow_rate_rads
global rangefinder_distance
global gps_speed
global last_debug_time
flow_rate_rads = 0
rangefinder_distance = 0
gps_speed = 0
last_debug_time = 0
def check_optical_flow(mav, m):
global flow_rate_rads
global rangefinder_distance
global gps_speed
global last_debug_time
m_type = m.get_type()
if m_type == "OPTICAL_FLOW":
flow_rate_rads = math.sqrt(m.flow_comp_m_x**2+m.flow_comp_m_y**2)
elif m_type == "RANGEFINDER":
rangefinder_distance = m.distance
elif m_type == "GPS_RAW_INT":
gps_speed = m.vel/100.0 # cm/s -> m/s
of_speed = flow_rate_rads * rangefinder_distance
if abs(of_speed - gps_speed) > 3:
raise NotAchievedException("gps=%f vs of=%f mismatch" %
(gps_speed, of_speed))
now = self.get_sim_time_cached()
if now - last_debug_time > 5:
last_debug_time = now
self.progress("gps=%f of=%f" % (gps_speed, of_speed))
self.install_message_hook_context(check_optical_flow)
self.fly_generic_mission("CMAC-copter-navtest.txt")
def OpticalFlowLimits(self):
'''test EKF navigation limiting'''
self.set_parameters({
"SIM_FLOW_ENABLE": 1,
"FLOW_TYPE": 10,
"SIM_GPS1_ENABLE": 0,
"SIM_TERRAIN": 0,
})
self.configure_EKFs_to_use_optical_flow_instead_of_GPS()
self.set_analog_rangefinder_parameters()
self.reboot_sitl()
# we can't takeoff in loiter as we need flow healthy
self.takeoff(alt_min=5, mode='ALT_HOLD', require_absolute=False, takeoff_throttle=1800)
self.change_mode('LOITER')
# speed should be limited to <10m/s
self.set_rc(2, 1000)
tstart = self.get_sim_time()
timeout = 60
started_climb = False
while self.get_sim_time_cached() - tstart < timeout:
m = self.assert_receive_message('GLOBAL_POSITION_INT')
spd = math.sqrt(m.vx**2 + m.vy**2) * 0.01
alt = m.relative_alt*0.001
# calculate max speed from altitude above the ground
margin = 2.0
max_speed = alt * 1.5 + margin
self.progress("%0.1f: Low Speed: %f (want <= %u) alt=%.1f" %
(self.get_sim_time_cached() - tstart,
spd,
max_speed, alt))
if spd > max_speed:
raise NotAchievedException(("Speed should be limited by"
"EKF optical flow limits"))
# after 30 seconds start climbing
if not started_climb and self.get_sim_time_cached() - tstart > 30:
started_climb = True
self.set_rc(3, 1900)
self.progress("Moving higher")
# check altitude is not climbing above 35m
if alt > 35:
raise NotAchievedException("Alt should be limited by EKF optical flow limits")
self.reboot_sitl(force=True)
def OpticalFlowCalibration(self):
'''test optical flow calibration'''
ex = None
self.context_push()
try:
self.set_parameter("SIM_FLOW_ENABLE", 1)
self.set_parameter("FLOW_TYPE", 10)
self.set_analog_rangefinder_parameters()
# RC9 starts/stops calibration
self.set_parameter("RC9_OPTION", 158)
# initialise flow scaling parameters to incorrect values
self.set_parameter("FLOW_FXSCALER", -200)
self.set_parameter("FLOW_FYSCALER", 200)
self.reboot_sitl()
# ensure calibration is off
self.set_rc(9, 1000)
# takeoff to 10m in loiter
self.takeoff(10, mode="LOITER", require_absolute=True, timeout=720)
# start calibration
self.set_rc(9, 2000)
tstart = self.get_sim_time()
timeout = 90
veh_dir_tstart = self.get_sim_time()
veh_dir = 0
while self.get_sim_time_cached() - tstart < timeout:
# roll and pitch vehicle until samples collected
# change direction of movement every 2 seconds
if self.get_sim_time_cached() - veh_dir_tstart > 2:
veh_dir_tstart = self.get_sim_time()
veh_dir = veh_dir + 1
if veh_dir > 3:
veh_dir = 0
if veh_dir == 0:
# move right
self.set_rc(1, 1800)
self.set_rc(2, 1500)
if veh_dir == 1:
# move left
self.set_rc(1, 1200)
self.set_rc(2, 1500)
if veh_dir == 2:
# move forward
self.set_rc(1, 1500)
self.set_rc(2, 1200)
if veh_dir == 3:
# move back
self.set_rc(1, 1500)
self.set_rc(2, 1800)
# return sticks to center
self.set_rc(1, 1500)
self.set_rc(2, 1500)
# stop calibration (not actually necessary)
self.set_rc(9, 1000)
# check scaling parameters have been restored to values near zero
flow_scalar_x = self.get_parameter("FLOW_FXSCALER")
flow_scalar_y = self.get_parameter("FLOW_FYSCALER")
if ((flow_scalar_x > 30) or (flow_scalar_x < -30)):
raise NotAchievedException("FlowCal failed to set FLOW_FXSCALER correctly")
if ((flow_scalar_y > 30) or (flow_scalar_y < -30)):
raise NotAchievedException("FlowCal failed to set FLOW_FYSCALER correctly")
except Exception as e:
self.print_exception_caught(e)
ex = e
self.disarm_vehicle(force=True)
self.context_pop()
self.reboot_sitl()
if ex is not None:
raise ex
def AutoTune(self):
"""Test autotune mode"""
rlld = self.get_parameter("ATC_RAT_RLL_D")
rlli = self.get_parameter("ATC_RAT_RLL_I")
rllp = self.get_parameter("ATC_RAT_RLL_P")
self.set_parameter("ATC_RAT_RLL_SMAX", 1)
self.takeoff(10)
# hold position in loiter
self.change_mode('AUTOTUNE')
tstart = self.get_sim_time()
sim_time_expected = 5000
deadline = tstart + sim_time_expected
while self.get_sim_time_cached() < deadline:
now = self.get_sim_time_cached()
m = self.mav.recv_match(type='STATUSTEXT',
blocking=True,
timeout=1)
if m is None:
continue
self.progress("STATUSTEXT (%u<%u): %s" % (now, deadline, m.text))
if "AutoTune: Success" in m.text:
self.progress("AUTOTUNE OK (%u seconds)" % (now - tstart))
# near enough for now:
self.change_mode('LAND')
self.wait_landed_and_disarmed()
# check the original gains have been re-instated
if (rlld != self.get_parameter("ATC_RAT_RLL_D") or
rlli != self.get_parameter("ATC_RAT_RLL_I") or
rllp != self.get_parameter("ATC_RAT_RLL_P")):
raise NotAchievedException("AUTOTUNE gains still present")
return
raise NotAchievedException("AUTOTUNE failed (%u seconds)" %
(self.get_sim_time() - tstart))
def AutoTuneYawD(self):
"""Test autotune mode"""
rlld = self.get_parameter("ATC_RAT_RLL_D")
rlli = self.get_parameter("ATC_RAT_RLL_I")
rllp = self.get_parameter("ATC_RAT_RLL_P")
self.set_parameter("ATC_RAT_RLL_SMAX", 1)
self.set_parameter("AUTOTUNE_AXES", 15)
self.takeoff(10)
# hold position in loiter
self.change_mode('AUTOTUNE')
tstart = self.get_sim_time()
sim_time_expected = 5000
deadline = tstart + sim_time_expected
while self.get_sim_time_cached() < deadline:
now = self.get_sim_time_cached()
m = self.mav.recv_match(type='STATUSTEXT',
blocking=True,
timeout=1)
if m is None:
continue
self.progress("STATUSTEXT (%u<%u): %s" % (now, deadline, m.text))
if "AutoTune: Success" in m.text:
self.progress("AUTOTUNE OK (%u seconds)" % (now - tstart))
# near enough for now:
self.change_mode('LAND')
self.wait_landed_and_disarmed()
# check the original gains have been re-instated
if (rlld != self.get_parameter("ATC_RAT_RLL_D") or
rlli != self.get_parameter("ATC_RAT_RLL_I") or
rllp != self.get_parameter("ATC_RAT_RLL_P")):
raise NotAchievedException("AUTOTUNE gains still present")
return
raise NotAchievedException("AUTOTUNE failed (%u seconds)" %
(self.get_sim_time() - tstart))
def AutoTuneSwitch(self):
"""Test autotune on a switch with gains being saved"""
# autotune changes a set of parameters on the vehicle which
# are not in our context. That changes the flight
# characterstics, which we can't afford between runs. So
# completely reset the simulated vehicle after the run is
# complete by "customising" the commandline here:
self.customise_SITL_commandline([])
self.set_parameters({
"RC8_OPTION": 17,
"ATC_RAT_RLL_FLTT": 20,
})
self.takeoff(10, mode='LOITER')
def print_gains(name, gains):
self.progress(f"AUTOTUNE {name} gains are P:%f I:%f D:%f" % (
gains["ATC_RAT_RLL_P"],
gains["ATC_RAT_RLL_I"],
gains["ATC_RAT_RLL_D"]
))
def get_roll_gains(name):
ret = self.get_parameters([
"ATC_RAT_RLL_D",
"ATC_RAT_RLL_I",
"ATC_RAT_RLL_P",
], verbose=False)
print_gains(name, ret)
return ret
def gains_same(gains1, gains2):
for c in 'P', 'I', 'D':
p_name = f"ATC_RAT_RLL_{c}"
if abs(gains1[p_name] - gains2[p_name]) > 0.00001:
return False
return True
self.progress("Take a copy of original gains")
original_gains = get_roll_gains("pre-tuning")
scaled_original_gains = copy.copy(original_gains)
scaled_original_gains["ATC_RAT_RLL_I"] *= 0.1
pre_rllt = self.get_parameter("ATC_RAT_RLL_FLTT")
# hold position in loiter and run autotune
self.set_rc(8, 1850)
self.wait_mode('AUTOTUNE')
tstart = self.get_sim_time()
sim_time_expected = 5000
deadline = tstart + sim_time_expected
while self.get_sim_time_cached() < deadline:
now = self.get_sim_time_cached()
m = self.mav.recv_match(type='STATUSTEXT',
blocking=True,
timeout=1)
if m is None:
continue
self.progress("STATUSTEXT (%u<%u): %s" % (now, deadline, m.text))
if "Determination Failed" in m.text:
break
if "AutoTune: Success" in m.text:
self.progress("AUTOTUNE OK (%u seconds)" % (now - tstart))
post_gains = get_roll_gains("post")
if gains_same(original_gains, post_gains):
raise NotAchievedException("AUTOTUNE gains not changed")
# because of the way AutoTune works, once autotune is
# complete we return the original parameters via
# parameter-fetching, but fly on the tuned parameters
# (both sets with the I term scaled down). This test
# makes sure that's still the case. It would be nice
# if the PIDs parameters were `set` on success, but
# they aren't... Note that if we use the switch to
# restore the original gains and then start testing
# again (with the switch) then we see the new gains!
# gains are scaled during the testing phase:
if not gains_same(scaled_original_gains, post_gains):
raise NotAchievedException("AUTOTUNE gains were reported as just original gains in test-mode. If you're fixing this, good!") # noqa
self.progress("Check original gains are re-instated by switch")
self.set_rc(8, 1100)
self.delay_sim_time(1)
current_gains = get_roll_gains("set-original")
if not gains_same(original_gains, current_gains):
raise NotAchievedException("AUTOTUNE original gains not restored")
self.progress("Use autotuned gains")
self.set_rc(8, 1850)
self.delay_sim_time(1)
tuned_gains = get_roll_gains("tuned")
if gains_same(tuned_gains, original_gains):
raise NotAchievedException("AUTOTUNE tuned gains same as pre gains")
if gains_same(tuned_gains, scaled_original_gains):
raise NotAchievedException("AUTOTUNE tuned gains same as scaled pre gains")
self.progress("land without changing mode")
self.set_rc(3, 1000)
self.wait_altitude(-1, 5, relative=True)
self.wait_disarmed()
self.progress("Check gains are still there after disarm")
disarmed_gains = get_roll_gains("post-disarm")
if not gains_same(tuned_gains, disarmed_gains):
raise NotAchievedException("AUTOTUNE gains not present on disarm")
self.reboot_sitl()
self.progress("Check gains are still there after reboot")
reboot_gains = get_roll_gains("post-reboot")
if not gains_same(tuned_gains, reboot_gains):
raise NotAchievedException("AUTOTUNE gains not present on reboot")
self.progress("Check FLTT is unchanged")
if pre_rllt != self.get_parameter("ATC_RAT_RLL_FLTT"):
raise NotAchievedException("AUTOTUNE FLTT was modified")
return
raise NotAchievedException("AUTOTUNE failed (%u seconds)" %
(self.get_sim_time() - tstart))
def EK3_RNG_USE_HGT(self):
'''basic tests for using rangefinder when speed and height below thresholds'''
# this takes advantage of some code in send_status_report
# which only reports terrain variance when using switch-height
# and using the rangefinder
self.context_push()
self.set_analog_rangefinder_parameters()
# set use-height to 20m (the parameter is a percentage of max range)
self.set_parameters({
'EK3_RNG_USE_HGT': 200000 / self.get_parameter('RNGFND1_MAX_CM'),
})
self.reboot_sitl()
# add a listener that verifies rangefinder innovations look good
global alt
alt = None
def verify_innov(mav, m):
global alt
if m.get_type() == 'GLOBAL_POSITION_INT':
alt = m.relative_alt * 0.001 # mm -> m
return
if m.get_type() != 'EKF_STATUS_REPORT':
return
if alt is None:
return
if alt > 1 and alt < 8: # 8 is very low, but it takes a long time to start to use the rangefinder again
zero_variance_wanted = False
elif alt > 20:
zero_variance_wanted = True
else:
return
variance = m.terrain_alt_variance
if zero_variance_wanted and variance > 0.00001:
raise NotAchievedException("Wanted zero variance at height %f, got %f" % (alt, variance))
elif not zero_variance_wanted and variance == 0:
raise NotAchievedException("Wanted non-zero variance at alt=%f, got zero" % alt)
self.install_message_hook_context(verify_innov)
self.takeoff(50, mode='GUIDED')
current_alt = self.mav.location().alt
target_position = mavutil.location(
-35.362938,
149.165185,
current_alt,
0
)
self.fly_guided_move_to(target_position, timeout=300)
self.change_mode('LAND')
self.wait_disarmed()
self.context_pop()
self.reboot_sitl()
def TerrainDBPreArm(self):
'''test that pre-arm checks are working corrctly for terrain database'''
self.context_push()
self.progress("# Load msission with terrain alt")
# load the waypoint
num_wp = self.load_mission("terrain_wp.txt", strict=False)
if not num_wp:
raise NotAchievedException("load terrain_wp failed")
self.set_analog_rangefinder_parameters()
self.set_parameters({
"WPNAV_RFND_USE": 1,
"TERRAIN_ENABLE": 1,
})
self.reboot_sitl()
self.wait_ready_to_arm()
# make sure we can still arm with valid rangefinder and terrain db disabled
self.set_parameter("TERRAIN_ENABLE", 0)
self.wait_ready_to_arm()
self.progress("# Vehicle armed with terrain db disabled")
# make sure we can't arm with terrain db enabled and no rangefinder in us
self.set_parameter("WPNAV_RFND_USE", 0)
self.assert_prearm_failure("terrain disabled")
self.context_pop()
self.reboot_sitl()
def CopterMission(self):
'''fly mission which tests a significant number of commands'''
# Fly mission #1
self.progress("# Load copter_mission")
# load the waypoint count
num_wp = self.load_mission("copter_mission.txt", strict=False)
if not num_wp:
raise NotAchievedException("load copter_mission failed")
self.fly_loaded_mission(num_wp)
self.progress("Auto mission completed: passed!")
def set_origin(self, loc, timeout=60):
'''set the GPS global origin to loc'''
tstart = self.get_sim_time()
while True:
if self.get_sim_time_cached() - tstart > timeout:
raise AutoTestTimeoutException("Did not get non-zero lat")
target_system = 1
self.mav.mav.set_gps_global_origin_send(
target_system,
int(loc.lat * 1e7),
int(loc.lng * 1e7),
int(loc.alt * 1e3)
)
gpi = self.assert_receive_message('GLOBAL_POSITION_INT')
self.progress("gpi=%s" % str(gpi))
if gpi.lat != 0:
break
def FarOrigin(self):
'''fly a mission far from the vehicle origin'''
# Fly mission #1
self.set_parameters({
"SIM_GPS1_ENABLE": 0,
})
self.reboot_sitl()
nz = mavutil.location(-43.730171, 169.983118, 1466.3, 270)
self.set_origin(nz)
self.set_parameters({
"SIM_GPS1_ENABLE": 1,
})
self.progress("# Load copter_mission")
# load the waypoint count
num_wp = self.load_mission("copter_mission.txt", strict=False)
if not num_wp:
raise NotAchievedException("load copter_mission failed")
self.fly_loaded_mission(num_wp)
self.progress("Auto mission completed: passed!")
def fly_loaded_mission(self, num_wp):
'''fly mission loaded on vehicle. FIXME: get num_wp from vehicle'''
self.progress("test: Fly a mission from 1 to %u" % num_wp)
self.set_current_waypoint(1)
self.change_mode("LOITER")
self.wait_ready_to_arm()
self.arm_vehicle()
# switch into AUTO mode and raise throttle
self.change_mode("AUTO")
self.set_rc(3, 1500)
# fly the mission
self.wait_waypoint(0, num_wp-1, timeout=500)
# set throttle to minimum
self.zero_throttle()
# wait for disarm
self.wait_disarmed()
self.progress("MOTORS DISARMED OK")
def CANGPSCopterMission(self):
'''fly mission which tests normal operation alongside CAN GPS'''
self.set_parameters({
"CAN_P1_DRIVER": 1,
"GPS1_TYPE": 9,
"GPS2_TYPE": 9,
# disable simulated GPS, so only via DroneCAN
"SIM_GPS1_ENABLE": 0,
"SIM_GPS2_ENABLE": 0,
# this ensures we use DroneCAN baro and compass
"SIM_BARO_COUNT" : 0,
"SIM_MAG1_DEVID" : 0,
"SIM_MAG2_DEVID" : 0,
"SIM_MAG3_DEVID" : 0,
"COMPASS_USE2" : 0,
"COMPASS_USE3" : 0,
# use DroneCAN rangefinder
"RNGFND1_TYPE" : 24,
"RNGFND1_MAX_CM" : 11000,
# use DroneCAN battery monitoring, and enforce with a arming voltage
"BATT_MONITOR" : 8,
"BATT_ARM_VOLT" : 12.0,
"SIM_SPEEDUP": 2,
})
self.context_push()
self.set_parameter("ARMING_CHECK", 1 << 3)
self.context_collect('STATUSTEXT')
self.reboot_sitl()
# Test UAVCAN GPS ordering working
gps1_det_text = self.wait_text("GPS 1: specified as DroneCAN.*", regex=True, check_context=True)
gps2_det_text = self.wait_text("GPS 2: specified as DroneCAN.*", regex=True, check_context=True)
gps1_nodeid = int(gps1_det_text.split('-')[1])
gps2_nodeid = int(gps2_det_text.split('-')[1])
if gps1_nodeid is None or gps2_nodeid is None:
raise NotAchievedException("GPS not ordered per the order of Node IDs")
self.context_stop_collecting('STATUSTEXT')
GPS_Order_Tests = [[gps2_nodeid, gps2_nodeid, gps2_nodeid, 0,
"PreArm: Same Node Id {} set for multiple GPS".format(gps2_nodeid)],
[gps1_nodeid, int(gps2_nodeid/2), gps1_nodeid, 0,
"Selected GPS Node {} not set as instance {}".format(int(gps2_nodeid/2), 2)],
[int(gps1_nodeid/2), gps2_nodeid, 0, gps2_nodeid,
"Selected GPS Node {} not set as instance {}".format(int(gps1_nodeid/2), 1)],
[gps1_nodeid, gps2_nodeid, gps1_nodeid, gps2_nodeid, ""],
[gps2_nodeid, gps1_nodeid, gps2_nodeid, gps1_nodeid, ""],
[gps1_nodeid, 0, gps1_nodeid, gps2_nodeid, ""],
[0, gps2_nodeid, gps1_nodeid, gps2_nodeid, ""]]
for case in GPS_Order_Tests:
self.progress("############################### Trying Case: " + str(case))
self.set_parameters({
"GPS1_CAN_OVRIDE": case[0],
"GPS2_CAN_OVRIDE": case[1],
})
self.drain_mav()
self.context_collect('STATUSTEXT')
self.reboot_sitl()
gps1_det_text = None
gps2_det_text = None
try:
gps1_det_text = self.wait_text("GPS 1: specified as DroneCAN.*", regex=True, check_context=True)
except AutoTestTimeoutException:
pass
try:
gps2_det_text = self.wait_text("GPS 2: specified as DroneCAN.*", regex=True, check_context=True)
except AutoTestTimeoutException:
pass
self.context_stop_collecting('STATUSTEXT')
self.change_mode('LOITER')
if case[2] == 0 and case[3] == 0:
if gps1_det_text or gps2_det_text:
raise NotAchievedException("Failed ordering for requested CASE:", case)
if case[2] == 0 or case[3] == 0:
if bool(gps1_det_text is not None) == bool(gps2_det_text is not None):
print(gps1_det_text)
print(gps2_det_text)
raise NotAchievedException("Failed ordering for requested CASE:", case)
if gps1_det_text:
if case[2] != int(gps1_det_text.split('-')[1]):
raise NotAchievedException("Failed ordering for requested CASE:", case)
if gps2_det_text:
if case[3] != int(gps2_det_text.split('-')[1]):
raise NotAchievedException("Failed ordering for requested CASE:", case)
if len(case[4]):
self.context_collect('STATUSTEXT')
self.run_cmd(
mavutil.mavlink.MAV_CMD_COMPONENT_ARM_DISARM,
p1=1, # ARM
timeout=10,
want_result=mavutil.mavlink.MAV_RESULT_FAILED,
)
self.wait_statustext(case[4], check_context=True)
self.context_stop_collecting('STATUSTEXT')
self.progress("############################### All GPS Order Cases Tests Passed")
self.progress("############################### Test Healthy Prearm check")
self.set_parameter("ARMING_CHECK", 1)
self.stop_sup_program(instance=0)
self.start_sup_program(instance=0, args="-M")
self.stop_sup_program(instance=1)
self.start_sup_program(instance=1, args="-M")
self.delay_sim_time(2)
self.context_collect('STATUSTEXT')
self.run_cmd(
mavutil.mavlink.MAV_CMD_COMPONENT_ARM_DISARM,
p1=1, # ARM
timeout=10,
want_result=mavutil.mavlink.MAV_RESULT_FAILED,
)
self.wait_statustext(".*Node .* unhealthy", check_context=True, regex=True)
self.stop_sup_program(instance=0)
self.start_sup_program(instance=0)
self.stop_sup_program(instance=1)
self.start_sup_program(instance=1)
self.context_stop_collecting('STATUSTEXT')
self.context_pop()
self.set_parameters({
# use DroneCAN ESCs for flight
"CAN_D1_UC_ESC_BM" : 0x0f,
# this stops us using local servo output, guaranteeing we are
# flying on DroneCAN ESCs
"SIM_CAN_SRV_MSK" : 0xFF,
# we can do the flight faster
"SIM_SPEEDUP" : 5,
})
self.CopterMission()
def TakeoffAlt(self):
'''Test Takeoff command altitude'''
# Test case #1 (set target altitude to relative -10m from the ground, -10m is invalid, so it is set to 1m)
self.progress("Testing relative alt from the ground")
self.do_takeoff_alt("copter_takeoff.txt", 1, False)
# Test case #2 (set target altitude to relative -10m during flight, -10m is invalid, so keeps current altitude)
self.progress("Testing relative alt during flight")
self.do_takeoff_alt("copter_takeoff.txt", 10, True)
self.progress("Takeoff mission completed: passed!")
def do_takeoff_alt(self, mission_file, target_alt, during_flight=False):
self.progress("# Load %s" % mission_file)
# load the waypoint count
num_wp = self.load_mission(mission_file, strict=False)
if not num_wp:
raise NotAchievedException("load %s failed" % mission_file)
self.set_current_waypoint(1)
self.change_mode("GUIDED")
self.wait_ready_to_arm()
self.arm_vehicle()
if during_flight:
self.user_takeoff(alt_min=target_alt)
# switch into AUTO mode and raise throttle
self.change_mode("AUTO")
self.set_rc(3, 1500)
# fly the mission
self.wait_waypoint(0, num_wp-1, timeout=500)
# altitude check
self.wait_altitude(target_alt - 1 , target_alt + 1, relative=True)
self.change_mode('LAND')
# set throttle to minimum
self.zero_throttle()
# wait for disarm
self.wait_disarmed()
self.progress("MOTORS DISARMED OK")
def GuidedEKFLaneChange(self):
'''test lane change with GPS diff on startup'''
self.set_parameters({
"EK3_SRC1_POSZ": 3,
"EK3_AFFINITY" : 1,
"GPS2_TYPE" : 1,
"SIM_GPS2_ENABLE" : 1,
"SIM_GPS2_GLTCH_Z" : -30
})
self.reboot_sitl()
self.change_mode("GUIDED")
self.wait_ready_to_arm()
self.delay_sim_time(10, reason='"both EKF lanes to init"')
self.set_parameters({
"SIM_GPS2_GLTCH_Z" : 0
})
self.delay_sim_time(20, reason="EKF to do a position Z reset")
self.arm_vehicle()
self.user_takeoff(alt_min=20)
gps_alt = self.get_altitude(altitude_source='GPS_RAW_INT.alt')
self.progress("Initial guided alt=%.1fm" % gps_alt)
self.context_collect('STATUSTEXT')
self.progress("force a lane change")
self.set_parameters({
"INS_ACCOFFS_X" : 5
})
self.wait_statustext("EKF3 lane switch 1", timeout=10, check_context=True)
self.watch_altitude_maintained(
altitude_min=gps_alt-2,
altitude_max=gps_alt+2,
altitude_source='GPS_RAW_INT.alt',
minimum_duration=10,
)
self.disarm_vehicle(force=True)
self.reboot_sitl()
def MotorFail(self, ):
"""Test flight with reduced motor efficiency"""
# we only expect an octocopter to survive ATM:
self.MotorFail_test_frame('octa', 8, frame_class=3)
# self.MotorFail_test_frame('hexa', 6, frame_class=2)
# self.MotorFail_test_frame('y6', 6, frame_class=5)
def MotorFail_test_frame(self, model, servo_count, frame_class, fail_servo=0, fail_mul=0.0, holdtime=30):
self.set_parameters({
'FRAME_CLASS': frame_class,
})
self.customise_SITL_commandline([], model=model)
self.takeoff(25, mode="LOITER")
# Get initial values
start_hud = self.assert_receive_message('VFR_HUD')
start_attitude = self.assert_receive_message('ATTITUDE')
hover_time = 5
tstart = self.get_sim_time()
int_error_alt = 0
int_error_yaw_rate = 0
int_error_yaw = 0
self.progress("Hovering for %u seconds" % hover_time)
failed = False
while True:
now = self.get_sim_time_cached()
if now - tstart > holdtime + hover_time:
break
servo = self.assert_receive_message('SERVO_OUTPUT_RAW')
hud = self.assert_receive_message('VFR_HUD')
attitude = self.assert_receive_message('ATTITUDE')
if not failed and now - tstart > hover_time:
self.progress("Killing motor %u (%u%%)" %
(fail_servo+1, fail_mul))
self.set_parameters({
"SIM_ENGINE_MUL": fail_mul,
"SIM_ENGINE_FAIL": 1 << fail_servo,
})
failed = True
if failed:
self.progress("Hold Time: %f/%f" % (now-tstart, holdtime))
servo_pwm = [
servo.servo1_raw,
servo.servo2_raw,
servo.servo3_raw,
servo.servo4_raw,
servo.servo5_raw,
servo.servo6_raw,
servo.servo7_raw,
servo.servo8_raw,
]
self.progress("PWM output per motor")
for i, pwm in enumerate(servo_pwm[0:servo_count]):
if pwm > 1900:
state = "oversaturated"
elif pwm < 1200:
state = "undersaturated"
else:
state = "OK"
if failed and i == fail_servo:
state += " (failed)"
self.progress("servo %u [pwm=%u] [%s]" % (i+1, pwm, state))
alt_delta = hud.alt - start_hud.alt
yawrate_delta = attitude.yawspeed - start_attitude.yawspeed
yaw_delta = attitude.yaw - start_attitude.yaw
self.progress("Alt=%fm (delta=%fm)" % (hud.alt, alt_delta))
self.progress("Yaw rate=%f (delta=%f) (rad/s)" %
(attitude.yawspeed, yawrate_delta))
self.progress("Yaw=%f (delta=%f) (deg)" %
(attitude.yaw, yaw_delta))
dt = self.get_sim_time() - now
int_error_alt += abs(alt_delta/dt)
int_error_yaw_rate += abs(yawrate_delta/dt)
int_error_yaw += abs(yaw_delta/dt)
self.progress("## Error Integration ##")
self.progress(" Altitude: %fm" % int_error_alt)
self.progress(" Yaw rate: %f rad/s" % int_error_yaw_rate)
self.progress(" Yaw: %f deg" % int_error_yaw)
self.progress("----")
if int_error_yaw > 5:
raise NotAchievedException("Vehicle is spinning")
if alt_delta < -20:
raise NotAchievedException("Vehicle is descending")
self.progress("Fixing motors")
self.set_parameter("SIM_ENGINE_FAIL", 0)
self.do_RTL()
def hover_for_interval(self, hover_time):
'''hovers for an interval of hover_time seconds. Returns the bookend
times for that interval (in time-since-boot frame), and the
output throttle level at the end of the period.
'''
self.progress("Hovering for %u seconds" % hover_time)
tstart = self.get_sim_time()
self.delay_sim_time(hover_time, reason='data collection')
vfr_hud = self.poll_message('VFR_HUD')
tend = self.get_sim_time()
return tstart, tend, vfr_hud.throttle
def MotorVibration(self):
"""Test flight with motor vibration"""
# magic tridge EKF type that dramatically speeds up the test
self.set_parameters({
"AHRS_EKF_TYPE": 10,
"INS_LOG_BAT_MASK": 3,
"INS_LOG_BAT_OPT": 0,
"LOG_BITMASK": 958,
"LOG_DISARMED": 0,
"SIM_VIB_MOT_MAX": 350,
# these are real values taken from a 180mm Quad:
"SIM_GYR1_RND": 20,
"SIM_ACC1_RND": 5,
"SIM_ACC2_RND": 5,
"SIM_INS_THR_MIN": 0.1,
})
self.reboot_sitl()
# do a simple up-and-down flight to gather data:
self.takeoff(15, mode="ALT_HOLD")
tstart, tend, hover_throttle = self.hover_for_interval(15)
# if we don't reduce vibes here then the landing detector
# may not trigger
self.set_parameter("SIM_VIB_MOT_MAX", 0)
self.do_RTL()
psd = self.mavfft_fttd(1, 0, tstart * 1.0e6, tend * 1.0e6)
# ignore the first 20Hz and look for a peak at -15dB or more
# it should be at about 190Hz, each bin is 1000/1024Hz wide
ignore_bins = int(100 * 1.024) # start at 100Hz to be safe
freq = psd["F"][numpy.argmax(psd["X"][ignore_bins:]) + ignore_bins]
if numpy.amax(psd["X"][ignore_bins:]) < -15 or freq < 100 or freq > 300:
raise NotAchievedException(
"Did not detect a motor peak, found %f at %f dB" %
(freq, numpy.amax(psd["X"][ignore_bins:])))
else:
self.progress("Detected motor peak at %fHz" % freq)
# now add a notch and check that post-filter the peak is squashed below 40dB
self.set_parameters({
"INS_LOG_BAT_OPT": 2,
"INS_HNTC2_ENABLE": 1,
"INS_HNTC2_FREQ": freq,
"INS_HNTC2_ATT": 50,
"INS_HNTC2_BW": freq/2,
"INS_HNTC2_MODE": 0,
"SIM_VIB_MOT_MAX": 350,
})
self.reboot_sitl()
# do a simple up-and-down flight to gather data:
self.takeoff(15, mode="ALT_HOLD")
tstart, tend, hover_throttle = self.hover_for_interval(15)
self.set_parameter("SIM_VIB_MOT_MAX", 0)
self.do_RTL()
psd = self.mavfft_fttd(1, 0, tstart * 1.0e6, tend * 1.0e6)
freq = psd["F"][numpy.argmax(psd["X"][ignore_bins:]) + ignore_bins]
peakdB = numpy.amax(psd["X"][ignore_bins:])
if peakdB < -23:
self.progress("Did not detect a motor peak, found %f at %f dB" % (freq, peakdB))
else:
raise NotAchievedException("Detected peak %.1f Hz %.2f dB" % (freq, peakdB))
def VisionPosition(self):
"""Disable GPS navigation, enable Vicon input."""
# scribble down a location we can set origin to:
self.customise_SITL_commandline(["--serial5=sim:vicon:"])
self.progress("Waiting for location")
self.change_mode('LOITER')
self.wait_ready_to_arm()
old_pos = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
print("old_pos=%s" % str(old_pos))
# configure EKF to use external nav instead of GPS
ahrs_ekf_type = self.get_parameter("AHRS_EKF_TYPE")
if ahrs_ekf_type == 2:
self.set_parameter("EK2_GPS_TYPE", 3)
if ahrs_ekf_type == 3:
self.set_parameters({
"EK3_SRC1_POSXY": 6,
"EK3_SRC1_VELXY": 6,
"EK3_SRC1_POSZ": 6,
"EK3_SRC1_VELZ": 6,
})
self.set_parameters({
"GPS1_TYPE": 0,
"VISO_TYPE": 1,
"SERIAL5_PROTOCOL": 1,
})
self.reboot_sitl()
# without a GPS or some sort of external prompting, AP
# doesn't send system_time messages. So prompt it:
self.mav.mav.system_time_send(int(time.time() * 1000000), 0)
self.progress("Waiting for non-zero-lat")
tstart = self.get_sim_time()
while True:
if self.get_sim_time_cached() - tstart > 60:
raise AutoTestTimeoutException("Did not get non-zero lat")
self.mav.mav.set_gps_global_origin_send(1,
old_pos.lat,
old_pos.lon,
old_pos.alt)
gpi = self.assert_receive_message('GLOBAL_POSITION_INT')
self.progress("gpi=%s" % str(gpi))
if gpi.lat != 0:
break
self.takeoff()
self.set_rc(1, 1600)
tstart = self.get_sim_time()
while True:
vicon_pos = self.assert_receive_message('VISION_POSITION_ESTIMATE')
# print("vpe=%s" % str(vicon_pos))
# gpi = self.assert_receive_message('GLOBAL_POSITION_INT')
# self.progress("gpi=%s" % str(gpi))
if vicon_pos.x > 40:
break
if self.get_sim_time_cached() - tstart > 100:
raise AutoTestTimeoutException("Vicon showed no movement")
# recenter controls:
self.set_rc(1, 1500)
self.progress("# Enter RTL")
self.change_mode('RTL')
self.set_rc(3, 1500)
tstart = self.get_sim_time()
# self.install_messageprinter_handlers_context(['SIMSTATE', 'GLOBAL_POSITION_INT'])
self.wait_disarmed(timeout=200)
def BodyFrameOdom(self):
"""Disable GPS navigation, enable input of VISION_POSITION_DELTA."""
if self.get_parameter("AHRS_EKF_TYPE") != 3:
# only tested on this EKF
return
self.customise_SITL_commandline(["--serial5=sim:vicon:"])
if self.current_onboard_log_contains_message("XKFD"):
raise NotAchievedException("Found unexpected XKFD message")
# scribble down a location we can set origin to:
self.progress("Waiting for location")
self.change_mode('LOITER')
self.wait_ready_to_arm()
old_pos = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
print("old_pos=%s" % str(old_pos))
# configure EKF to use external nav instead of GPS
self.set_parameters({
"EK3_SRC1_POSXY": 6,
"EK3_SRC1_VELXY": 6,
"EK3_SRC1_POSZ": 6,
"EK3_SRC1_VELZ": 6,
"GPS1_TYPE": 0,
"VISO_TYPE": 1,
"SERIAL5_PROTOCOL": 1,
"SIM_VICON_TMASK": 8, # send VISION_POSITION_DELTA
})
self.reboot_sitl()
# without a GPS or some sort of external prompting, AP
# doesn't send system_time messages. So prompt it:
self.mav.mav.system_time_send(int(time.time() * 1000000), 0)
self.progress("Waiting for non-zero-lat")
tstart = self.get_sim_time()
while True:
self.mav.mav.set_gps_global_origin_send(1,
old_pos.lat,
old_pos.lon,
old_pos.alt)
gpi = self.mav.recv_match(type='GLOBAL_POSITION_INT',
blocking=True)
self.progress("gpi=%s" % str(gpi))
if gpi.lat != 0:
break
if self.get_sim_time_cached() - tstart > 60:
raise AutoTestTimeoutException("Did not get non-zero lat")
self.takeoff(alt_min=5, mode='ALT_HOLD', require_absolute=False, takeoff_throttle=1800)
self.change_mode('LAND')
# TODO: something more elaborate here - EKF will only aid
# relative position
self.wait_disarmed()
if not self.current_onboard_log_contains_message("XKFD"):
raise NotAchievedException("Did not find expected XKFD message")
def FlyMissionTwice(self):
'''fly a mission twice in a row without changing modes in between.
Seeks to show bugs in mission state machine'''
self.upload_simple_relhome_mission([
(mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 20),
(mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 20, 0, 20),
(mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0),
])
num_wp = self.get_mission_count()
self.set_parameter("AUTO_OPTIONS", 3)
self.change_mode('AUTO')
self.wait_ready_to_arm()
for i in 1, 2:
self.progress("run %u" % i)
self.arm_vehicle()
self.wait_waypoint(num_wp-1, num_wp-1)
self.wait_disarmed()
self.delay_sim_time(20)
def FlyMissionTwiceWithReset(self):
'''Fly a mission twice in a row without changing modes in between.
Allow the mission to complete, then reset the mission state machine and restart the mission.'''
self.upload_simple_relhome_mission([
(mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 20),
(mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 20, 0, 20),
(mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0),
])
num_wp = self.get_mission_count()
self.set_parameter("AUTO_OPTIONS", 3)
self.change_mode('AUTO')
self.wait_ready_to_arm()
for i in 1, 2:
self.progress("run %u" % i)
# Use the "Reset Mission" param of DO_SET_MISSION_CURRENT to reset mission state machine
self.set_current_waypoint_using_mav_cmd_do_set_mission_current(seq=0, reset=1)
self.arm_vehicle()
self.wait_waypoint(num_wp-1, num_wp-1)
self.wait_disarmed()
self.delay_sim_time(20)
def MissionIndexValidity(self):
'''Confirm that attempting to select an invalid mission item is rejected.'''
self.upload_simple_relhome_mission([
(mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 20),
(mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 20, 0, 20),
(mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0),
])
num_wp = self.get_mission_count()
accepted_indices = [0, 1, num_wp-1]
denied_indices = [-1, num_wp]
for seq in accepted_indices:
self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_MISSION_CURRENT,
p1=seq,
timeout=1,
want_result=mavutil.mavlink.MAV_RESULT_ACCEPTED)
for seq in denied_indices:
self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_MISSION_CURRENT,
p1=seq,
timeout=1,
want_result=mavutil.mavlink.MAV_RESULT_DENIED)
def InvalidJumpTags(self):
'''Verify the behaviour when selecting invalid jump tags.'''
MAX_TAG_NUM = 65535
# Jump tag is not present, so expect FAILED
self.run_cmd(mavutil.mavlink.MAV_CMD_DO_JUMP_TAG,
p1=MAX_TAG_NUM,
timeout=1,
want_result=mavutil.mavlink.MAV_RESULT_FAILED)
# Jump tag is too big, so expect DENIED
self.run_cmd(mavutil.mavlink.MAV_CMD_DO_JUMP_TAG,
p1=MAX_TAG_NUM+1,
timeout=1,
want_result=mavutil.mavlink.MAV_RESULT_DENIED)
def GPSViconSwitching(self):
"""Fly GPS and Vicon switching test"""
"""Setup parameters including switching to EKF3"""
self.set_parameters({
"VISO_TYPE": 2, # enable vicon
"SERIAL5_PROTOCOL": 2,
"EK3_ENABLE": 1,
"EK3_SRC2_POSXY": 6, # External Nav
"EK3_SRC2_POSZ": 6, # External Nav
"EK3_SRC2_VELXY": 6, # External Nav
"EK3_SRC2_VELZ": 6, # External Nav
"EK3_SRC2_YAW": 6, # External Nav
"RC7_OPTION": 80, # RC aux switch 7 set to Viso Align
"RC8_OPTION": 90, # RC aux switch 8 set to EKF source selector
"EK2_ENABLE": 0,
"AHRS_EKF_TYPE": 3,
})
self.customise_SITL_commandline(["--serial5=sim:vicon:"])
# switch to use GPS
self.set_rc(8, 1000)
# ensure we can get a global position:
self.poll_home_position(timeout=120)
# record starting position
old_pos = self.get_global_position_int()
print("old_pos=%s" % str(old_pos))
# align vicon yaw with ahrs heading
self.set_rc(7, 2000)
# takeoff to 10m in Loiter
self.progress("Moving to ensure location is tracked")
self.takeoff(10, mode="LOITER", require_absolute=True, timeout=720)
# fly forward in Loiter
self.set_rc(2, 1300)
# disable vicon
self.set_parameter("SIM_VICON_FAIL", 1)
# ensure vehicle remain in Loiter for 15 seconds
tstart = self.get_sim_time()
while self.get_sim_time() - tstart < 15:
if not self.mode_is('LOITER'):
raise NotAchievedException("Expected to stay in loiter for >15 seconds")
# re-enable vicon
self.set_parameter("SIM_VICON_FAIL", 0)
# switch to vicon, disable GPS and wait 10sec to ensure vehicle remains in Loiter
self.set_rc(8, 1500)
self.set_parameter("GPS1_TYPE", 0)
# ensure vehicle remain in Loiter for 15 seconds
tstart = self.get_sim_time()
while self.get_sim_time() - tstart < 15:
if not self.mode_is('LOITER'):
raise NotAchievedException("Expected to stay in loiter for >15 seconds")
# RTL and check vehicle arrives within 10m of home
self.set_rc(2, 1500)
self.do_RTL()
def RTLSpeed(self):
"""Test RTL Speed parameters"""
rtl_speed_ms = 7
wpnav_speed_ms = 4
wpnav_accel_mss = 3
tolerance = 0.5
self.load_mission("copter_rtl_speed.txt")
self.set_parameters({
'WPNAV_ACCEL': wpnav_accel_mss * 100,
'RTL_SPEED': rtl_speed_ms * 100,
'WPNAV_SPEED': wpnav_speed_ms * 100,
})
self.change_mode('LOITER')
self.wait_ready_to_arm()
self.arm_vehicle()
self.change_mode('AUTO')
self.set_rc(3, 1600)
self.wait_altitude(19, 25, relative=True)
self.wait_groundspeed(wpnav_speed_ms-tolerance, wpnav_speed_ms+tolerance)
self.monitor_groundspeed(wpnav_speed_ms, timeout=20)
self.change_mode('RTL')
self.wait_groundspeed(rtl_speed_ms-tolerance, rtl_speed_ms+tolerance)
self.monitor_groundspeed(rtl_speed_ms, timeout=5)
self.change_mode('AUTO')
self.wait_groundspeed(0-tolerance, 0+tolerance)
self.wait_groundspeed(wpnav_speed_ms-tolerance, wpnav_speed_ms+tolerance)
self.monitor_groundspeed(wpnav_speed_ms, tolerance=0.6, timeout=5)
self.do_RTL()
def NavDelay(self):
"""Fly a simple mission that has a delay in it."""
self.load_mission("copter_nav_delay.txt")
self.set_parameter("DISARM_DELAY", 0)
self.change_mode("LOITER")
self.wait_ready_to_arm()
self.arm_vehicle()
self.change_mode("AUTO")
self.set_rc(3, 1600)
count_start = -1
count_stop = -1
tstart = self.get_sim_time()
last_mission_current_msg = 0
last_seq = None
while self.armed(): # we RTL at end of mission
now = self.get_sim_time_cached()
if now - tstart > 200:
raise AutoTestTimeoutException("Did not disarm as expected")
m = self.mav.recv_match(type='MISSION_CURRENT', blocking=True)
at_delay_item = ""
if m.seq == 3:
at_delay_item = "(At delay item)"
if count_start == -1:
count_start = now
if ((now - last_mission_current_msg) > 1 or m.seq != last_seq):
dist = None
x = self.mav.messages.get("NAV_CONTROLLER_OUTPUT", None)
if x is not None:
dist = x.wp_dist
self.progress("MISSION_CURRENT.seq=%u dist=%s %s" %
(m.seq, dist, at_delay_item))
last_mission_current_msg = self.get_sim_time_cached()
last_seq = m.seq
if m.seq > 3:
if count_stop == -1:
count_stop = now
calculated_delay = count_stop - count_start
want_delay = 59 # should reflect what's in the mission file
self.progress("Stopped for %u seconds (want >=%u seconds)" %
(calculated_delay, want_delay))
if calculated_delay < want_delay:
raise NotAchievedException("Did not delay for long enough")
def RangeFinder(self):
'''Test RangeFinder Basic Functionality'''
self.progress("Making sure we don't ordinarily get RANGEFINDER")
m = self.mav.recv_match(type='RANGEFINDER',
blocking=True,
timeout=5)
if m is not None:
raise NotAchievedException("Received unexpected RANGEFINDER msg")
# may need to force a rotation if some other test has used the
# rangefinder...
self.progress("Ensure no RFND messages in log")
self.set_parameter("LOG_DISARMED", 1)
if self.current_onboard_log_contains_message("RFND"):
raise NotAchievedException("Found unexpected RFND message")
self.set_analog_rangefinder_parameters()
self.set_parameter("RC9_OPTION", 10) # rangefinder
self.set_rc(9, 2000)
self.reboot_sitl()
self.progress("Making sure we now get RANGEFINDER messages")
m = self.assert_receive_message('RANGEFINDER', timeout=10)
self.progress("Checking RangeFinder is marked as enabled in mavlink")
m = self.mav.recv_match(type='SYS_STATUS',
blocking=True,
timeout=10)
flags = m.onboard_control_sensors_enabled
if not flags & mavutil.mavlink.MAV_SYS_STATUS_SENSOR_LASER_POSITION:
raise NotAchievedException("Laser not enabled in SYS_STATUS")
self.progress("Disabling laser using switch")
self.set_rc(9, 1000)
self.delay_sim_time(1)
self.progress("Checking RangeFinder is marked as disabled in mavlink")
m = self.mav.recv_match(type='SYS_STATUS',
blocking=True,
timeout=10)
flags = m.onboard_control_sensors_enabled
if flags & mavutil.mavlink.MAV_SYS_STATUS_SENSOR_LASER_POSITION:
raise NotAchievedException("Laser enabled in SYS_STATUS")
self.progress("Re-enabling rangefinder")
self.set_rc(9, 2000)
self.delay_sim_time(1)
m = self.mav.recv_match(type='SYS_STATUS',
blocking=True,
timeout=10)
flags = m.onboard_control_sensors_enabled
if not flags & mavutil.mavlink.MAV_SYS_STATUS_SENSOR_LASER_POSITION:
raise NotAchievedException("Laser not enabled in SYS_STATUS")
self.takeoff(10, mode="LOITER")
m_r = self.mav.recv_match(type='RANGEFINDER',
blocking=True)
m_p = self.mav.recv_match(type='GLOBAL_POSITION_INT',
blocking=True)
if abs(m_r.distance - m_p.relative_alt/1000) > 1:
raise NotAchievedException(
"rangefinder/global position int mismatch %0.2f vs %0.2f" %
(m_r.distance, m_p.relative_alt/1000))
self.land_and_disarm()
if not self.current_onboard_log_contains_message("RFND"):
raise NotAchievedException("Did not see expected RFND message")
def SplineTerrain(self):
'''Test Splines and Terrain'''
self.set_parameter("TERRAIN_ENABLE", 0)
self.fly_mission("wp.txt")
def WPNAV_SPEED(self):
'''ensure resetting WPNAV_SPEED during a mission works'''
loc = self.poll_home_position()
alt = 20
loc.alt = alt
items = []
# 100 waypoints in a line, 10m apart in a northerly direction
# for i in range(1, 100):
# items.append((mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, i*10, 0, alt))
# 1 waypoint a long way away
items.append((mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 2000, 0, alt),)
items.append((mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0))
self.upload_simple_relhome_mission(items)
start_speed_ms = self.get_parameter('WPNAV_SPEED') / 100.0
self.takeoff(20)
self.change_mode('AUTO')
self.wait_groundspeed(start_speed_ms-1, start_speed_ms+1, minimum_duration=10)
for speed_ms in 7, 8, 7, 8, 9, 10, 11, 7:
self.set_parameter('WPNAV_SPEED', speed_ms*100)
self.wait_groundspeed(speed_ms-1, speed_ms+1, minimum_duration=10)
self.do_RTL()
def WPNAV_SPEED_UP(self):
'''Change speed (up) during mission'''
items = []
# 1 waypoint a long way up
items.append((mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 20000),)
items.append((mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0))
self.upload_simple_relhome_mission(items)
start_speed_ms = self.get_parameter('WPNAV_SPEED_UP') / 100.0
minimum_duration = 5
self.takeoff(20)
self.change_mode('AUTO')
self.wait_climbrate(start_speed_ms-1, start_speed_ms+1, minimum_duration=minimum_duration)
for speed_ms in 7, 8, 7, 8, 6, 2:
self.set_parameter('WPNAV_SPEED_UP', speed_ms*100)
self.wait_climbrate(speed_ms-1, speed_ms+1, minimum_duration=minimum_duration)
self.do_RTL(timeout=240)
def WPNAV_SPEED_DN(self):
'''Change speed (down) during mission'''
items = []
# 1 waypoint a long way back down
items.append((mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 10),)
items.append((mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0))
self.upload_simple_relhome_mission(items)
minimum_duration = 5
self.takeoff(500, timeout=70)
self.change_mode('AUTO')
start_speed_ms = self.get_parameter('WPNAV_SPEED_DN') / 100.0
self.wait_climbrate(-start_speed_ms-1, -start_speed_ms+1, minimum_duration=minimum_duration)
for speed_ms in 7, 8, 7, 8, 6, 2:
self.set_parameter('WPNAV_SPEED_DN', speed_ms*100)
self.wait_climbrate(-speed_ms-1, -speed_ms+1, minimum_duration=minimum_duration)
self.do_RTL()
def fly_mission(self, filename, strict=True):
num_wp = self.load_mission(filename, strict=strict)
self.set_parameter("AUTO_OPTIONS", 3)
self.change_mode('AUTO')
self.wait_ready_to_arm()
self.arm_vehicle()
self.wait_waypoint(num_wp-1, num_wp-1)
self.wait_disarmed()
def fly_generic_mission(self, filename, strict=True):
num_wp = self.load_generic_mission(filename, strict=strict)
self.set_parameter("AUTO_OPTIONS", 3)
self.change_mode('AUTO')
self.wait_ready_to_arm()
self.arm_vehicle()
self.wait_waypoint(num_wp-1, num_wp-1)
self.wait_disarmed()
def SurfaceTracking(self):
'''Test Surface Tracking'''
ex = None
self.context_push()
self.install_terrain_handlers_context()
try:
self.set_analog_rangefinder_parameters()
self.set_parameter("RC9_OPTION", 10) # rangefinder
self.set_rc(9, 2000)
self.reboot_sitl() # needed for both rangefinder and initial position
self.assert_vehicle_location_is_at_startup_location()
self.takeoff(10, mode="LOITER")
lower_surface_pos = mavutil.location(-35.362421, 149.164534, 584, 270)
here = self.mav.location()
bearing = self.get_bearing(here, lower_surface_pos)
self.change_mode("GUIDED")
self.guided_achieve_heading(bearing)
self.change_mode("LOITER")
self.delay_sim_time(2)
m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
orig_absolute_alt_mm = m.alt
self.progress("Original alt: absolute=%f" % orig_absolute_alt_mm)
self.progress("Flying somewhere which surface is known lower compared to takeoff point")
self.set_rc(2, 1450)
tstart = self.get_sim_time()
while True:
if self.get_sim_time() - tstart > 200:
raise NotAchievedException("Did not reach lower point")
m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
x = mavutil.location(m.lat/1e7, m.lon/1e7, m.alt/1e3, 0)
dist = self.get_distance(x, lower_surface_pos)
delta = (orig_absolute_alt_mm - m.alt)/1000.0
self.progress("Distance: %fm abs-alt-delta: %fm" %
(dist, delta))
if dist < 15:
if delta < 0.8:
raise NotAchievedException("Did not dip in altitude as expected")
break
self.set_rc(2, 1500)
self.do_RTL()
except Exception as e:
self.print_exception_caught(e)
self.disarm_vehicle(force=True)
ex = e
self.context_pop()
self.reboot_sitl()
if ex is not None:
raise ex
def test_rangefinder_switchover(self):
"""test that the EKF correctly handles the switchover between baro and rangefinder"""
ex = None
self.context_push()
try:
self.set_analog_rangefinder_parameters()
self.set_parameters({
"RNGFND1_MAX_CM": 1500
})
# configure EKF to use rangefinder for altitude at low altitudes
ahrs_ekf_type = self.get_parameter("AHRS_EKF_TYPE")
if ahrs_ekf_type == 2:
self.set_parameter("EK2_RNG_USE_HGT", 70)
if ahrs_ekf_type == 3:
self.set_parameter("EK3_RNG_USE_HGT", 70)
self.reboot_sitl() # needed for both rangefinder and initial position
self.assert_vehicle_location_is_at_startup_location()
self.change_mode("LOITER")
self.wait_ready_to_arm()
self.arm_vehicle()
self.set_rc(3, 1800)
self.set_rc(2, 1200)
# wait till we get to 50m
self.wait_altitude(50, 52, True, 60)
self.change_mode("RTL")
# wait till we get to 25m
self.wait_altitude(25, 27, True, 120)
# level up
self.set_rc(2, 1500)
self.wait_altitude(14, 15, relative=True)
self.wait_rtl_complete()
except Exception as e:
self.print_exception_caught(e)
self.disarm_vehicle(force=True)
ex = e
self.context_pop()
self.reboot_sitl()
if ex is not None:
raise ex
def _Parachute(self, command):
'''Test Parachute Functionality using specific mavlink command'''
self.set_rc(9, 1000)
self.set_parameters({
"CHUTE_ENABLED": 1,
"CHUTE_TYPE": 10,
"SERVO9_FUNCTION": 27,
"SIM_PARA_ENABLE": 1,
"SIM_PARA_PIN": 9,
})
self.progress("Test triggering parachute in mission")
self.load_mission("copter_parachute_mission.txt")
self.change_mode('LOITER')
self.wait_ready_to_arm()
self.arm_vehicle()
self.change_mode('AUTO')
self.set_rc(3, 1600)
self.wait_statustext('BANG', timeout=60)
self.disarm_vehicle(force=True)
self.reboot_sitl()
self.progress("Test triggering with mavlink message")
self.takeoff(20)
command(
mavutil.mavlink.MAV_CMD_DO_PARACHUTE,
p1=2, # release
)
self.wait_statustext('BANG', timeout=60)
self.disarm_vehicle(force=True)
self.reboot_sitl()
self.progress("Testing three-position switch")
self.set_parameter("RC9_OPTION", 23) # parachute 3pos
self.progress("Test manual triggering")
self.takeoff(20)
self.set_rc(9, 2000)
self.wait_statustext('BANG', timeout=60)
self.set_rc(9, 1000)
self.disarm_vehicle(force=True)
self.reboot_sitl()
self.progress("Test mavlink triggering")
self.takeoff(20)
command(
mavutil.mavlink.MAV_CMD_DO_PARACHUTE,
p1=mavutil.mavlink.PARACHUTE_DISABLE,
)
ok = False
try:
self.wait_statustext('BANG', timeout=2)
except AutoTestTimeoutException:
ok = True
if not ok:
raise NotAchievedException("Disabled parachute fired")
command(
mavutil.mavlink.MAV_CMD_DO_PARACHUTE,
p1=mavutil.mavlink.PARACHUTE_ENABLE,
)
ok = False
try:
self.wait_statustext('BANG', timeout=2)
except AutoTestTimeoutException:
ok = True
if not ok:
raise NotAchievedException("Enabled parachute fired")
self.set_rc(9, 1000)
self.disarm_vehicle(force=True)
self.reboot_sitl()
# parachute should not fire if you go from disabled to release:
self.takeoff(20)
command(
mavutil.mavlink.MAV_CMD_DO_PARACHUTE,
p1=mavutil.mavlink.PARACHUTE_RELEASE,
)
ok = False
try:
self.wait_statustext('BANG', timeout=2)
except AutoTestTimeoutException:
ok = True
if not ok:
raise NotAchievedException("Parachute fired when going straight from disabled to release")
# now enable then release parachute:
command(
mavutil.mavlink.MAV_CMD_DO_PARACHUTE,
p1=mavutil.mavlink.PARACHUTE_ENABLE,
)
command(
mavutil.mavlink.MAV_CMD_DO_PARACHUTE,
p1=mavutil.mavlink.PARACHUTE_RELEASE,
)
self.wait_statustext('BANG! Parachute deployed', timeout=2)
self.disarm_vehicle(force=True)
self.reboot_sitl()
self.context_push()
self.progress("Crashing with 3pos switch in enable position")
self.takeoff(40)
self.set_rc(9, 1500)
self.set_parameters({
"SIM_ENGINE_FAIL": 1 << 1, # motor 2
})
self.wait_statustext('BANG! Parachute deployed', timeout=60)
self.set_rc(9, 1000)
self.disarm_vehicle(force=True)
self.reboot_sitl()
self.context_pop()
self.progress("Crashing with 3pos switch in disable position")
loiter_alt = 10
self.takeoff(loiter_alt, mode='LOITER')
self.set_rc(9, 1100)
self.set_parameters({
"SIM_ENGINE_FAIL": 1 << 1, # motor 2
})
tstart = self.get_sim_time()
while self.get_sim_time_cached() < tstart + 5:
m = self.mav.recv_match(type='STATUSTEXT', blocking=True, timeout=1)
if m is None:
continue
if "BANG" in m.text:
self.set_rc(9, 1000)
self.reboot_sitl()
raise NotAchievedException("Parachute deployed when disabled")
self.set_rc(9, 1000)
self.disarm_vehicle(force=True)
self.reboot_sitl()
def Parachute(self):
'''Test Parachute Functionality'''
self._Parachute(self.run_cmd)
self._Parachute(self.run_cmd_int)
def PrecisionLanding(self):
"""Use PrecLand backends precision messages to land aircraft."""
self.context_push()
for backend in [4, 2]: # SITL, SITL-IRLOCK
ex = None
try:
self.set_parameters({
"PLND_ENABLED": 1,
"PLND_TYPE": backend,
})
self.set_analog_rangefinder_parameters()
self.set_parameter("SIM_SONAR_SCALE", 12)
start = self.mav.location()
target = start
(target.lat, target.lng) = mavextra.gps_offset(start.lat, start.lng, 4, -4)
self.progress("Setting target to %f %f" % (target.lat, target.lng))
self.set_parameters({
"SIM_PLD_ENABLE": 1,
"SIM_PLD_LAT": target.lat,
"SIM_PLD_LON": target.lng,
"SIM_PLD_HEIGHT": 0,
"SIM_PLD_ALT_LMT": 15,
"SIM_PLD_DIST_LMT": 10,
})
self.reboot_sitl()
self.progress("Waiting for location")
self.zero_throttle()
self.takeoff(10, 1800, mode="LOITER")
self.change_mode("LAND")
self.zero_throttle()
self.wait_landed_and_disarmed()
self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
new_pos = self.mav.location()
delta = self.get_distance(target, new_pos)
self.progress("Landed %f metres from target position" % delta)
max_delta = 1.5
if delta > max_delta:
raise NotAchievedException("Did not land close enough to target position (%fm > %fm" % (delta, max_delta))
if not self.current_onboard_log_contains_message("PL"):
raise NotAchievedException("Did not see expected PL message")
except Exception as e:
self.print_exception_caught(e)
ex = e
self.reboot_sitl()
self.zero_throttle()
self.context_pop()
self.reboot_sitl()
self.progress("All done")
if ex is not None:
raise ex
def Landing(self):
"""Test landing the aircraft."""
def check_landing_speeds(land_speed_high, land_speed_low, land_alt_low, land_speed_high_accuracy=0.1):
self.progress("Checking landing speeds (speed_high=%f speed_low=%f alt_low=%f" %
(land_speed_high, land_speed_low, land_alt_low))
land_high_maintain = 5
land_low_maintain = land_alt_low / land_speed_low / 2
takeoff_alt = (land_high_maintain * land_speed_high + land_alt_low) + 20
# this is pretty rough, but takes *so much longer* in LOITER
self.takeoff(takeoff_alt, mode='STABILIZE', timeout=200, takeoff_throttle=2000)
# check default landing speeds:
self.change_mode('LAND')
# ensure higher-alt descent rate:
self.wait_descent_rate(land_speed_high,
minimum_duration=land_high_maintain,
accuracy=land_speed_high_accuracy)
self.wait_descent_rate(land_speed_low)
# ensure we transition to low descent rate at correct height:
self.assert_altitude(land_alt_low, relative=True)
# now make sure we maintain that descent rate:
self.wait_descent_rate(land_speed_low, minimum_duration=land_low_maintain)
self.wait_disarmed()
# test the defaults. By default LAND_SPEED_HIGH is 0 so
# WPNAV_SPEED_DN is used
check_landing_speeds(
self.get_parameter("WPNAV_SPEED_DN") / 100, # cm/s -> m/s
self.get_parameter("LAND_SPEED") / 100, # cm/s -> m/s
self.get_parameter("LAND_ALT_LOW") / 100 # cm -> m
)
def test_landing_speeds(land_speed_high, land_speed_low, land_alt_low, **kwargs):
self.set_parameters({
"LAND_SPEED_HIGH": land_speed_high * 100, # m/s -> cm/s
"LAND_SPEED": land_speed_low * 100, # m/s -> cm/s
"LAND_ALT_LOW": land_alt_low * 100, # m -> cm
})
check_landing_speeds(land_speed_high, land_speed_low, land_alt_low, **kwargs)
test_landing_speeds(
5, # descent speed high
1, # descent speed low
30, # transition altitude
land_speed_high_accuracy=0.5
)
def get_system_clock_utc(self, time_seconds):
# this is a copy of ArduPilot's AP_RTC function!
# separate time into ms, sec, min, hour and days but all expressed
# in milliseconds
time_ms = time_seconds * 1000
ms = time_ms % 1000
sec_ms = (time_ms % (60 * 1000)) - ms
min_ms = (time_ms % (60 * 60 * 1000)) - sec_ms - ms
hour_ms = (time_ms % (24 * 60 * 60 * 1000)) - min_ms - sec_ms - ms
# convert times as milliseconds into appropriate units
secs = sec_ms / 1000
mins = min_ms / (60 * 1000)
hours = hour_ms / (60 * 60 * 1000)
return (hours, mins, secs, 0)
def calc_delay(self, seconds, delay_for_seconds):
# delay-for-seconds has to be long enough that we're at the
# waypoint before that time. Otherwise we'll try to wait a
# day....
if delay_for_seconds >= 3600:
raise ValueError("Won't handle large delays")
(hours,
mins,
secs,
ms) = self.get_system_clock_utc(seconds)
self.progress("Now is %uh %um %us" % (hours, mins, secs))
secs += delay_for_seconds # add seventeen seconds
mins += int(secs/60)
secs %= 60
hours += int(mins / 60)
mins %= 60
if hours > 24:
raise ValueError("Way too big a delay")
self.progress("Delay until %uh %um %us" %
(hours, mins, secs))
return (hours, mins, secs, 0)
def reset_delay_item(self, seq, seconds_in_future):
frame = mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT_INT
command = mavutil.mavlink.MAV_CMD_NAV_DELAY
# retrieve mission item and check it:
tried_set = False
hours = None
mins = None
secs = None
while True:
self.progress("Requesting item")
self.mav.mav.mission_request_send(1,
1,
seq)
st = self.mav.recv_match(type='MISSION_ITEM',
blocking=True,
timeout=1)
if st is None:
continue
print("Item: %s" % str(st))
have_match = (tried_set and
st.seq == seq and
st.command == command and
st.param2 == hours and
st.param3 == mins and
st.param4 == secs)
if have_match:
return
self.progress("Mission mismatch")
m = None
tstart = self.get_sim_time()
while True:
if self.get_sim_time_cached() - tstart > 3:
raise NotAchievedException(
"Did not receive MISSION_REQUEST")
self.mav.mav.mission_write_partial_list_send(1,
1,
seq,
seq)
m = self.mav.recv_match(type='MISSION_REQUEST',
blocking=True,
timeout=1)
if m is None:
continue
if m.seq != st.seq:
continue
break
self.progress("Sending absolute-time mission item")
# we have to change out the delay time...
now = self.mav.messages["SYSTEM_TIME"]
if now is None:
raise PreconditionFailedException("Never got SYSTEM_TIME")
if now.time_unix_usec == 0:
raise PreconditionFailedException("system time is zero")
(hours, mins, secs, ms) = self.calc_delay(now.time_unix_usec/1000000, seconds_in_future)
self.mav.mav.mission_item_send(
1, # target system
1, # target component
seq, # seq
frame, # frame
command, # command
0, # current
1, # autocontinue
0, # p1 (relative seconds)
hours, # p2
mins, # p3
secs, # p4
0, # p5
0, # p6
0) # p7
tried_set = True
ack = self.mav.recv_match(type='MISSION_ACK',
blocking=True,
timeout=1)
self.progress("Received ack: %s" % str(ack))
def NavDelayAbsTime(self):
"""fly a simple mission that has a delay in it"""
self.fly_nav_delay_abstime_x(87)
def fly_nav_delay_abstime_x(self, delay_for, expected_delay=None):
"""fly a simple mission that has a delay in it, expect a delay"""
if expected_delay is None:
expected_delay = delay_for
self.load_mission("copter_nav_delay.txt")
self.change_mode("LOITER")
self.wait_ready_to_arm()
delay_item_seq = 3
self.reset_delay_item(delay_item_seq, delay_for)
delay_for_seconds = delay_for
reset_at_m = self.mav.recv_match(type='SYSTEM_TIME', blocking=True)
reset_at = reset_at_m.time_unix_usec/1000000
self.arm_vehicle()
self.change_mode("AUTO")
self.set_rc(3, 1600)
count_stop = -1
tstart = self.get_sim_time()
while self.armed(): # we RTL at end of mission
now = self.get_sim_time_cached()
if now - tstart > 240:
raise AutoTestTimeoutException("Did not disarm as expected")
m = self.mav.recv_match(type='MISSION_CURRENT', blocking=True)
at_delay_item = ""
if m.seq == delay_item_seq:
at_delay_item = "(delay item)"
self.progress("MISSION_CURRENT.seq=%u %s" % (m.seq, at_delay_item))
if m.seq > delay_item_seq:
if count_stop == -1:
count_stop_m = self.mav.recv_match(type='SYSTEM_TIME',
blocking=True)
count_stop = count_stop_m.time_unix_usec/1000000
calculated_delay = count_stop - reset_at
error = abs(calculated_delay - expected_delay)
self.progress("Stopped for %u seconds (want >=%u seconds)" %
(calculated_delay, delay_for_seconds))
if error > 2:
raise NotAchievedException("delay outside expectations")
def NavDelayTakeoffAbsTime(self):
"""make sure taking off at a specific time works"""
self.load_mission("copter_nav_delay_takeoff.txt")
self.change_mode("LOITER")
self.wait_ready_to_arm()
delay_item_seq = 2
delay_for_seconds = 77
self.reset_delay_item(delay_item_seq, delay_for_seconds)
reset_at = self.get_sim_time_cached()
self.arm_vehicle()
self.change_mode("AUTO")
self.set_rc(3, 1600)
# should not take off for about least 77 seconds
tstart = self.get_sim_time()
took_off = False
while self.armed():
now = self.get_sim_time_cached()
if now - tstart > 200:
# timeout
break
m = self.mav.recv_match(type='MISSION_CURRENT', blocking=True)
now = self.get_sim_time_cached()
self.progress("%s" % str(m))
if m.seq > delay_item_seq:
if not took_off:
took_off = True
delta_time = now - reset_at
if abs(delta_time - delay_for_seconds) > 2:
raise NotAchievedException((
"Did not take off on time "
"measured=%f want=%f" %
(delta_time, delay_for_seconds)))
if not took_off:
raise NotAchievedException("Did not take off")
def ModeZigZag(self):
'''test zigzag mode'''
# set channel 8 for zigzag savewp and recentre it
self.set_parameter("RC8_OPTION", 61)
self.takeoff(alt_min=5, mode='LOITER')
ZIGZAG = 24
j = 0
slowdown_speed = 0.3 # because Copter takes a long time to actually stop
self.start_subtest("Conduct ZigZag test for all 4 directions")
while j < 4:
self.progress("## Align heading with the run-way (j=%d)##" % j)
self.set_rc(8, 1500)
self.set_rc(4, 1420)
self.wait_heading(352-j*90)
self.set_rc(4, 1500)
self.change_mode(ZIGZAG)
self.progress("## Record Point A ##")
self.set_rc(8, 1100) # record point A
self.set_rc(1, 1700) # fly side-way for 20m
self.wait_distance(20)
self.set_rc(1, 1500)
self.wait_groundspeed(0, slowdown_speed) # wait until the copter slows down
self.progress("## Record Point A ##")
self.set_rc(8, 1500) # pilot always have to cross mid position when changing for low to high position
self.set_rc(8, 1900) # record point B
i = 1
while i < 2:
self.start_subtest("Run zigzag A->B and B->A (i=%d)" % i)
self.progress("## fly forward for 10 meter ##")
self.set_rc(2, 1300)
self.wait_distance(10)
self.set_rc(2, 1500) # re-centre pitch rc control
self.wait_groundspeed(0, slowdown_speed) # wait until the copter slows down
self.set_rc(8, 1500) # switch to mid position
self.progress("## auto execute vector BA ##")
self.set_rc(8, 1100)
self.wait_distance(17) # wait for it to finish
self.wait_groundspeed(0, slowdown_speed) # wait until the copter slows down
self.progress("## fly forward for 10 meter ##")
self.set_rc(2, 1300) # fly forward for 10 meter
self.wait_distance(10)
self.set_rc(2, 1500) # re-centre pitch rc control
self.wait_groundspeed(0, slowdown_speed) # wait until the copter slows down
self.set_rc(8, 1500) # switch to mid position
self.progress("## auto execute vector AB ##")
self.set_rc(8, 1900)
self.wait_distance(17) # wait for it to finish
self.wait_groundspeed(0, slowdown_speed) # wait until the copter slows down
i = i + 1
# test the case when pilot switch to manual control during the auto flight
self.start_subtest("test the case when pilot switch to manual control during the auto flight")
self.progress("## fly forward for 10 meter ##")
self.set_rc(2, 1300) # fly forward for 10 meter
self.wait_distance(10)
self.set_rc(2, 1500) # re-centre pitch rc control
self.wait_groundspeed(0, 0.3) # wait until the copter slows down
self.set_rc(8, 1500) # switch to mid position
self.progress("## auto execute vector BA ##")
self.set_rc(8, 1100) # switch to low position, auto execute vector BA
self.wait_distance(8) # purposely switch to manual halfway
self.set_rc(8, 1500)
self.wait_groundspeed(0, slowdown_speed) # copter should slow down here
self.progress("## Manual control to fly forward ##")
self.set_rc(2, 1300) # manual control to fly forward
self.wait_distance(8)
self.set_rc(2, 1500) # re-centre pitch rc control
self.wait_groundspeed(0, slowdown_speed) # wait until the copter slows down
self.progress("## continue vector BA ##")
self.set_rc(8, 1100) # copter should continue mission here
self.wait_distance(8) # wait for it to finish rest of BA
self.wait_groundspeed(0, slowdown_speed) # wait until the copter slows down
self.set_rc(8, 1500) # switch to mid position
self.progress("## auto execute vector AB ##")
self.set_rc(8, 1900) # switch to execute AB again
self.wait_distance(17) # wait for it to finish
self.wait_groundspeed(0, slowdown_speed) # wait until the copter slows down
self.change_mode('LOITER')
j = j + 1
self.do_RTL()
def SetModesViaModeSwitch(self):
'''Set modes via modeswitch'''
fltmode_ch = 5
self.set_parameter("FLTMODE_CH", fltmode_ch)
self.set_rc(fltmode_ch, 1000) # PWM for mode1
testmodes = [("FLTMODE1", 4, "GUIDED", 1165),
("FLTMODE2", 2, "ALT_HOLD", 1295),
("FLTMODE3", 6, "RTL", 1425),
("FLTMODE4", 7, "CIRCLE", 1555),
("FLTMODE5", 1, "ACRO", 1685),
("FLTMODE6", 17, "BRAKE", 1815),
]
for mode in testmodes:
(parm, parm_value, name, pwm) = mode
self.set_parameter(parm, parm_value)
for mode in reversed(testmodes):
(parm, parm_value, name, pwm) = mode
self.set_rc(fltmode_ch, pwm)
self.wait_mode(name)
for mode in testmodes:
(parm, parm_value, name, pwm) = mode
self.set_rc(fltmode_ch, pwm)
self.wait_mode(name)
for mode in reversed(testmodes):
(parm, parm_value, name, pwm) = mode
self.set_rc(fltmode_ch, pwm)
self.wait_mode(name)
def SetModesViaAuxSwitch(self):
'''"Set modes via auxswitch"'''
fltmode_ch = int(self.get_parameter("FLTMODE_CH"))
self.set_rc(fltmode_ch, 1000)
self.wait_mode("CIRCLE")
self.set_rc(9, 1000)
self.set_rc(10, 1000)
self.set_parameters({
"RC9_OPTION": 18, # land
"RC10_OPTION": 55, # guided
})
self.set_rc(9, 1900)
self.wait_mode("LAND")
self.set_rc(10, 1900)
self.wait_mode("GUIDED")
self.set_rc(10, 1000) # this re-polls the mode switch
self.wait_mode("CIRCLE")
def fly_guided_stop(self,
timeout=20,
groundspeed_tolerance=0.05,
climb_tolerance=0.01):
"""stop the vehicle moving in guided mode"""
self.progress("Stopping vehicle")
tstart = self.get_sim_time()
# send a position-control command
self.mav.mav.set_position_target_local_ned_send(
0, # timestamp
1, # target system_id
1, # target component id
mavutil.mavlink.MAV_FRAME_BODY_NED,
MAV_POS_TARGET_TYPE_MASK.POS_ONLY | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE, # mask specifying use-only-x-y-z
0, # x
0, # y
0, # z
0, # vx
0, # vy
0, # vz
0, # afx
0, # afy
0, # afz
0, # yaw
0, # yawrate
)
while True:
if self.get_sim_time_cached() - tstart > timeout:
raise NotAchievedException("Vehicle did not stop")
m = self.mav.recv_match(type='VFR_HUD', blocking=True)
print("%s" % str(m))
if (m.groundspeed < groundspeed_tolerance and
m.climb < climb_tolerance):
break
def send_set_position_target_global_int(self, lat, lon, alt):
self.mav.mav.set_position_target_global_int_send(
0, # timestamp
1, # target system_id
1, # target component id
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT_INT,
MAV_POS_TARGET_TYPE_MASK.POS_ONLY, # mask specifying use-only-lat-lon-alt
lat, # lat
lon, # lon
alt, # alt
0, # vx
0, # vy
0, # vz
0, # afx
0, # afy
0, # afz
0, # yaw
0, # yawrate
)
def fly_guided_move_global_relative_alt(self, lat, lon, alt):
startpos = self.mav.recv_match(type='GLOBAL_POSITION_INT',
blocking=True)
self.send_set_position_target_global_int(lat, lon, alt)
tstart = self.get_sim_time()
while True:
if self.get_sim_time_cached() - tstart > 200:
raise NotAchievedException("Did not move far enough")
# send a position-control command
pos = self.mav.recv_match(type='GLOBAL_POSITION_INT',
blocking=True)
delta = self.get_distance_int(startpos, pos)
self.progress("delta=%f (want >10)" % delta)
if delta > 10:
break
def fly_guided_move_local(self, x, y, z_up, timeout=100):
"""move the vehicle using MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED"""
startpos = self.mav.recv_match(type='LOCAL_POSITION_NED', blocking=True)
self.progress("startpos=%s" % str(startpos))
tstart = self.get_sim_time()
# send a position-control command
self.mav.mav.set_position_target_local_ned_send(
0, # timestamp
1, # target system_id
1, # target component id
mavutil.mavlink.MAV_FRAME_LOCAL_NED,
MAV_POS_TARGET_TYPE_MASK.POS_ONLY | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE, # mask specifying use-only-x-y-z
x, # x
y, # y
-z_up, # z
0, # vx
0, # vy
0, # vz
0, # afx
0, # afy
0, # afz
0, # yaw
0, # yawrate
)
while True:
if self.get_sim_time_cached() - tstart > timeout:
raise NotAchievedException("Did not reach destination")
if self.distance_to_local_position((x, y, -z_up)) < 1:
break
def test_guided_local_position_target(self, x, y, z_up):
""" Check target position being received by vehicle """
# set POSITION_TARGET_LOCAL_NED message rate using SET_MESSAGE_INTERVAL
self.progress("Setting local target in NED: (%f, %f, %f)" % (x, y, -z_up))
self.progress("Setting rate to 1 Hz")
self.set_message_rate_hz(mavutil.mavlink.MAVLINK_MSG_ID_POSITION_TARGET_LOCAL_NED, 1)
# mask specifying use only xyz
target_typemask = MAV_POS_TARGET_TYPE_MASK.POS_ONLY
# set position target
self.mav.mav.set_position_target_local_ned_send(
0, # timestamp
1, # target system_id
1, # target component id
mavutil.mavlink.MAV_FRAME_LOCAL_NED,
target_typemask | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE,
x, # x
y, # y
-z_up, # z
0, # vx
0, # vy
0, # vz
0, # afx
0, # afy
0, # afz
0, # yaw
0, # yawrate
)
m = self.mav.recv_match(type='POSITION_TARGET_LOCAL_NED', blocking=True, timeout=2)
self.progress("Received local target: %s" % str(m))
if not (m.type_mask == (target_typemask | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE) or m.type_mask == target_typemask):
raise NotAchievedException("Did not receive proper mask: expected=%u or %u, got=%u" %
((target_typemask | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE), target_typemask, m.type_mask))
if x - m.x > 0.1:
raise NotAchievedException("Did not receive proper target position x: wanted=%f got=%f" % (x, m.x))
if y - m.y > 0.1:
raise NotAchievedException("Did not receive proper target position y: wanted=%f got=%f" % (y, m.y))
if z_up - (-m.z) > 0.1:
raise NotAchievedException("Did not receive proper target position z: wanted=%f got=%f" % (z_up, -m.z))
def test_guided_local_velocity_target(self, vx, vy, vz_up, timeout=3):
" Check local target velocity being received by vehicle "
self.progress("Setting local NED velocity target: (%f, %f, %f)" % (vx, vy, -vz_up))
self.progress("Setting POSITION_TARGET_LOCAL_NED message rate to 10Hz")
self.set_message_rate_hz(mavutil.mavlink.MAVLINK_MSG_ID_POSITION_TARGET_LOCAL_NED, 10)
# mask specifying use only vx,vy,vz & accel. Even though we don't test acceltargets below currently
# a velocity only mask returns a velocity & accel mask
target_typemask = (MAV_POS_TARGET_TYPE_MASK.POS_IGNORE |
MAV_POS_TARGET_TYPE_MASK.YAW_IGNORE | MAV_POS_TARGET_TYPE_MASK.YAW_RATE_IGNORE)
# Drain old messages and ignore the ramp-up to the required target velocity
tstart = self.get_sim_time()
while self.get_sim_time_cached() - tstart < timeout:
# send velocity-control command
self.mav.mav.set_position_target_local_ned_send(
0, # timestamp
1, # target system_id
1, # target component id
mavutil.mavlink.MAV_FRAME_LOCAL_NED,
target_typemask | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE,
0, # x
0, # y
0, # z
vx, # vx
vy, # vy
-vz_up, # vz
0, # afx
0, # afy
0, # afz
0, # yaw
0, # yawrate
)
m = self.assert_receive_message('POSITION_TARGET_LOCAL_NED')
self.progress("Received local target: %s" % str(m))
# Check the last received message
if not (m.type_mask == (target_typemask | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE) or m.type_mask == target_typemask):
raise NotAchievedException("Did not receive proper mask: expected=%u or %u, got=%u" %
((target_typemask | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE), target_typemask, m.type_mask))
if vx - m.vx > 0.1:
raise NotAchievedException("Did not receive proper target velocity vx: wanted=%f got=%f" % (vx, m.vx))
if vy - m.vy > 0.1:
raise NotAchievedException("Did not receive proper target velocity vy: wanted=%f got=%f" % (vy, m.vy))
if vz_up - (-m.vz) > 0.1:
raise NotAchievedException("Did not receive proper target velocity vz: wanted=%f got=%f" % (vz_up, -m.vz))
self.progress("Received proper target velocity commands")
def wait_for_local_velocity(self, vx, vy, vz_up, timeout=10):
""" Wait for local target velocity"""
# debug messages
self.progress("Waiting for local NED velocity target: (%f, %f, %f)" % (vx, vy, -vz_up))
self.progress("Setting LOCAL_POSITION_NED message rate to 10Hz")
# set position local ned message stream rate
self.set_message_rate_hz(mavutil.mavlink.MAVLINK_MSG_ID_LOCAL_POSITION_NED, 10)
# wait for position local ned message
tstart = self.get_sim_time()
while self.get_sim_time_cached() - tstart < timeout:
# get position target local ned message
m = self.mav.recv_match(type="LOCAL_POSITION_NED", blocking=True, timeout=1)
# could not be able to get a valid target local ned message within given time
if m is None:
# raise an error that did not receive a valid target local ned message within given time
raise NotAchievedException("Did not receive any position local ned message for 1 second!")
# got a valid target local ned message within given time
else:
# debug message
self.progress("Received local position ned message: %s" % str(m))
# check if velocity values are in range
if vx - m.vx <= 0.1 and vy - m.vy <= 0.1 and vz_up - (-m.vz) <= 0.1:
# get out of function
self.progress("Vehicle successfully reached to target velocity!")
return
# raise an exception
error_message = "Did not receive target velocities vx, vy, vz_up, wanted=(%f, %f, %f) got=(%f, %f, %f)"
error_message = error_message % (vx, vy, vz_up, m.vx, m.vy, -m.vz)
raise NotAchievedException(error_message)
def test_position_target_message_mode(self):
" Ensure that POSITION_TARGET_LOCAL_NED messages are sent in Guided Mode only "
self.hover()
self.change_mode('LOITER')
self.progress("Setting POSITION_TARGET_LOCAL_NED message rate to 10Hz")
self.set_message_rate_hz(mavutil.mavlink.MAVLINK_MSG_ID_POSITION_TARGET_LOCAL_NED, 10)
tstart = self.get_sim_time()
while self.get_sim_time_cached() < tstart + 5:
m = self.mav.recv_match(type='POSITION_TARGET_LOCAL_NED', blocking=True, timeout=1)
if m is None:
continue
raise NotAchievedException("Received POSITION_TARGET message in LOITER mode: %s" % str(m))
self.progress("Did not receive any POSITION_TARGET_LOCAL_NED message in LOITER mode. Success")
def earth_to_body(self, vector):
r = mavextra.rotation(self.mav.messages["ATTITUDE"]).invert()
# print("r=%s" % str(r))
return r * vector
def precision_loiter_to_pos(self, x, y, z, timeout=40):
'''send landing_target messages at vehicle until it arrives at
location to x, y, z from origin (in metres), z is *up*'''
dest_ned = rotmat.Vector3(x, y, -z)
tstart = self.get_sim_time()
success_start = -1
while True:
now = self.get_sim_time_cached()
if now - tstart > timeout:
raise NotAchievedException("Did not loiter to position!")
m_pos = self.mav.recv_match(type='LOCAL_POSITION_NED',
blocking=True)
pos_ned = rotmat.Vector3(m_pos.x, m_pos.y, m_pos.z)
# print("dest_ned=%s" % str(dest_ned))
# print("pos_ned=%s" % str(pos_ned))
delta_ef = dest_ned - pos_ned
# print("delta_ef=%s" % str(delta_ef))
# determine if we've successfully navigated to close to
# where we should be:
dist = math.sqrt(delta_ef.x * delta_ef.x + delta_ef.y * delta_ef.y)
dist_max = 1
self.progress("dist=%f want <%f" % (dist, dist_max))
if dist < dist_max:
# success! We've gotten within our target distance
if success_start == -1:
success_start = now
elif now - success_start > 10:
self.progress("Yay!")
break
else:
success_start = -1
delta_bf = self.earth_to_body(delta_ef)
# print("delta_bf=%s" % str(delta_bf))
angle_x = math.atan2(delta_bf.y, delta_bf.z)
angle_y = -math.atan2(delta_bf.x, delta_bf.z)
distance = math.sqrt(delta_bf.x * delta_bf.x +
delta_bf.y * delta_bf.y +
delta_bf.z * delta_bf.z)
# att = self.mav.messages["ATTITUDE"]
# print("r=%f p=%f y=%f" % (math.degrees(att.roll), math.degrees(att.pitch), math.degrees(att.yaw)))
# print("angle_x=%s angle_y=%s" % (str(math.degrees(angle_x)), str(math.degrees(angle_y))))
# print("distance=%s" % str(distance))
self.mav.mav.landing_target_send(
0, # time_usec
1, # target_num
mavutil.mavlink.MAV_FRAME_GLOBAL, # frame; AP ignores
angle_x, # angle x (radians)
angle_y, # angle y (radians)
distance, # distance to target
0.01, # size of target in radians, X-axis
0.01 # size of target in radians, Y-axis
)
def set_servo_gripper_parameters(self):
self.set_parameters({
"GRIP_ENABLE": 1,
"GRIP_TYPE": 1,
"SIM_GRPS_ENABLE": 1,
"SIM_GRPS_PIN": 8,
"SERVO8_FUNCTION": 28,
})
def PayloadPlaceMission(self):
"""Test payload placing in auto."""
self.context_push()
self.set_analog_rangefinder_parameters()
self.set_servo_gripper_parameters()
self.reboot_sitl()
self.load_mission("copter_payload_place.txt")
if self.mavproxy is not None:
self.mavproxy.send('wp list\n')
self.set_parameter("AUTO_OPTIONS", 3)
self.change_mode('AUTO')
self.wait_ready_to_arm()
self.arm_vehicle()
self.wait_text("Gripper load releas", timeout=90)
dist_limit = 1
# this is a copy of the point in the mission file:
target_loc = mavutil.location(-35.363106,
149.165436,
0,
0)
dist = self.get_distance(target_loc, self.mav.location())
self.progress("dist=%f" % (dist,))
if dist > dist_limit:
raise NotAchievedException("Did not honour target lat/lng (dist=%f want <%f" %
(dist, dist_limit))
self.wait_disarmed()
self.context_pop()
self.reboot_sitl()
self.progress("All done")
def Weathervane(self):
'''Test copter weathervaning'''
# We test nose into wind code paths and yaw direction here and test side into wind
# yaw direction in QuadPlane tests to reduce repetition.
self.set_parameters({
"SIM_WIND_SPD": 10,
"SIM_WIND_DIR": 100,
"GUID_OPTIONS": 129, # allow weathervaning and arming from tx in guided
"AUTO_OPTIONS": 131, # allow arming in auto, take off without raising the stick, and weathervaning
"WVANE_ENABLE": 1,
"WVANE_GAIN": 3,
"WVANE_VELZ_MAX": 1,
"WVANE_SPD_MAX": 2
})
self.progress("Test weathervaning in auto")
self.load_mission("weathervane_mission.txt", strict=False)
self.change_mode("AUTO")
self.wait_ready_to_arm()
self.arm_vehicle()
self.wait_statustext("Weathervane Active", timeout=60)
self.do_RTL()
self.wait_disarmed()
self.change_mode("GUIDED")
# After take off command in guided we enter the velaccl sub mode
self.progress("Test weathervaning in guided vel-accel")
self.set_rc(3, 1000)
self.wait_ready_to_arm()
self.arm_vehicle()
self.user_takeoff(alt_min=15)
# Wait for heading to match wind direction.
self.wait_heading(100, accuracy=8, timeout=100)
self.progress("Test weathervaning in guided pos only")
# Travel directly north to align heading north and build some airspeed.
self.fly_guided_move_local(x=40, y=0, z_up=15)
# Wait for heading to match wind direction.
self.wait_heading(100, accuracy=8, timeout=100)
self.do_RTL()
def _DO_WINCH(self, command):
self.context_push()
self.load_default_params_file("copter-winch.parm")
self.reboot_sitl()
self.wait_ready_to_arm()
self.start_subtest("starts relaxed")
self.wait_servo_channel_value(9, 0)
self.start_subtest("rate control")
command(
mavutil.mavlink.MAV_CMD_DO_WINCH,
p1=1, # instance number
p2=mavutil.mavlink.WINCH_RATE_CONTROL, # command
p3=0, # length to release
p4=1, # rate in m/s
)
self.wait_servo_channel_value(9, 1900)
self.start_subtest("relax")
command(
mavutil.mavlink.MAV_CMD_DO_WINCH,
p1=1, # instance number
p2=mavutil.mavlink.WINCH_RELAXED, # command
p3=0, # length to release
p4=1, # rate in m/s
)
self.wait_servo_channel_value(9, 0)
self.start_subtest("hold but zero output")
command(
mavutil.mavlink.MAV_CMD_DO_WINCH,
p1=1, # instance number
p2=mavutil.mavlink.WINCH_RATE_CONTROL, # command
p3=0, # length to release
p4=0, # rate in m/s
)
self.wait_servo_channel_value(9, 1500)
self.start_subtest("relax")
command(
mavutil.mavlink.MAV_CMD_DO_WINCH,
p1=1, # instance number
p2=mavutil.mavlink.WINCH_RELAXED, # command
p3=0, # length to release
p4=1, # rate in m/s
)
self.wait_servo_channel_value(9, 0)
self.start_subtest("position")
command(
mavutil.mavlink.MAV_CMD_DO_WINCH,
p1=1, # instance number
p2=mavutil.mavlink.WINCH_RELATIVE_LENGTH_CONTROL, # command
p3=2, # length to release
p4=1, # rate in m/s
)
self.wait_servo_channel_value(9, 1900)
self.wait_servo_channel_value(9, 1500, timeout=60)
self.context_pop()
self.reboot_sitl()
def DO_WINCH(self):
'''test mavlink DO_WINCH command'''
self._DO_WINCH(self.run_cmd_int)
self._DO_WINCH(self.run_cmd)
def GuidedSubModeChange(self):
""""Ensure we can move around in guided after a takeoff command."""
'''start by disabling GCS failsafe, otherwise we immediately disarm
due to (apparently) not receiving traffic from the GCS for
too long. This is probably a function of --speedup'''
self.set_parameters({
"FS_GCS_ENABLE": 0,
"DISARM_DELAY": 0, # until traffic problems are fixed
})
self.change_mode("GUIDED")
self.wait_ready_to_arm()
self.arm_vehicle()
self.user_takeoff(alt_min=10)
self.start_subtest("yaw through absolute angles using MAV_CMD_CONDITION_YAW")
self.guided_achieve_heading(45)
self.guided_achieve_heading(135)
self.start_subtest("move the vehicle using set_position_target_global_int")
# the following numbers are 5-degree-latitude and 5-degrees
# longitude - just so that we start to really move a lot.
self.fly_guided_move_global_relative_alt(5, 5, 10)
self.start_subtest("move the vehicle using MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED")
self.fly_guided_stop(groundspeed_tolerance=0.1)
self.fly_guided_move_local(5, 5, 10)
self.start_subtest("Checking that WP_YAW_BEHAVIOUR 0 works")
self.set_parameter('WP_YAW_BEHAVIOR', 0)
self.delay_sim_time(2)
orig_heading = self.get_heading()
self.fly_guided_move_local(5, 0, 10)
# ensure our heading hasn't changed:
self.assert_heading(orig_heading)
self.fly_guided_move_local(0, 5, 10)
# ensure our heading hasn't changed:
self.assert_heading(orig_heading)
self.start_subtest("Check target position received by vehicle using SET_MESSAGE_INTERVAL")
self.test_guided_local_position_target(5, 5, 10)
self.test_guided_local_velocity_target(2, 2, 1)
self.test_position_target_message_mode()
self.do_RTL()
def TestGripperMission(self):
'''Test Gripper mission items'''
num_wp = self.load_mission("copter-gripper-mission.txt")
self.change_mode('LOITER')
self.wait_ready_to_arm()
self.assert_vehicle_location_is_at_startup_location()
self.arm_vehicle()
self.change_mode('AUTO')
self.set_rc(3, 1500)
self.wait_statustext("Gripper Grabbed", timeout=60)
self.wait_statustext("Gripper Released", timeout=60)
self.wait_waypoint(num_wp-1, num_wp-1)
self.wait_disarmed()
def SplineLastWaypoint(self):
'''Test Spline as last waypoint'''
self.load_mission("copter-spline-last-waypoint.txt")
self.change_mode('LOITER')
self.wait_ready_to_arm()
self.arm_vehicle()
self.change_mode('AUTO')
self.set_rc(3, 1500)
self.wait_altitude(10, 3000, relative=True)
self.do_RTL()
def ManualThrottleModeChange(self):
'''Check manual throttle mode changes denied on high throttle'''
self.set_parameter("FS_GCS_ENABLE", 0) # avoid GUIDED instant disarm
self.change_mode("STABILIZE")
self.wait_ready_to_arm()
self.arm_vehicle()
self.change_mode("ACRO")
self.change_mode("STABILIZE")
self.change_mode("GUIDED")
self.set_rc(3, 1700)
self.watch_altitude_maintained(altitude_min=-1, altitude_max=0.2) # should not take off in guided
self.run_cmd_do_set_mode(
"ACRO",
want_result=mavutil.mavlink.MAV_RESULT_FAILED)
self.run_cmd_do_set_mode(
"STABILIZE",
want_result=mavutil.mavlink.MAV_RESULT_FAILED)
self.run_cmd_do_set_mode(
"DRIFT",
want_result=mavutil.mavlink.MAV_RESULT_FAILED)
self.progress("Check setting an invalid mode")
self.run_cmd(
mavutil.mavlink.MAV_CMD_DO_SET_MODE,
p1=mavutil.mavlink.MAV_MODE_FLAG_CUSTOM_MODE_ENABLED,
p2=126,
want_result=mavutil.mavlink.MAV_RESULT_FAILED,
timeout=1,
)
self.set_rc(3, 1000)
self.run_cmd_do_set_mode("ACRO")
self.wait_disarmed()
def constrained_mount_pitch(self, pitch_angle_deg, mount_instance=1):
PITCH_MIN = self.get_parameter("MNT%u_PITCH_MIN" % mount_instance)
PITCH_MAX = self.get_parameter("MNT%u_PITCH_MAX" % mount_instance)
return min(max(pitch_angle_deg, PITCH_MIN), PITCH_MAX)
def test_mount_pitch(self, despitch, despitch_tolerance, mount_mode, timeout=10, hold=0, constrained=True):
tstart = self.get_sim_time()
success_start = 0
while True:
now = self.get_sim_time_cached()
if now - tstart > timeout:
raise NotAchievedException("Mount pitch not achieved")
# We expect to achieve the desired pitch angle unless constrained by mount limits
if constrained:
despitch = self.constrained_mount_pitch(despitch)
'''retrieve latest angles from GIMBAL_DEVICE_ATTITUDE_STATUS'''
mount_roll, mount_pitch, mount_yaw, mount_yaw_is_absolute = self.get_mount_roll_pitch_yaw_deg()
# self.progress("despitch=%f roll=%f pitch=%f yaw=%f" % (despitch, mount_roll, mount_pitch, mount_yaw))
if abs(despitch - mount_pitch) > despitch_tolerance:
self.progress("Mount pitch incorrect: got=%f want=%f (+/- %f)" %
(mount_pitch, despitch, despitch_tolerance))
success_start = 0
continue
self.progress("Mount pitch correct: %f degrees == %f" %
(mount_pitch, despitch))
if success_start == 0:
success_start = now
if now - success_start >= hold:
self.progress("Mount pitch achieved")
return
def do_pitch(self, pitch):
'''pitch aircraft in guided/angle mode'''
self.mav.mav.set_attitude_target_send(
0, # time_boot_ms
1, # target sysid
1, # target compid
0, # bitmask of things to ignore
mavextra.euler_to_quat([0, math.radians(pitch), 0]), # att
0, # roll rate (rad/s)
0, # pitch rate (rad/s)
0, # yaw rate (rad/s)
0.5) # thrust, 0 to 1, translated to a climb/descent rate
def do_yaw_rate(self, yaw_rate):
'''yaw aircraft in guided/rate mode'''
self.run_cmd(
mavutil.mavlink.MAV_CMD_CONDITION_YAW,
p1=60, # target angle
p2=0, # degrees/second
p3=1, # -1 is counter-clockwise, 1 clockwise
p4=1, # 1 for relative, 0 for absolute
quiet=True,
)
def setup_servo_mount(self, roll_servo=5, pitch_servo=6, yaw_servo=7):
'''configure a rpy servo mount; caller responsible for required rebooting'''
self.progress("Setting up servo mount")
self.set_parameters({
"MNT1_TYPE": 1,
"MNT1_PITCH_MIN": -45,
"MNT1_PITCH_MAX": 45,
"RC6_OPTION": 213, # MOUNT1_PITCH
"SERVO%u_FUNCTION" % roll_servo: 8, # roll
"SERVO%u_FUNCTION" % pitch_servo: 7, # pitch
"SERVO%u_FUNCTION" % yaw_servo: 6, # yaw
})
def get_mount_roll_pitch_yaw_deg(self):
'''return mount (aka gimbal) roll, pitch and yaw angles in degrees'''
# wait for gimbal attitude message
m = self.assert_receive_message('GIMBAL_DEVICE_ATTITUDE_STATUS', timeout=5)
yaw_is_absolute = m.flags & mavutil.mavlink.GIMBAL_DEVICE_FLAGS_YAW_LOCK
# convert quaternion to euler angles and return
q = quaternion.Quaternion(m.q)
euler = q.euler
return math.degrees(euler[0]), math.degrees(euler[1]), math.degrees(euler[2]), yaw_is_absolute
def set_mount_mode(self, mount_mode):
'''set mount mode'''
self.run_cmd_int(
mavutil.mavlink.MAV_CMD_DO_MOUNT_CONFIGURE,
p1=mount_mode,
p2=0, # stabilize roll (unsupported)
p3=0, # stabilize pitch (unsupported)
)
self.run_cmd(
mavutil.mavlink.MAV_CMD_DO_MOUNT_CONFIGURE,
p1=mount_mode,
p2=0, # stabilize roll (unsupported)
p3=0, # stabilize pitch (unsupported)
)
def test_mount_rc_targetting(self, pitch_rc_neutral=1500, do_rate_tests=True):
'''called in multipleplaces to make sure that mount RC targetting works'''
if True:
self.context_push()
self.set_parameters({
'RC6_OPTION': 0,
'RC11_OPTION': 212, # MOUNT1_ROLL
'RC12_OPTION': 213, # MOUNT1_PITCH
'RC13_OPTION': 214, # MOUNT1_YAW
'RC12_MIN': 1100,
'RC12_MAX': 1900,
'RC12_TRIM': 1500,
'MNT1_PITCH_MIN': -45,
'MNT1_PITCH_MAX': 45,
})
self.progress("Testing RC angular control")
# default RC min=1100 max=1900
self.set_rc_from_map({
11: 1500,
12: 1500,
13: 1500,
})
self.test_mount_pitch(0, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
self.progress("Testing RC input down 1/4 of its range in the output, should be down 1/4 range in output")
rc12_in = 1400
rc12_min = 1100 # default
rc12_max = 1900 # default
mpitch_min = -45.0
mpitch_max = 45.0
expected_pitch = (float(rc12_in-rc12_min)/float(rc12_max-rc12_min) * (mpitch_max-mpitch_min)) + mpitch_min
self.progress("expected mount pitch: %f" % expected_pitch)
if expected_pitch != -11.25:
raise NotAchievedException("Calculation wrong - defaults changed?!")
self.set_rc(12, rc12_in)
self.test_mount_pitch(-11.25, 0.1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
self.set_rc(12, 1800)
self.test_mount_pitch(33.75, 0.1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
self.set_rc_from_map({
11: 1500,
12: 1500,
13: 1500,
})
try:
self.context_push()
self.set_parameters({
"RC12_MIN": 1000,
"RC12_MAX": 2000,
"MNT1_PITCH_MIN": -90,
"MNT1_PITCH_MAX": 10,
})
self.set_rc(12, 1000)
self.test_mount_pitch(-90.00, 0.1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
self.set_rc(12, 2000)
self.test_mount_pitch(10.00, 0.1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
self.set_rc(12, 1500)
self.test_mount_pitch(-40.00, 0.1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
finally:
self.context_pop()
self.set_rc(12, 1500)
if do_rate_tests:
self.test_mount_rc_targetting_rate_control()
self.context_pop()
def test_mount_rc_targetting_rate_control(self, pitch_rc_neutral=1500):
if True:
self.progress("Testing RC rate control")
self.set_parameter('MNT1_RC_RATE', 10)
self.test_mount_pitch(0, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
# Note that we don't constrain the desired angle in the following so that we don't
# timeout due to fetching Mount pitch limit params.
self.set_rc(12, 1300)
self.test_mount_pitch(-5, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING, constrained=False)
self.test_mount_pitch(-10, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING, constrained=False)
self.test_mount_pitch(-15, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING, constrained=False)
self.test_mount_pitch(-20, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING, constrained=False)
self.set_rc(12, 1700)
self.test_mount_pitch(-15, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING, constrained=False)
self.test_mount_pitch(-10, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING, constrained=False)
self.test_mount_pitch(-5, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING, constrained=False)
self.test_mount_pitch(0, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING, constrained=False)
self.test_mount_pitch(5, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING, constrained=False)
self.progress("Reverting to angle mode")
self.set_parameter('MNT1_RC_RATE', 0)
self.set_rc(12, 1500)
self.test_mount_pitch(0, 0.1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
def mount_test_body(self, pitch_rc_neutral=1500, do_rate_tests=True, constrain_sysid_target=True):
'''Test Camera/Antenna Mount - assumes a camera is set up and ready to go'''
if True:
# make sure we're getting gimbal device attitude status
self.assert_receive_message('GIMBAL_DEVICE_ATTITUDE_STATUS', timeout=5, very_verbose=True)
# change mount to neutral mode (point forward, not stabilising)
self.set_mount_mode(mavutil.mavlink.MAV_MOUNT_MODE_NEUTRAL)
# test pitch is not neutral to start with
mount_roll_deg, mount_pitch_deg, mount_yaw_deg, mount_yaw_is_absolute = self.get_mount_roll_pitch_yaw_deg()
if mount_roll_deg != 0 or mount_pitch_deg != 0 or mount_yaw_deg != 0:
raise NotAchievedException("Mount not neutral")
self.takeoff(30, mode='GUIDED')
# pitch vehicle back and confirm gimbal is still not stabilising
despitch = 10
despitch_tolerance = 3
self.progress("Pitching vehicle")
self.do_pitch(despitch) # will time out!
self.wait_pitch(despitch, despitch_tolerance)
# check gimbal is still not stabilising
mount_roll_deg, mount_pitch_deg, mount_yaw_deg, mount_yaw_is_absolute = self.get_mount_roll_pitch_yaw_deg()
if mount_roll_deg != 0 or mount_pitch_deg != 0 or mount_yaw_deg != 0:
raise NotAchievedException("Mount stabilising when not requested")
# center RC tilt control and change mount to RC_TARGETING mode
self.progress("Gimbal to RC Targetting mode")
self.set_rc(6, pitch_rc_neutral)
self.set_mount_mode(mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
# pitch vehicle back and confirm gimbal is stabilising
self.progress("Pitching vehicle")
self.do_pitch(despitch)
self.wait_pitch(despitch, despitch_tolerance)
self.test_mount_pitch(0, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
# point gimbal at specified angle
self.progress("Point gimbal using GIMBAL_MANAGER_PITCHYAW (ANGLE)")
self.do_pitch(0) # level vehicle
self.wait_pitch(0, despitch_tolerance)
self.set_mount_mode(mavutil.mavlink.MAV_MOUNT_MODE_MAVLINK_TARGETING)
for (method, angle) in (self.run_cmd, -20), (self.run_cmd_int, -30):
method(
mavutil.mavlink.MAV_CMD_DO_GIMBAL_MANAGER_PITCHYAW,
p1=angle, # pitch angle in degrees
p2=0, # yaw angle in degrees
p3=0, # pitch rate in degrees (NaN to ignore)
p4=0, # yaw rate in degrees (NaN to ignore)
p5=0, # flags (0=Body-frame, 16/GIMBAL_MANAGER_FLAGS_YAW_LOCK=Earth Frame)
p6=0, # unused
p7=0, # gimbal id
)
self.test_mount_pitch(angle, 1, mavutil.mavlink.MAV_MOUNT_MODE_MAVLINK_TARGETING)
# this is a one-off; ArduCopter *will* time out this directive!
self.progress("Levelling aircraft")
self.mav.mav.set_attitude_target_send(
0, # time_boot_ms
1, # target sysid
1, # target compid
0, # bitmask of things to ignore
mavextra.euler_to_quat([0, 0, 0]), # att
0, # roll rate (rad/s)
0, # pitch rate (rad/s)
0, # yaw rate (rad/s)
0.5) # thrust, 0 to 1, translated to a climb/descent rate
self.wait_groundspeed(0, 1)
# now test RC targetting
self.progress("Testing mount RC targetting")
self.set_mount_mode(mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
self.test_mount_rc_targetting(
pitch_rc_neutral=pitch_rc_neutral,
do_rate_tests=do_rate_tests,
)
self.progress("Testing mount ROI behaviour")
self.test_mount_pitch(0, 0.1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
start = self.mav.location()
self.progress("start=%s" % str(start))
(roi_lat, roi_lon) = mavextra.gps_offset(start.lat,
start.lng,
10,
20)
roi_alt = 0
self.progress("Using MAV_CMD_DO_SET_ROI_LOCATION")
self.run_cmd(
mavutil.mavlink.MAV_CMD_DO_SET_ROI_LOCATION,
p5=roi_lat,
p6=roi_lon,
p7=roi_alt,
)
self.test_mount_pitch(-52, 5, mavutil.mavlink.MAV_MOUNT_MODE_GPS_POINT)
self.progress("Using MAV_CMD_DO_SET_ROI_LOCATION")
# start by pointing the gimbal elsewhere with a
# known-working command:
self.run_cmd(
mavutil.mavlink.MAV_CMD_DO_SET_ROI_LOCATION,
p5=roi_lat + 1,
p6=roi_lon + 1,
p7=roi_alt,
)
# now point it with command_int:
self.run_cmd_int(
mavutil.mavlink.MAV_CMD_DO_SET_ROI_LOCATION,
p5=int(roi_lat * 1e7),
p6=int(roi_lon * 1e7),
p7=roi_alt,
frame=mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
)
self.test_mount_pitch(-52, 5, mavutil.mavlink.MAV_MOUNT_MODE_GPS_POINT)
self.progress("Using MAV_CMD_DO_SET_ROI_NONE")
self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_ROI_NONE)
self.run_cmd_int(mavutil.mavlink.MAV_CMD_DO_SET_ROI_NONE)
self.test_mount_pitch(0, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
start = self.mav.location()
(roi_lat, roi_lon) = mavextra.gps_offset(start.lat,
start.lng,
-100,
-200)
roi_alt = 0
self.progress("Using MAV_CMD_DO_SET_ROI")
self.run_cmd(
mavutil.mavlink.MAV_CMD_DO_SET_ROI,
p5=roi_lat,
p6=roi_lon,
p7=roi_alt,
)
self.test_mount_pitch(-7.5, 1, mavutil.mavlink.MAV_MOUNT_MODE_GPS_POINT)
start = self.mav.location()
(roi_lat, roi_lon) = mavextra.gps_offset(start.lat,
start.lng,
-100,
-200)
roi_alt = 0
self.progress("Using MAV_CMD_DO_SET_ROI (COMMAND_INT)")
self.run_cmd_int(
mavutil.mavlink.MAV_CMD_DO_SET_ROI,
0,
0,
0,
0,
int(roi_lat*1e7),
int(roi_lon*1e7),
roi_alt,
frame=mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT_INT,
)
self.test_mount_pitch(-7.5, 1, mavutil.mavlink.MAV_MOUNT_MODE_GPS_POINT)
self.progress("Using MAV_CMD_DO_SET_ROI (COMMAND_INT), absolute-alt-frame")
# this is pointing essentially straight down
self.run_cmd_int(
mavutil.mavlink.MAV_CMD_DO_SET_ROI,
0,
0,
0,
0,
int(roi_lat*1e7),
int(roi_lon*1e7),
roi_alt,
frame=mavutil.mavlink.MAV_FRAME_GLOBAL,
)
self.test_mount_pitch(-70, 1, mavutil.mavlink.MAV_MOUNT_MODE_GPS_POINT, hold=2)
self.set_mount_mode(mavutil.mavlink.MAV_MOUNT_MODE_NEUTRAL)
self.test_mount_pitch(0, 0.1, mavutil.mavlink.MAV_MOUNT_MODE_NEUTRAL)
self.progress("Testing mount roi-sysid behaviour")
self.test_mount_pitch(0, 0.1, mavutil.mavlink.MAV_MOUNT_MODE_NEUTRAL)
start = self.mav.location()
self.progress("start=%s" % str(start))
(roi_lat, roi_lon) = mavextra.gps_offset(start.lat,
start.lng,
10,
20)
roi_alt = 0
self.progress("Using MAV_CMD_DO_SET_ROI_SYSID")
self.run_cmd(
mavutil.mavlink.MAV_CMD_DO_SET_ROI_SYSID,
p1=self.mav.source_system,
)
self.mav.mav.global_position_int_send(
0, # time boot ms
int(roi_lat * 1e7),
int(roi_lon * 1e7),
0 * 1000, # mm alt amsl
0 * 1000, # relalt mm UP!
0, # vx
0, # vy
0, # vz
0 # heading
)
self.test_mount_pitch(-89, 5, mavutil.mavlink.MAV_MOUNT_MODE_SYSID_TARGET, hold=2)
self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_ROI_NONE)
self.run_cmd_int(
mavutil.mavlink.MAV_CMD_DO_SET_ROI_SYSID,
p1=self.mav.source_system,
)
self.mav.mav.global_position_int_send(
0, # time boot ms
int(roi_lat * 1e7),
int(roi_lon * 1e7),
670 * 1000, # mm alt amsl
100 * 1000, # mm UP!
0, # vx
0, # vy
0, # vz
0 # heading
)
self.test_mount_pitch(
68,
5,
mavutil.mavlink.MAV_MOUNT_MODE_SYSID_TARGET,
hold=2,
constrained=constrain_sysid_target,
)
self.set_mount_mode(mavutil.mavlink.MAV_MOUNT_MODE_NEUTRAL)
self.test_mount_pitch(0, 0.1, mavutil.mavlink.MAV_MOUNT_MODE_NEUTRAL)
self.disarm_vehicle(force=True)
self.test_mount_body_yaw()
def test_mount_body_yaw(self):
'''check reporting of yaw'''
# change mount to neutral mode (point forward, not stabilising)
self.takeoff(10, mode='GUIDED')
self.set_mount_mode(mavutil.mavlink.MAV_MOUNT_MODE_NEUTRAL)
for heading in 30, 45, 150:
self.guided_achieve_heading(heading)
r, p , y, yaw_is_absolute = self.get_mount_roll_pitch_yaw_deg()
if yaw_is_absolute:
raise NotAchievedException("Expected a relative yaw")
if y > 1:
raise NotAchievedException("Bad yaw (y=%f)")
self.do_RTL()
def Mount(self):
'''test servo mount'''
self.setup_servo_mount()
self.reboot_sitl() # to handle MNT_TYPE changing
self.mount_test_body()
def MountSolo(self):
'''test type=2, a "Solo" mount'''
self.set_parameters({
"MNT1_TYPE": 2,
"RC6_OPTION": 213, # MOUNT1_PITCH
})
self.customise_SITL_commandline([
"--gimbal" # connects on port 5762
])
self.mount_test_body(
pitch_rc_neutral=1818,
do_rate_tests=False, # solo can't do rate control (yet?)
constrain_sysid_target=False, # not everything constrains all angles
)
def assert_mount_rpy(self, r, p, y, tolerance=1):
'''assert mount atttiude in degrees'''
got_r, got_p, got_y, yaw_is_absolute = self.get_mount_roll_pitch_yaw_deg()
for (want, got, name) in (r, got_r, "roll"), (p, got_p, "pitch"), (y, got_y, "yaw"):
if abs(want - got) > tolerance:
raise NotAchievedException("%s incorrect; want=%f got=%f" %
(name, want, got))
def neutralise_gimbal(self):
'''put mount into neutralise mode, assert it is at zero angles'''
self.run_cmd(
mavutil.mavlink.MAV_CMD_DO_MOUNT_CONTROL,
p7=mavutil.mavlink.MAV_MOUNT_MODE_NEUTRAL,
)
self.test_mount_pitch(0, 0, mavutil.mavlink.MAV_MOUNT_MODE_RETRACT)
def MAV_CMD_DO_MOUNT_CONTROL(self):
'''test MAV_CMD_DO_MOUNT_CONTROL mavlink command'''
# setup mount parameters
self.context_push()
self.setup_servo_mount()
self.reboot_sitl() # to handle MNT_TYPE changing
takeoff_loc = self.mav.location()
self.takeoff(20, mode='GUIDED')
self.guided_achieve_heading(315)
self.run_cmd(
mavutil.mavlink.MAV_CMD_DO_MOUNT_CONTROL,
p7=mavutil.mavlink.MAV_MOUNT_MODE_RETRACT,
)
self.run_cmd_int(
mavutil.mavlink.MAV_CMD_DO_MOUNT_CONTROL,
p7=mavutil.mavlink.MAV_MOUNT_MODE_RETRACT,
)
for method in self.run_cmd, self.run_cmd_int:
self.start_subtest("MAV_MOUNT_MODE_GPS_POINT")
self.progress("start=%s" % str(takeoff_loc))
t = self.offset_location_ne(takeoff_loc, 20, 0)
self.progress("targetting=%s" % str(t))
# this command is *weird* as the lat/lng is *always* 1e7,
# even when transported via COMMAND_LONG!
x = int(t.lat * 1e7)
y = int(t.lng * 1e7)
method(
mavutil.mavlink.MAV_CMD_DO_MOUNT_CONTROL,
p4=0, # this is a relative altitude!
p5=x,
p6=y,
p7=mavutil.mavlink.MAV_MOUNT_MODE_GPS_POINT,
)
self.test_mount_pitch(-45, 5, mavutil.mavlink.MAV_MOUNT_MODE_GPS_POINT)
self.neutralise_gimbal()
self.start_subtest("MAV_MOUNT_MODE_HOME_LOCATION")
method(
mavutil.mavlink.MAV_CMD_DO_MOUNT_CONTROL,
p7=mavutil.mavlink.MAV_MOUNT_MODE_HOME_LOCATION,
)
self.test_mount_pitch(-90, 5, mavutil.mavlink.MAV_MOUNT_MODE_HOME_LOCATION)
self.neutralise_gimbal()
# try an invalid mount mode. Note that this is asserting we
# are receiving a result code which is actually incorrect;
# this should be MAV_RESULT_DENIED
self.start_subtest("Invalid mode")
method(
mavutil.mavlink.MAV_CMD_DO_MOUNT_CONTROL,
p7=87,
want_result=mavutil.mavlink.MAV_RESULT_FAILED,
)
self.start_subtest("MAV_MOUNT_MODE_MAVLINK_TARGETING")
r = 15
p = 20
y = 30
method(
mavutil.mavlink.MAV_CMD_DO_MOUNT_CONTROL,
p1=p,
p2=r,
p3=y,
p7=mavutil.mavlink.MAV_MOUNT_MODE_MAVLINK_TARGETING,
)
self.delay_sim_time(2)
self.assert_mount_rpy(r, p, y)
self.neutralise_gimbal()
self.start_subtest("MAV_MOUNT_MODE_RC_TARGETING")
method(
mavutil.mavlink.MAV_CMD_DO_MOUNT_CONTROL,
p7=mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING,
)
self.test_mount_rc_targetting()
self.start_subtest("MAV_MOUNT_MODE_RETRACT")
self.context_push()
retract_r = 13
retract_p = 23
retract_y = 33
self.set_parameters({
"MNT1_RETRACT_X": retract_r,
"MNT1_RETRACT_Y": retract_p,
"MNT1_RETRACT_Z": retract_y,
})
method(
mavutil.mavlink.MAV_CMD_DO_MOUNT_CONTROL,
p7=mavutil.mavlink.MAV_MOUNT_MODE_RETRACT,
)
self.delay_sim_time(3)
self.assert_mount_rpy(retract_r, retract_p, retract_y)
self.context_pop()
self.do_RTL()
self.context_pop()
self.reboot_sitl()
def AutoYawDO_MOUNT_CONTROL(self):
'''test AutoYaw behaviour when MAV_CMD_DO_MOUNT_CONTROL sent to Mount without Yaw control'''
# setup mount parameters
self.context_push()
yaw_servo = 7
self.setup_servo_mount(roll_servo=5, pitch_servo=6, yaw_servo=yaw_servo)
# Disable Mount Yaw servo
self.set_parameters({
"SERVO%u_FUNCTION" % yaw_servo: 0,
})
self.reboot_sitl() # to handle MNT_TYPE changing
self.takeoff(20, mode='GUIDED')
for mount_yaw in [-45, 0, 45]:
heading = 330
self.guided_achieve_heading(heading)
self.assert_heading(heading)
self.neutralise_gimbal()
r = 15
p = 20
self.run_cmd_int(
mavutil.mavlink.MAV_CMD_DO_MOUNT_CONTROL,
p1=p,
p2=r,
p3=mount_yaw,
p7=mavutil.mavlink.MAV_MOUNT_MODE_MAVLINK_TARGETING,
)
self.delay_sim_time(5)
# We have disabled yaw servo, so expect mount yaw to be zero
self.assert_mount_rpy(r, p, 0)
# But we expect the copter to yaw instead
self.assert_heading(heading + mount_yaw)
self.do_RTL()
self.context_pop()
self.reboot_sitl()
def MAV_CMD_DO_GIMBAL_MANAGER_CONFIGURE(self):
'''test MAV_CMD_DO_GIMBAL_MANAGER_CONFIGURE mavlink command'''
# setup mount parameters
self.context_push()
self.setup_servo_mount()
self.reboot_sitl() # to handle MNT_TYPE changing
self.context_set_message_rate_hz('GIMBAL_MANAGER_STATUS', 10)
self.assert_received_message_field_values('GIMBAL_MANAGER_STATUS', {
"gimbal_device_id": 1,
"primary_control_sysid": 0,
"primary_control_compid": 0,
})
for method in self.run_cmd, self.run_cmd_int:
self.start_subtest("set_sysid-compid")
method(
mavutil.mavlink.MAV_CMD_DO_GIMBAL_MANAGER_CONFIGURE,
p1=37,
p2=38,
)
self.assert_received_message_field_values('GIMBAL_MANAGER_STATUS', {
"gimbal_device_id": 1,
"primary_control_sysid": 37,
"primary_control_compid": 38,
})
self.start_subtest("leave unchanged")
method(mavutil.mavlink.MAV_CMD_DO_GIMBAL_MANAGER_CONFIGURE, p1=-1)
self.assert_received_message_field_values('GIMBAL_MANAGER_STATUS', {
"gimbal_device_id": 1,
"primary_control_sysid": 37,
"primary_control_compid": 38,
})
# ardupilot currently handles this incorrectly:
# self.start_subtest("self-controlled")
# method(mavutil.mavlink.MAV_CMD_DO_GIMBAL_MANAGER_CONFIGURE, p1=-2)
# self.assert_received_message_field_values('GIMBAL_MANAGER_STATUS', {
# "gimbal_device_id": 1,
# "primary_control_sysid": 1,
# "primary_control_compid": 1,
# })
self.start_subtest("release control")
method(
mavutil.mavlink.MAV_CMD_DO_GIMBAL_MANAGER_CONFIGURE,
p1=self.mav.source_system,
p2=self.mav.source_component,
)
self.assert_received_message_field_values('GIMBAL_MANAGER_STATUS', {
"gimbal_device_id": 1,
"primary_control_sysid": self.mav.source_system,
"primary_control_compid": self.mav.source_component,
})
method(mavutil.mavlink.MAV_CMD_DO_GIMBAL_MANAGER_CONFIGURE, p1=-3)
self.assert_received_message_field_values('GIMBAL_MANAGER_STATUS', {
"gimbal_device_id": 1,
"primary_control_sysid": 0,
"primary_control_compid": 0,
})
self.context_pop()
self.reboot_sitl()
def MountYawVehicleForMountROI(self):
'''Test Camera/Antenna Mount vehicle yawing for ROI'''
self.context_push()
self.set_parameter("SYSID_MYGCS", self.mav.source_system)
yaw_servo = 7
self.setup_servo_mount(yaw_servo=yaw_servo)
self.reboot_sitl() # to handle MNT1_TYPE changing
self.progress("checking ArduCopter yaw-aircraft-for-roi")
ex = None
try:
self.takeoff(20, mode='GUIDED')
m = self.mav.recv_match(type='VFR_HUD', blocking=True)
self.progress("current heading %u" % m.heading)
self.set_parameter("SERVO%u_FUNCTION" % yaw_servo, 0) # yaw
self.progress("Waiting for check_servo_map to do its job")
self.delay_sim_time(5)
self.progress("Pointing North")
self.guided_achieve_heading(0)
self.delay_sim_time(5)
start = self.mav.location()
(roi_lat, roi_lon) = mavextra.gps_offset(start.lat,
start.lng,
-100,
-100)
roi_alt = 0
self.progress("Using MAV_CMD_DO_SET_ROI")
self.run_cmd(
mavutil.mavlink.MAV_CMD_DO_SET_ROI,
p5=roi_lat,
p6=roi_lon,
p7=roi_alt,
)
self.progress("Waiting for vehicle to point towards ROI")
self.wait_heading(225, timeout=600, minimum_duration=2)
# the following numbers are 1-degree-latitude and
# 0-degrees longitude - just so that we start to
# really move a lot.
there = mavutil.location(1, 0, 0, 0)
self.progress("Starting to move")
self.mav.mav.set_position_target_global_int_send(
0, # timestamp
1, # target system_id
1, # target component id
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT_INT,
MAV_POS_TARGET_TYPE_MASK.POS_ONLY | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE, # mask specifying use-only-lat-lon-alt
there.lat, # lat
there.lng, # lon
there.alt, # alt
0, # vx
0, # vy
0, # vz
0, # afx
0, # afy
0, # afz
0, # yaw
0, # yawrate
)
self.progress("Starting to move changes the target")
bearing = self.bearing_to(there)
self.wait_heading(bearing, timeout=600, minimum_duration=2)
self.run_cmd(
mavutil.mavlink.MAV_CMD_DO_SET_ROI,
p5=roi_lat,
p6=roi_lon,
p7=roi_alt,
)
self.progress("Wait for vehicle to point sssse due to moving")
self.wait_heading(170, timeout=600, minimum_duration=1)
self.do_RTL()
except Exception as e:
self.print_exception_caught(e)
ex = e
self.context_pop()
if ex is not None:
raise ex
def ThrowMode(self):
'''Fly Throw Mode'''
# test boomerang mode:
self.progress("Throwing vehicle away")
self.set_parameters({
"THROW_NEXTMODE": 6,
"SIM_SHOVE_Z": -30,
"SIM_SHOVE_X": -20,
})
self.change_mode('THROW')
self.wait_ready_to_arm()
self.arm_vehicle()
try:
self.set_parameter("SIM_SHOVE_TIME", 500)
except ValueError:
# the shove resets this to zero
pass
tstart = self.get_sim_time()
self.wait_mode('RTL')
max_good_tdelta = 15
tdelta = self.get_sim_time() - tstart
self.progress("Vehicle in RTL")
self.wait_rtl_complete()
self.progress("Vehicle disarmed")
if tdelta > max_good_tdelta:
raise NotAchievedException("Took too long to enter RTL: %fs > %fs" %
(tdelta, max_good_tdelta))
self.progress("Vehicle returned")
def hover_and_check_matched_frequency_with_fft_and_psd(self, dblevel=-15, minhz=200, maxhz=300, peakhz=None,
reverse=None, takeoff=True, instance=0):
'''Takeoff and hover, checking the noise against the provided db level and returning psd'''
# find a motor peak
if takeoff:
self.takeoff(10, mode="ALT_HOLD")
tstart, tend, hover_throttle = self.hover_for_interval(15)
self.do_RTL()
psd = self.mavfft_fttd(1, instance, tstart * 1.0e6, tend * 1.0e6)
# batch sampler defaults give 1024 fft and sample rate of 1kz so roughly 1hz/bin
freq = psd["F"][numpy.argmax(psd["X"][minhz:maxhz]) + minhz] * (1000. / 1024.)
peakdb = numpy.amax(psd["X"][minhz:maxhz])
if peakdb < dblevel or (peakhz is not None and abs(freq - peakhz) / peakhz > 0.05):
if reverse is not None:
self.progress("Did not detect a motor peak, found %fHz at %fdB" % (freq, peakdb))
else:
raise NotAchievedException("Did not detect a motor peak, found %fHz at %fdB" % (freq, peakdb))
else:
if reverse is not None:
raise NotAchievedException(
"Detected motor peak at %fHz, throttle %f%%, %fdB" %
(freq, hover_throttle, peakdb))
else:
self.progress("Detected motor peak at %fHz, throttle %f%%, %fdB" %
(freq, hover_throttle, peakdb))
return freq, hover_throttle, peakdb, psd
def hover_and_check_matched_frequency_with_fft(self, dblevel=-15, minhz=200, maxhz=300, peakhz=None,
reverse=None, takeoff=True, instance=0):
'''Takeoff and hover, checking the noise against the provided db level and returning peak db'''
freq, hover_throttle, peakdb, psd = \
self.hover_and_check_matched_frequency_with_fft_and_psd(dblevel, minhz,
maxhz, peakhz, reverse, takeoff, instance)
return freq, hover_throttle, peakdb
def get_average_esc_frequency(self):
mlog = self.dfreader_for_current_onboard_log()
rpm_total = 0
rpm_count = 0
tho = 0
while True:
m = mlog.recv_match()
if m is None:
break
msg_type = m.get_type()
if msg_type == "CTUN":
tho = m.ThO
elif msg_type == "ESC" and tho > 0.1:
rpm_total += m.RPM
rpm_count += 1
esc_hz = rpm_total / (rpm_count * 60)
return esc_hz
def DynamicNotches(self):
"""Use dynamic harmonic notch to control motor noise."""
self.progress("Flying with dynamic notches")
self.context_push()
ex = None
try:
self.set_parameters({
"AHRS_EKF_TYPE": 10,
"INS_LOG_BAT_MASK": 3,
"INS_LOG_BAT_OPT": 0,
"INS_GYRO_FILTER": 100, # set the gyro filter high so we can observe behaviour
"LOG_BITMASK": 958,
"LOG_DISARMED": 0,
"SIM_VIB_MOT_MAX": 350,
"SIM_GYR1_RND": 20,
})
self.reboot_sitl()
self.takeoff(10, mode="ALT_HOLD")
# find a motor peak
freq, hover_throttle, peakdb = self.hover_and_check_matched_frequency_with_fft(-15, 200, 300)
# now add a dynamic notch and check that the peak is squashed
self.set_parameters({
"INS_LOG_BAT_OPT": 2,
"INS_HNTCH_ENABLE": 1,
"INS_HNTCH_FREQ": freq,
"INS_HNTCH_REF": hover_throttle/100.,
"INS_HNTCH_HMNCS": 5, # first and third harmonic
"INS_HNTCH_ATT": 50,
"INS_HNTCH_BW": freq/2,
})
self.reboot_sitl()
freq, hover_throttle, peakdb1 = \
self.hover_and_check_matched_frequency_with_fft(-10, 20, 350, reverse=True)
# now add double dynamic notches and check that the peak is squashed
self.set_parameter("INS_HNTCH_OPTS", 1)
self.reboot_sitl()
freq, hover_throttle, peakdb2 = \
self.hover_and_check_matched_frequency_with_fft(-15, 20, 350, reverse=True)
# double-notch should do better, but check for within 5%
if peakdb2 * 1.05 > peakdb1:
raise NotAchievedException(
"Double-notch peak was higher than single-notch peak %fdB > %fdB" %
(peakdb2, peakdb1))
# now add triple dynamic notches and check that the peak is squashed
self.set_parameter("INS_HNTCH_OPTS", 16)
self.reboot_sitl()
freq, hover_throttle, peakdb2 = \
self.hover_and_check_matched_frequency_with_fft(-15, 20, 350, reverse=True)
# triple-notch should do better, but check for within 5%
if peakdb2 * 1.05 > peakdb1:
raise NotAchievedException(
"Triple-notch peak was higher than single-notch peak %fdB > %fdB" %
(peakdb2, peakdb1))
except Exception as e:
self.print_exception_caught(e)
ex = e
self.context_pop()
if ex is not None:
raise ex
def DynamicRpmNotches(self):
"""Use dynamic harmonic notch to control motor noise via ESC telemetry."""
self.progress("Flying with ESC telemetry driven dynamic notches")
self.set_rc_default()
self.set_parameters({
"AHRS_EKF_TYPE": 10,
"INS_LOG_BAT_MASK": 3,
"INS_LOG_BAT_OPT": 0,
"INS_GYRO_FILTER": 300, # set gyro filter high so we can observe behaviour
"LOG_BITMASK": 958,
"LOG_DISARMED": 0,
"SIM_VIB_MOT_MAX": 350,
"SIM_GYR1_RND": 20,
"SIM_ESC_TELEM": 1
})
self.reboot_sitl()
self.takeoff(10, mode="ALT_HOLD")
# find a motor peak, the peak is at about 190Hz, so checking between 50 and 320Hz should be safe.
# there is a second harmonic at 380Hz which should be avoided to make the test reliable
# detect at -5dB so we don't pick some random noise as the peak. The actual peak is about +15dB
freq, hover_throttle, peakdb = self.hover_and_check_matched_frequency_with_fft(-5, 50, 320)
# now add a dynamic notch and check that the peak is squashed
self.set_parameters({
"INS_LOG_BAT_OPT": 4,
"INS_HNTCH_ENABLE": 1,
"INS_HNTCH_FREQ": 80,
"INS_HNTCH_REF": 1.0,
"INS_HNTCH_HMNCS": 5, # first and third harmonic
"INS_HNTCH_ATT": 50,
"INS_HNTCH_BW": 40,
"INS_HNTCH_MODE": 3,
})
self.reboot_sitl()
# -10dB is pretty conservative - actual is about -25dB
freq, hover_throttle, peakdb1, psd = \
self.hover_and_check_matched_frequency_with_fft_and_psd(-10, 50, 320, reverse=True, instance=2)
# find the noise at the motor frequency
esc_hz = self.get_average_esc_frequency()
esc_peakdb1 = psd["X"][int(esc_hz)]
# now add notch-per motor and check that the peak is squashed
self.set_parameter("INS_HNTCH_OPTS", 2)
self.reboot_sitl()
freq, hover_throttle, peakdb2, psd = \
self.hover_and_check_matched_frequency_with_fft_and_psd(-10, 50, 320, reverse=True, instance=2)
# find the noise at the motor frequency
esc_hz = self.get_average_esc_frequency()
esc_peakdb2 = psd["X"][int(esc_hz)]
# notch-per-motor will be better at the average ESC frequency
if esc_peakdb2 > esc_peakdb1:
raise NotAchievedException(
"Notch-per-motor peak was higher than single-notch peak %fdB > %fdB" %
(esc_peakdb2, esc_peakdb1))
# check that the noise is being squashed at all. this needs to be an aggresive check so that failure happens easily
# testing shows this to be -58dB on average
if esc_peakdb2 > -25:
raise NotAchievedException(
"Notch-per-motor had a peak of %fdB there should be none" % esc_peakdb2)
# Now do it again for an octacopter
self.context_push()
ex = None
try:
self.progress("Flying Octacopter with ESC telemetry driven dynamic notches")
self.set_parameter("INS_HNTCH_OPTS", 0)
self.customise_SITL_commandline(
[],
defaults_filepath=','.join(self.model_defaults_filepath("octa")),
model="octa"
)
freq, hover_throttle, peakdb1, psd = \
self.hover_and_check_matched_frequency_with_fft_and_psd(-10, 50, 320, reverse=True, instance=2)
# find the noise at the motor frequency
esc_hz = self.get_average_esc_frequency()
esc_peakdb1 = psd["X"][int(esc_hz)]
# now add notch-per motor and check that the peak is squashed
self.set_parameter("INS_HNTCH_HMNCS", 1)
self.set_parameter("INS_HNTCH_OPTS", 2)
self.reboot_sitl()
freq, hover_throttle, peakdb2, psd = \
self.hover_and_check_matched_frequency_with_fft_and_psd(-15, 50, 320, reverse=True, instance=2)
# find the noise at the motor frequency
esc_hz = self.get_average_esc_frequency()
esc_peakdb2 = psd["X"][int(esc_hz)]
# notch-per-motor will be better at the average ESC frequency
if esc_peakdb2 > esc_peakdb1:
raise NotAchievedException(
"Notch-per-motor peak was higher than single-notch peak %fdB > %fdB" %
(esc_peakdb2, esc_peakdb1))
except Exception as e:
self.print_exception_caught(e)
ex = e
self.context_pop()
self.reboot_sitl()
if ex is not None:
raise ex
def DynamicRpmNotchesRateThread(self):
"""Use dynamic harmonic notch to control motor noise via ESC telemetry."""
self.progress("Flying with ESC telemetry driven dynamic notches")
self.context_push()
self.set_rc_default()
self.set_parameters({
"AHRS_EKF_TYPE": 10,
"INS_LOG_BAT_MASK": 3,
"INS_LOG_BAT_OPT": 0,
"INS_GYRO_FILTER": 300, # set gyro filter high so we can observe behaviour
"LOG_BITMASK": 959,
"LOG_DISARMED": 0,
"SIM_VIB_MOT_MAX": 350,
"SIM_GYR1_RND": 20,
"SIM_ESC_TELEM": 1,
"FSTRATE_ENABLE": 1
})
self.reboot_sitl()
self.takeoff(10, mode="ALT_HOLD")
# find a motor peak, the peak is at about 190Hz, so checking between 50 and 320Hz should be safe.
# there is a second harmonic at 380Hz which should be avoided to make the test reliable
# detect at -5dB so we don't pick some random noise as the peak. The actual peak is about +15dB
freq, hover_throttle, peakdb = self.hover_and_check_matched_frequency_with_fft(-5, 50, 320)
# now add a dynamic notch and check that the peak is squashed
self.set_parameters({
"INS_LOG_BAT_OPT": 4,
"INS_HNTCH_ENABLE": 1,
"INS_HNTCH_FREQ": 80,
"INS_HNTCH_REF": 1.0,
"INS_HNTCH_HMNCS": 5, # first and third harmonic
"INS_HNTCH_ATT": 50,
"INS_HNTCH_BW": 40,
"INS_HNTCH_MODE": 3,
"FSTRATE_ENABLE": 1
})
self.reboot_sitl()
# -10dB is pretty conservative - actual is about -25dB
freq, hover_throttle, peakdb1, psd = \
self.hover_and_check_matched_frequency_with_fft_and_psd(-10, 50, 320, reverse=True, instance=2)
# find the noise at the motor frequency
esc_hz = self.get_average_esc_frequency()
esc_peakdb1 = psd["X"][int(esc_hz)]
# now add notch-per motor and check that the peak is squashed
self.set_parameter("INS_HNTCH_OPTS", 2)
self.reboot_sitl()
freq, hover_throttle, peakdb2, psd = \
self.hover_and_check_matched_frequency_with_fft_and_psd(-10, 50, 320, reverse=True, instance=2)
# find the noise at the motor frequency
esc_hz = self.get_average_esc_frequency()
esc_peakdb2 = psd["X"][int(esc_hz)]
# notch-per-motor will be better at the average ESC frequency
if esc_peakdb2 > esc_peakdb1:
raise NotAchievedException(
"Notch-per-motor peak was higher than single-notch peak %fdB > %fdB" %
(esc_peakdb2, esc_peakdb1))
# check that the noise is being squashed at all. this needs to be an aggresive check so that failure happens easily
# testing shows this to be -58dB on average
if esc_peakdb2 > -25:
raise NotAchievedException(
"Notch-per-motor had a peak of %fdB there should be none" % esc_peakdb2)
self.context_pop()
self.reboot_sitl()
def hover_and_check_matched_frequency(self, dblevel=-15, minhz=200, maxhz=300, fftLength=32, peakhz=None):
'''do a simple up-and-down test flight with current vehicle state.
Check that the onboard filter comes up with the same peak-frequency that
post-processing does.'''
self.takeoff(10, mode="ALT_HOLD")
tstart, tend, hover_throttle = self.hover_for_interval(15)
self.do_RTL()
psd = self.mavfft_fttd(1, 0, tstart * 1.0e6, tend * 1.0e6)
# batch sampler defaults give 1024 fft and sample rate of 1kz so roughly 1hz/bin
scale = 1000. / 1024.
sminhz = int(minhz * scale)
smaxhz = int(maxhz * scale)
freq = psd["F"][numpy.argmax(psd["X"][sminhz:smaxhz]) + sminhz]
peakdb = numpy.amax(psd["X"][sminhz:smaxhz])
self.progress("Post-processing FFT detected motor peak at %fHz/%fdB, throttle %f%%" %
(freq, peakdb, hover_throttle))
if peakdb < dblevel:
raise NotAchievedException(
"Detected motor peak not strong enough; want=%fdB got=%fdB" %
(peakdb, dblevel))
# caller can supply an expected frequency:
if peakhz is not None and abs(freq - peakhz) / peakhz > 0.05:
raise NotAchievedException(
"Post-processing detected motor peak at wrong frequency; want=%fHz got=%fHz" %
(peakhz, freq))
# we have a peak make sure that the onboard filter detected
# something close logging is at 10Hz
# peak within resolution of FFT length
pkAvg, nmessages = self.extract_median_FTN1_PkAvg_from_current_onboard_log(tstart, tend)
self.progress("Onboard-FFT detected motor peak at %fHz (processed %d FTN1 messages)" % (pkAvg, nmessages))
# accuracy is determined by sample rate and fft length, given
# our use of quinn we could probably use half of this
freqDelta = 1000. / fftLength
if abs(pkAvg - freq) > freqDelta:
raise NotAchievedException(
"post-processed FFT does not agree with onboard filter on peak frequency; onboard=%fHz post-processed=%fHz/%fdB" % # noqa
(pkAvg, freq, dblevel)
)
return freq
def extract_median_FTN1_PkAvg_from_current_onboard_log(self, tstart, tend):
'''extracts FTN1 messages from log, returns median of pkAvg values and
the number of samples'''
mlog = self.dfreader_for_current_onboard_log()
freqs = []
while True:
m = mlog.recv_match(
type='FTN1',
blocking=False,
condition="FTN1.TimeUS>%u and FTN1.TimeUS<%u" % (tstart * 1.0e6, tend * 1.0e6))
if m is None:
break
freqs.append(m.PkAvg)
return numpy.median(numpy.asarray(freqs)), len(freqs)
def PIDNotches(self):
"""Use dynamic harmonic notch to control motor noise."""
self.progress("Flying with PID notches")
self.set_parameters({
"FILT1_TYPE": 1,
"AHRS_EKF_TYPE": 10,
"INS_LOG_BAT_MASK": 3,
"INS_LOG_BAT_OPT": 0,
"INS_GYRO_FILTER": 100, # set the gyro filter high so we can observe behaviour
"LOG_BITMASK": 65535,
"LOG_DISARMED": 0,
"SIM_VIB_FREQ_X": 120, # roll
"SIM_VIB_FREQ_Y": 120, # pitch
"SIM_VIB_FREQ_Z": 180, # yaw
"FILT1_NOTCH_FREQ": 120,
"ATC_RAT_RLL_NEF": 1,
"ATC_RAT_PIT_NEF": 1,
"ATC_RAT_YAW_NEF": 1,
"SIM_GYR1_RND": 5,
})
self.reboot_sitl()
self.hover_and_check_matched_frequency_with_fft(dblevel=5, minhz=20, maxhz=350, reverse=True)
def StaticNotches(self):
"""Use static harmonic notch to control motor noise."""
self.progress("Flying with Static notches")
self.set_parameters({
"AHRS_EKF_TYPE": 10,
"INS_LOG_BAT_MASK": 3,
"INS_LOG_BAT_OPT": 4,
"INS_GYRO_FILTER": 100, # set the gyro filter high so we can observe behaviour
"LOG_BITMASK": 65535,
"LOG_DISARMED": 0,
"SIM_VIB_FREQ_X": 120, # roll
"SIM_VIB_FREQ_Y": 120, # pitch
"SIM_VIB_FREQ_Z": 120, # yaw
"SIM_VIB_MOT_MULT": 0,
"SIM_GYR1_RND": 5,
"INS_HNTCH_ENABLE": 1,
"INS_HNTCH_FREQ": 120,
"INS_HNTCH_REF": 1.0,
"INS_HNTCH_HMNCS": 3, # first and second harmonic
"INS_HNTCH_ATT": 50,
"INS_HNTCH_BW": 40,
"INS_HNTCH_MODE": 0, # static notch
})
self.reboot_sitl()
self.hover_and_check_matched_frequency_with_fft(dblevel=-15, minhz=20, maxhz=350, reverse=True, instance=2)
def ThrottleGainBoost(self):
"""Use PD and Angle P boost for anti-gravity."""
# basic gyro sample rate test
self.progress("Flying with Throttle-Gain Boost")
# magic tridge EKF type that dramatically speeds up the test
self.set_parameters({
"AHRS_EKF_TYPE": 10,
"EK2_ENABLE": 0,
"EK3_ENABLE": 0,
"INS_FAST_SAMPLE": 0,
"LOG_BITMASK": 959,
"LOG_DISARMED": 0,
"ATC_THR_G_BOOST": 5.0,
})
self.reboot_sitl()
self.takeoff(10, mode="ALT_HOLD")
hover_time = 15
self.progress("Hovering for %u seconds" % hover_time)
tstart = self.get_sim_time()
while self.get_sim_time_cached() < tstart + hover_time:
self.assert_receive_message('ATTITUDE')
# fly fast forrest!
self.set_rc(3, 1900)
self.set_rc(2, 1200)
self.wait_groundspeed(5, 1000)
self.set_rc(3, 1500)
self.set_rc(2, 1500)
self.do_RTL()
def test_gyro_fft_harmonic(self, averaging):
"""Use dynamic harmonic notch to control motor noise with harmonic matching of the first harmonic."""
# basic gyro sample rate test
self.progress("Flying with gyro FFT harmonic - Gyro sample rate")
self.context_push()
ex = None
# we are dealing with probabalistic scenarios involving threads
try:
self.start_subtest("Hover to calculate approximate hover frequency")
# magic tridge EKF type that dramatically speeds up the test
self.set_parameters({
"AHRS_EKF_TYPE": 10,
"EK2_ENABLE": 0,
"EK3_ENABLE": 0,
"INS_LOG_BAT_MASK": 3,
"INS_LOG_BAT_OPT": 0,
"INS_GYRO_FILTER": 100,
"INS_FAST_SAMPLE": 0,
"LOG_BITMASK": 958,
"LOG_DISARMED": 0,
"SIM_DRIFT_SPEED": 0,
"SIM_DRIFT_TIME": 0,
"FFT_THR_REF": self.get_parameter("MOT_THST_HOVER"),
"SIM_GYR1_RND": 20, # enable a noisy gyro
})
# motor peak enabling FFT will also enable the arming
# check, self-testing the functionality
self.set_parameters({
"FFT_ENABLE": 1,
"FFT_MINHZ": 50,
"FFT_MAXHZ": 450,
"FFT_SNR_REF": 10,
})
if averaging:
self.set_parameter("FFT_NUM_FRAMES", 8)
# Step 1: inject actual motor noise and use the FFT to track it
self.set_parameters({
"SIM_VIB_MOT_MAX": 250, # gives a motor peak at about 175Hz
"FFT_WINDOW_SIZE": 64,
"FFT_WINDOW_OLAP": 0.75,
})
self.reboot_sitl()
freq = self.hover_and_check_matched_frequency(-15, 100, 250, 64)
# Step 2: add a second harmonic and check the first is still tracked
self.start_subtest("Add a fixed frequency harmonic at twice the hover frequency "
"and check the right harmonic is found")
self.set_parameters({
"SIM_VIB_FREQ_X": freq * 2,
"SIM_VIB_FREQ_Y": freq * 2,
"SIM_VIB_FREQ_Z": freq * 2,
"SIM_VIB_MOT_MULT": 0.25, # halve the motor noise so that the higher harmonic dominates
})
self.reboot_sitl()
self.hover_and_check_matched_frequency(-15, 100, 250, 64, None)
# Step 3: switch harmonics mid flight and check for tracking
self.start_subtest("Switch harmonics mid flight and check the right harmonic is found")
self.set_parameter("FFT_HMNC_PEAK", 0)
self.reboot_sitl()
self.takeoff(10, mode="ALT_HOLD")
hover_time = 10
tstart, tend_unused, hover_throttle = self.hover_for_interval(hover_time)
self.progress("Switching motor vibration multiplier")
self.set_parameter("SIM_VIB_MOT_MULT", 5.0)
tstart_unused, tend, hover_throttle = self.hover_for_interval(hover_time)
self.do_RTL()
# peak within resolution of FFT length, the highest energy peak switched but our detection should not
pkAvg, nmessages = self.extract_median_FTN1_PkAvg_from_current_onboard_log(tstart, tend)
freqDelta = 1000. / self.get_parameter("FFT_WINDOW_SIZE")
if abs(pkAvg - freq) > freqDelta:
raise NotAchievedException("FFT did not detect a harmonic motor peak, found %f, wanted %f" % (pkAvg, freq))
# Step 4: dynamic harmonic
self.start_subtest("Enable dynamic harmonics and make sure both frequency peaks are attenuated")
# find a motor peak
freq, hover_throttle, peakdb = self.hover_and_check_matched_frequency_with_fft(-15, 100, 350)
# now add a dynamic notch and check that the peak is squashed
self.set_parameters({
"INS_LOG_BAT_OPT": 2,
"INS_HNTCH_ENABLE": 1,
"INS_HNTCH_HMNCS": 1,
"INS_HNTCH_MODE": 4,
"INS_HNTCH_FREQ": freq,
"INS_HNTCH_REF": hover_throttle/100.0,
"INS_HNTCH_ATT": 100,
"INS_HNTCH_BW": freq/2,
"INS_HNTCH_OPTS": 3,
})
self.reboot_sitl()
# 5db is far in excess of the attenuation that the double dynamic-harmonic notch is able
# to provide (-7dB on average), but without the notch the peak is around 20dB so still a safe test
self.hover_and_check_matched_frequency_with_fft(5, 100, 350, reverse=True)
self.set_parameters({
"SIM_VIB_FREQ_X": 0,
"SIM_VIB_FREQ_Y": 0,
"SIM_VIB_FREQ_Z": 0,
"SIM_VIB_MOT_MULT": 1.0,
})
# prevent update parameters from messing with the settings when we pop the context
self.set_parameter("FFT_ENABLE", 0)
self.reboot_sitl()
except Exception as e:
self.print_exception_caught(e)
ex = e
self.context_pop()
# need a final reboot because weird things happen to your
# vehicle state when switching back from EKF type 10!
self.reboot_sitl()
if ex is not None:
raise ex
def GyroFFTHarmonic(self):
"""Use dynamic harmonic notch to control motor noise with harmonic matching of the first harmonic."""
self.test_gyro_fft_harmonic(False)
def GyroFFTContinuousAveraging(self):
"""Use dynamic harmonic notch with FFT averaging to control motor noise
with harmonic matching of the first harmonic."""
self.test_gyro_fft_harmonic(True)
def GyroFFT(self):
"""Use dynamic harmonic notch to control motor noise."""
# basic gyro sample rate test
self.progress("Flying with gyro FFT - Gyro sample rate")
self.context_push()
ex = None
try:
# magic tridge EKF type that dramatically speeds up the test
self.set_parameters({
"AHRS_EKF_TYPE": 10,
"EK2_ENABLE": 0,
"EK3_ENABLE": 0,
"INS_LOG_BAT_MASK": 3,
"INS_LOG_BAT_OPT": 4,
"INS_GYRO_FILTER": 100,
"INS_FAST_SAMPLE": 0,
"LOG_BITMASK": 958,
"LOG_DISARMED": 0,
"SIM_DRIFT_SPEED": 0,
"SIM_DRIFT_TIME": 0,
"SIM_GYR1_RND": 20, # enable a noisy motor peak
})
# enabling FFT will also enable the arming check,
# self-testing the functionality
self.set_parameters({
"FFT_ENABLE": 1,
"FFT_MINHZ": 50,
"FFT_MAXHZ": 450,
"FFT_SNR_REF": 10,
"FFT_WINDOW_SIZE": 128,
"FFT_WINDOW_OLAP": 0.75,
"FFT_SAMPLE_MODE": 0,
})
# Step 1: inject a very precise noise peak at 250hz and make sure the in-flight fft
# can detect it really accurately. For a 128 FFT the frequency resolution is 8Hz so
# a 250Hz peak should be detectable within 5%
self.start_subtest("Inject noise at 250Hz and check the FFT can find the noise")
self.set_parameters({
"SIM_VIB_FREQ_X": 250,
"SIM_VIB_FREQ_Y": 250,
"SIM_VIB_FREQ_Z": 250,
})
self.reboot_sitl()
# find a motor peak
self.hover_and_check_matched_frequency(-15, 100, 350, 128, 250)
# Step 1b: run the same test with an FFT length of 256 which is needed to flush out a
# whole host of bugs related to uint8_t. This also tests very accurately the frequency resolution
self.set_parameter("FFT_WINDOW_SIZE", 256)
self.start_subtest("Inject noise at 250Hz and check the FFT can find the noise")
self.reboot_sitl()
# find a motor peak
self.hover_and_check_matched_frequency(-15, 100, 350, 256, 250)
self.set_parameter("FFT_WINDOW_SIZE", 128)
# Step 2: inject actual motor noise and use the standard length FFT to track it
self.start_subtest("Hover and check that the FFT can find the motor noise")
self.set_parameters({
"SIM_VIB_FREQ_X": 0,
"SIM_VIB_FREQ_Y": 0,
"SIM_VIB_FREQ_Z": 0,
"SIM_VIB_MOT_MAX": 250, # gives a motor peak at about 175Hz
"FFT_WINDOW_SIZE": 32,
"FFT_WINDOW_OLAP": 0.5,
})
self.reboot_sitl()
freq = self.hover_and_check_matched_frequency(-15, 100, 250, 32)
self.set_parameter("SIM_VIB_MOT_MULT", 1.)
# Step 3: add a FFT dynamic notch and check that the peak is squashed
self.start_subtest("Add a dynamic notch, hover and check that the noise peak is now gone")
self.set_parameters({
"INS_LOG_BAT_OPT": 2,
"INS_HNTCH_ENABLE": 1,
"INS_HNTCH_FREQ": freq,
"INS_HNTCH_REF": 1.0,
"INS_HNTCH_ATT": 50,
"INS_HNTCH_BW": freq/2,
"INS_HNTCH_MODE": 4,
})
self.reboot_sitl()
# do test flight:
self.takeoff(10, mode="ALT_HOLD")
tstart, tend, hover_throttle = self.hover_for_interval(15)
# fly fast forrest!
self.set_rc(3, 1900)
self.set_rc(2, 1200)
self.wait_groundspeed(5, 1000)
self.set_rc(3, 1500)
self.set_rc(2, 1500)
self.do_RTL()
psd = self.mavfft_fttd(1, 0, tstart * 1.0e6, tend * 1.0e6)
# batch sampler defaults give 1024 fft and sample rate of 1kz so roughly 1hz/bin
scale = 1000. / 1024.
sminhz = int(100 * scale)
smaxhz = int(350 * scale)
freq = psd["F"][numpy.argmax(psd["X"][sminhz:smaxhz]) + sminhz]
peakdb = numpy.amax(psd["X"][sminhz:smaxhz])
if peakdb < 0:
self.progress("Did not detect a motor peak, found %fHz at %fdB" % (freq, peakdb))
else:
raise NotAchievedException("Detected %fHz motor peak at %fdB" % (freq, peakdb))
# Step 4: loop sample rate test with larger window
self.start_subtest("Hover and check that the FFT can find the motor noise when running at fast loop rate")
# we are limited to half the loop rate for frequency detection
self.set_parameters({
"FFT_MAXHZ": 185,
"INS_LOG_BAT_OPT": 4,
"SIM_VIB_MOT_MAX": 220,
"FFT_WINDOW_SIZE": 64,
"FFT_WINDOW_OLAP": 0.75,
"FFT_SAMPLE_MODE": 1,
})
self.reboot_sitl()
# do test flight:
self.takeoff(10, mode="ALT_HOLD")
tstart, tend, hover_throttle = self.hover_for_interval(15)
self.do_RTL()
# why are we not checking the results from that flight? -pb20220613
# prevent update parameters from messing with the settings
# when we pop the context
self.set_parameter("FFT_ENABLE", 0)
self.reboot_sitl()
except Exception as e:
self.print_exception_caught(e)
ex = e
self.context_pop()
# must reboot after we move away from EKF type 10 to EKF2 or EKF3
self.reboot_sitl()
if ex is not None:
raise ex
def GyroFFTAverage(self):
"""Use dynamic harmonic notch to control motor noise setup via FFT averaging."""
# basic gyro sample rate test
self.progress("Flying with gyro FFT harmonic - Gyro sample rate")
self.context_push()
ex = None
try:
# Step 1
self.start_subtest("Hover to calculate approximate hover frequency and see that it is tracked")
# magic tridge EKF type that dramatically speeds up the test
self.set_parameters({
"INS_HNTCH_ATT": 100,
"AHRS_EKF_TYPE": 10,
"EK2_ENABLE": 0,
"EK3_ENABLE": 0,
"INS_LOG_BAT_MASK": 3,
"INS_LOG_BAT_OPT": 2,
"INS_GYRO_FILTER": 100,
"INS_FAST_SAMPLE": 0,
"LOG_BITMASK": 958,
"LOG_DISARMED": 0,
"SIM_DRIFT_SPEED": 0,
"SIM_DRIFT_TIME": 0,
"SIM_GYR1_RND": 20, # enable a noisy gyro
})
# motor peak enabling FFT will also enable the arming
# check, self-testing the functionality
self.set_parameters({
"FFT_ENABLE": 1,
"FFT_WINDOW_SIZE": 64, # not the default, but makes the test more reliable
"FFT_SNR_REF": 10,
"FFT_MINHZ": 80,
"FFT_MAXHZ": 450,
})
# Step 1: inject actual motor noise and use the FFT to track it
self.set_parameters({
"SIM_VIB_MOT_MAX": 250, # gives a motor peak at about 175Hz
"RC7_OPTION" : 162, # FFT tune
})
self.reboot_sitl()
# hover and engage FFT tracker
self.takeoff(10, mode="ALT_HOLD")
hover_time = 60
# start the tune
self.set_rc(7, 2000)
tstart, tend, hover_throttle = self.hover_for_interval(hover_time)
# finish the tune
self.set_rc(7, 1000)
psd = self.mavfft_fttd(1, 0, tstart * 1.0e6, tend * 1.0e6)
# batch sampler defaults give 1024 fft and sample rate of 1kz so roughly 1hz/bin
freq = psd["F"][numpy.argmax(psd["X"][50:450]) + 50] * (1000. / 1024.)
detected_ref = self.get_parameter("INS_HNTCH_REF")
detected_freq = self.get_parameter("INS_HNTCH_FREQ")
self.progress("FFT detected parameters were %fHz, ref %f" % (detected_freq, detected_ref))
# approximate the scaled frequency
scaled_freq_at_hover = math.sqrt((hover_throttle / 100.) / detected_ref) * detected_freq
# Check we matched
if abs(scaled_freq_at_hover - freq) / scaled_freq_at_hover > 0.05:
raise NotAchievedException("Detected frequency %fHz did not match required %fHz" %
(scaled_freq_at_hover, freq))
if self.get_parameter("INS_HNTCH_ENABLE") != 1:
raise NotAchievedException("Harmonic notch was not enabled")
# Step 2: now rerun the test and check that the peak is squashed
self.start_subtest("Verify that noise is suppressed by the harmonic notch")
self.hover_and_check_matched_frequency_with_fft(0, 100, 350, reverse=True, takeoff=False)
# reset notch to defaults
self.set_parameters({
"INS_HNTCH_HMNCS": 3.0,
"INS_HNTCH_ENABLE": 0.0,
"INS_HNTCH_REF": 0.0,
"INS_HNTCH_FREQ": 80,
"INS_HNTCH_BW": 40,
"INS_HNTCH_FM_RAT": 1.0
})
# Step 3: add a second harmonic and check the first is still tracked
self.start_subtest("Add a fixed frequency harmonic at twice the hover frequency "
"and check the right harmonic is found")
self.set_parameters({
"SIM_VIB_FREQ_X": detected_freq * 2,
"SIM_VIB_FREQ_Y": detected_freq * 2,
"SIM_VIB_FREQ_Z": detected_freq * 2,
"SIM_VIB_MOT_MULT": 0.25, # halve the motor noise so that the higher harmonic dominates
})
self.reboot_sitl()
# hover and engage FFT tracker
self.takeoff(10, mode="ALT_HOLD")
hover_time = 60
# start the tune
self.set_rc(7, 2000)
tstart, tend, hover_throttle = self.hover_for_interval(hover_time)
# finish the tune
self.set_rc(7, 1000)
self.do_RTL()
detected_ref = self.get_parameter("INS_HNTCH_REF")
detected_freq = self.get_parameter("INS_HNTCH_FREQ")
self.progress("FFT detected parameters were %fHz, ref %f" % (detected_freq, detected_ref))
# approximate the scaled frequency
scaled_freq_at_hover = math.sqrt((hover_throttle / 100.) / detected_ref) * detected_freq
# Check we matched
if abs(scaled_freq_at_hover - freq) / scaled_freq_at_hover > 0.05:
raise NotAchievedException("Detected frequency %fHz did not match required %fHz" %
(scaled_freq_at_hover, freq))
if self.get_parameter("INS_HNTCH_ENABLE") != 1:
raise NotAchievedException("Harmonic notch was not enabled")
self.set_parameters({
"SIM_VIB_FREQ_X": 0,
"SIM_VIB_FREQ_Y": 0,
"SIM_VIB_FREQ_Z": 0,
"SIM_VIB_MOT_MULT": 1.0,
"INS_HNTCH_HMNCS": 3.0,
"INS_HNTCH_ENABLE": 0.0,
"INS_HNTCH_REF": 0.0,
"INS_HNTCH_FREQ": 80,
"INS_HNTCH_BW": 40,
"INS_HNTCH_FM_RAT": 1.0
})
# prevent update parameters from messing with the settings when we pop the context
self.set_parameter("FFT_ENABLE", 0)
self.reboot_sitl()
except Exception as e:
self.print_exception_caught(e)
ex = e
self.context_pop()
# need a final reboot because weird things happen to your
# vehicle state when switching back from EKF type 10!
self.reboot_sitl()
if ex is not None:
raise ex
def GyroFFTPostFilter(self):
"""Use FFT-driven dynamic harmonic notch to control post-RPM filter motor noise."""
# basic gyro sample rate test
self.progress("Flying with gyro FFT post-filter supression - Gyro sample rate")
self.context_push()
ex = None
try:
# This set of parameters creates two noise peaks one at the motor frequency and one at 250Hz
# we then use ESC telemetry to drive the notch to clean up the motor noise and a post-filter
# FFT notch to clean up the remaining 250Hz. If either notch fails then the test will be failed
# due to too much noise being present
self.set_parameters({
"AHRS_EKF_TYPE": 10, # magic tridge EKF type that dramatically speeds up the test
"EK2_ENABLE": 0,
"EK3_ENABLE": 0,
"INS_LOG_BAT_MASK": 3,
"INS_LOG_BAT_OPT": 4,
"INS_GYRO_FILTER": 100,
"INS_FAST_SAMPLE": 3,
"LOG_BITMASK": 958,
"LOG_DISARMED": 0,
"SIM_DRIFT_SPEED": 0,
"SIM_DRIFT_TIME": 0,
"SIM_GYR1_RND": 20, # enable a noisy gyro
"INS_HNTCH_ENABLE": 1,
"INS_HNTCH_FREQ": 80,
"INS_HNTCH_REF": 1.0,
"INS_HNTCH_HMNCS": 1, # first harmonic
"INS_HNTCH_ATT": 50,
"INS_HNTCH_BW": 30,
"INS_HNTCH_MODE": 3, # ESC telemetry
"INS_HNTCH_OPTS": 2, # notch-per-motor
"INS_HNTC2_ENABLE": 1,
"INS_HNTC2_FREQ": 80,
"INS_HNTC2_REF": 1.0,
"INS_HNTC2_HMNCS": 1,
"INS_HNTC2_ATT": 50,
"INS_HNTC2_BW": 40,
"INS_HNTC2_MODE": 4, # in-flight FFT
"INS_HNTC2_OPTS": 18, # triple-notch, notch-per-FFT peak
"FFT_ENABLE": 1,
"FFT_WINDOW_SIZE": 64, # not the default, but makes the test more reliable
"FFT_OPTIONS": 1,
"FFT_MINHZ": 50,
"FFT_MAXHZ": 450,
"SIM_VIB_MOT_MAX": 250, # gives a motor peak at about 145Hz
"SIM_VIB_FREQ_X": 250, # create another peak at 250hz
"SIM_VIB_FREQ_Y": 250,
"SIM_VIB_FREQ_Z": 250,
"SIM_GYR_FILE_RW": 2, # write data to a file
})
self.reboot_sitl()
# do test flight:
self.takeoff(10, mode="ALT_HOLD")
tstart, tend, hover_throttle = self.hover_for_interval(60)
# fly fast forrest!
self.set_rc(3, 1900)
self.set_rc(2, 1200)
self.wait_groundspeed(5, 1000)
self.set_rc(3, 1500)
self.set_rc(2, 1500)
self.do_RTL()
psd = self.mavfft_fttd(1, 2, tstart * 1.0e6, tend * 1.0e6)
# batch sampler defaults give 1024 fft and sample rate of 1kz so roughly 1hz/bin
scale = 1000. / 1024.
sminhz = int(100 * scale)
smaxhz = int(350 * scale)
freq = psd["F"][numpy.argmax(psd["X"][sminhz:smaxhz]) + sminhz]
peakdb = numpy.amax(psd["X"][sminhz:smaxhz])
if peakdb < -5:
self.progress("Did not detect a motor peak, found %fHz at %fdB" % (freq, peakdb))
else:
raise NotAchievedException("Detected %fHz motor peak at %fdB" % (freq, peakdb))
# prevent update parameters from messing with the settings when we pop the context
self.set_parameters({
"SIM_VIB_FREQ_X": 0,
"SIM_VIB_FREQ_Y": 0,
"SIM_VIB_FREQ_Z": 0,
"SIM_VIB_MOT_MULT": 1.0,
"SIM_GYR_FILE_RW": 0, # stop writing data
"FFT_ENABLE": 0,
})
self.reboot_sitl()
except Exception as e:
self.print_exception_caught(e)
ex = e
self.context_pop()
# need a final reboot because weird things happen to your
# vehicle state when switching back from EKF type 10!
self.reboot_sitl()
if ex is not None:
raise ex
def GyroFFTMotorNoiseCheck(self):
"""Use FFT to detect post-filter motor noise."""
# basic gyro sample rate test
self.progress("Flying with FFT motor-noise detection - Gyro sample rate")
self.context_push()
ex = None
try:
# This set of parameters creates two noise peaks one at the motor frequency and one at 250Hz
# we then use ESC telemetry to drive the notch to clean up the motor noise and a post-filter
# FFT notch to clean up the remaining 250Hz. If either notch fails then the test will be failed
# due to too much noise being present
self.set_parameters({
"AHRS_EKF_TYPE": 10, # magic tridge EKF type that dramatically speeds up the test
"EK2_ENABLE": 0,
"EK3_ENABLE": 0,
"INS_LOG_BAT_MASK": 3,
"INS_LOG_BAT_OPT": 4,
"INS_GYRO_FILTER": 100,
"INS_FAST_SAMPLE": 3,
"LOG_BITMASK": 958,
"LOG_DISARMED": 0,
"SIM_DRIFT_SPEED": 0,
"SIM_DRIFT_TIME": 0,
"SIM_GYR1_RND": 200, # enable a noisy gyro
"INS_HNTCH_ENABLE": 1,
"INS_HNTCH_FREQ": 80,
"INS_HNTCH_REF": 1.0,
"INS_HNTCH_HMNCS": 1, # first harmonic
"INS_HNTCH_ATT": 50,
"INS_HNTCH_BW": 30,
"INS_HNTCH_MODE": 3, # ESC telemetry
"INS_HNTCH_OPTS": 2, # notch-per-motor
"INS_HNTC2_ENABLE": 1,
"INS_HNTC2_FREQ": 80,
"INS_HNTC2_REF": 1.0,
"INS_HNTC2_HMNCS": 1,
"INS_HNTC2_ATT": 50,
"INS_HNTC2_BW": 40,
"INS_HNTC2_MODE": 0, # istatic notch
"INS_HNTC2_OPTS": 16, # triple-notch
"FFT_ENABLE": 1,
"FFT_WINDOW_SIZE": 64, # not the default, but makes the test more reliable
"FFT_OPTIONS": 3,
"FFT_MINHZ": 50,
"FFT_MAXHZ": 450,
"SIM_VIB_MOT_MAX": 250, # gives a motor peak at about 145Hz
"SIM_VIB_FREQ_X": 250, # create another peak at 250hz
"SIM_VIB_FREQ_Y": 250,
"SIM_VIB_FREQ_Z": 250,
"SIM_GYR_FILE_RW": 2, # write data to a file
})
self.reboot_sitl()
# do test flight:
self.takeoff(10, mode="ALT_HOLD")
tstart, tend, hover_throttle = self.hover_for_interval(10)
self.wait_statustext("Noise ", timeout=20)
self.set_parameter("SIM_GYR1_RND", 0) # stop noise so that we can get home
self.do_RTL()
# prevent update parameters from messing with the settings when we pop the context
self.set_parameters({
"SIM_VIB_FREQ_X": 0,
"SIM_VIB_FREQ_Y": 0,
"SIM_VIB_FREQ_Z": 0,
"SIM_VIB_MOT_MULT": 1.0,
"SIM_GYR_FILE_RW": 0, # stop writing data
"FFT_ENABLE": 0,
})
self.reboot_sitl()
except Exception as e:
self.print_exception_caught(e)
ex = e
self.context_pop()
# need a final reboot because weird things happen to your
# vehicle state when switching back from EKF type 10!
self.reboot_sitl()
if ex is not None:
raise ex
def BrakeMode(self):
'''Fly Brake Mode'''
# test brake mode
self.progress("Testing brake mode")
self.takeoff(10, mode="LOITER")
self.progress("Ensuring RC inputs have no effect in brake mode")
self.change_mode("STABILIZE")
self.set_rc(3, 1500)
self.set_rc(2, 1200)
self.wait_groundspeed(5, 1000)
self.change_mode("BRAKE")
self.wait_groundspeed(0, 1)
self.set_rc(2, 1500)
self.do_RTL()
self.progress("Ran brake mode")
def fly_guided_move_to(self, destination, timeout=30):
'''move to mavutil.location location; absolute altitude'''
tstart = self.get_sim_time()
self.mav.mav.set_position_target_global_int_send(
0, # timestamp
1, # target system_id
1, # target component id
mavutil.mavlink.MAV_FRAME_GLOBAL_INT,
MAV_POS_TARGET_TYPE_MASK.POS_ONLY | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE, # mask specifying use-only-lat-lon-alt
int(destination.lat * 1e7), # lat
int(destination.lng * 1e7), # lon
destination.alt, # alt
0, # vx
0, # vy
0, # vz
0, # afx
0, # afy
0, # afz
0, # yaw
0, # yawrate
)
while True:
if self.get_sim_time() - tstart > timeout:
raise NotAchievedException()
delta = self.get_distance(self.mav.location(), destination)
self.progress("delta=%f (want <1)" % delta)
if delta < 1:
break
def AltTypes(self):
'''Test Different Altitude Types'''
'''start by disabling GCS failsafe, otherwise we immediately disarm
due to (apparently) not receiving traffic from the GCS for
too long. This is probably a function of --speedup'''
'''this test flies the vehicle somewhere lower than were it started.
It then disarms. It then arms, which should reset home to the
new, lower altitude. This delta should be outside 1m but
within a few metres of the old one.
'''
self.install_terrain_handlers_context()
self.set_parameter("FS_GCS_ENABLE", 0)
self.change_mode('GUIDED')
self.wait_ready_to_arm()
self.arm_vehicle()
m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
max_initial_home_alt_m = 500
if m.relative_alt > max_initial_home_alt_m:
raise NotAchievedException("Initial home alt too high (%fm > %fm)" %
(m.relative_alt*1000, max_initial_home_alt_m*1000))
orig_home_offset_mm = m.alt - m.relative_alt
self.user_takeoff(5)
self.progress("Flying to low position")
current_alt = self.mav.location().alt
# 10m delta low_position = mavutil.location(-35.358273, 149.169165, current_alt, 0)
low_position = mavutil.location(-35.36200016, 149.16415599, current_alt, 0)
self.fly_guided_move_to(low_position, timeout=240)
self.change_mode('LAND')
# expecting home to change when disarmed
self.wait_landed_and_disarmed()
# wait a while for home to move (it shouldn't):
self.delay_sim_time(10)
m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
new_home_offset_mm = m.alt - m.relative_alt
home_offset_delta_mm = orig_home_offset_mm - new_home_offset_mm
self.progress("new home offset: %f delta=%f" %
(new_home_offset_mm, home_offset_delta_mm))
self.progress("gpi=%s" % str(m))
max_home_offset_delta_mm = 10
if home_offset_delta_mm > max_home_offset_delta_mm:
raise NotAchievedException("Large home offset delta: want<%f got=%f" %
(max_home_offset_delta_mm, home_offset_delta_mm))
self.progress("Ensuring home moves when we arm")
self.change_mode('GUIDED')
self.wait_ready_to_arm()
self.arm_vehicle()
m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
post_arming_home_offset_mm = m.alt - m.relative_alt
self.progress("post-arming home offset: %f" % (post_arming_home_offset_mm))
self.progress("gpi=%s" % str(m))
min_post_arming_home_offset_delta_mm = -2500
max_post_arming_home_offset_delta_mm = -4000
delta_between_original_home_alt_offset_and_new_home_alt_offset_mm = post_arming_home_offset_mm - orig_home_offset_mm
self.progress("delta=%f-%f=%f" % (
post_arming_home_offset_mm,
orig_home_offset_mm,
delta_between_original_home_alt_offset_and_new_home_alt_offset_mm))
self.progress("Home moved %fm vertically" % (delta_between_original_home_alt_offset_and_new_home_alt_offset_mm/1000.0))
if delta_between_original_home_alt_offset_and_new_home_alt_offset_mm > min_post_arming_home_offset_delta_mm:
raise NotAchievedException(
"Home did not move vertically on arming: want<=%f got=%f" %
(min_post_arming_home_offset_delta_mm, delta_between_original_home_alt_offset_and_new_home_alt_offset_mm))
if delta_between_original_home_alt_offset_and_new_home_alt_offset_mm < max_post_arming_home_offset_delta_mm:
raise NotAchievedException(
"Home moved too far vertically on arming: want>=%f got=%f" %
(max_post_arming_home_offset_delta_mm, delta_between_original_home_alt_offset_and_new_home_alt_offset_mm))
self.wait_disarmed()
def PrecisionLoiterCompanion(self):
"""Use Companion PrecLand backend precision messages to loiter."""
self.set_parameters({
"PLND_ENABLED": 1,
"PLND_TYPE": 1, # enable companion backend:
"RC7_OPTION": 39, # set up a channel switch to enable precision loiter:
})
self.set_analog_rangefinder_parameters()
self.reboot_sitl()
self.progress("Waiting for location")
self.change_mode('LOITER')
self.wait_ready_to_arm()
# we should be doing precision loiter at this point
start = self.assert_receive_message('LOCAL_POSITION_NED')
self.takeoff(20, mode='ALT_HOLD')
# move away a little
self.set_rc(2, 1550)
self.wait_distance(5, accuracy=1)
self.set_rc(2, 1500)
self.change_mode('LOITER')
# turn precision loiter on:
self.context_collect('STATUSTEXT')
self.set_rc(7, 2000)
# try to drag aircraft to a position 5 metres north-east-east:
self.precision_loiter_to_pos(start.x + 5, start.y + 10, start.z + 10)
self.wait_statustext("PrecLand: Target Found", check_context=True, timeout=10)
self.wait_statustext("PrecLand: Init Complete", check_context=True, timeout=10)
# .... then northwest
self.precision_loiter_to_pos(start.x + 5, start.y - 10, start.z + 10)
self.disarm_vehicle(force=True)
def loiter_requires_position(self):
# ensure we can't switch to LOITER without position
self.progress("Ensure we can't enter LOITER without position")
self.context_push()
self.set_parameters({
"GPS1_TYPE": 2,
"SIM_GPS1_ENABLE": 0,
})
# if there is no GPS at all then we must direct EK3 to not use
# it at all. Otherwise it will never initialise, as it wants
# to calculate the lag and size its delay buffers accordingly.
self.set_parameters({
"EK3_SRC1_POSXY": 0,
"EK3_SRC1_VELZ": 0,
"EK3_SRC1_VELXY": 0,
})
self.reboot_sitl()
self.delay_sim_time(30) # wait for accels/gyros to settle
# check for expected EKF flags
ahrs_ekf_type = self.get_parameter("AHRS_EKF_TYPE")
expected_ekf_flags = (mavutil.mavlink.ESTIMATOR_ATTITUDE |
mavutil.mavlink.ESTIMATOR_VELOCITY_VERT |
mavutil.mavlink.ESTIMATOR_POS_VERT_ABS |
mavutil.mavlink.ESTIMATOR_CONST_POS_MODE)
if ahrs_ekf_type == 2:
expected_ekf_flags = expected_ekf_flags | mavutil.mavlink.ESTIMATOR_PRED_POS_HORIZ_REL
self.wait_ekf_flags(expected_ekf_flags, 0, timeout=120)
# arm in Stabilize and attempt to switch to Loiter
self.change_mode('STABILIZE')
self.arm_vehicle()
self.context_collect('STATUSTEXT')
self.run_cmd_do_set_mode(
"LOITER",
want_result=mavutil.mavlink.MAV_RESULT_FAILED)
self.wait_statustext("requires position", check_context=True)
self.disarm_vehicle()
self.context_pop()
self.reboot_sitl()
def ArmFeatures(self):
'''Arm features'''
self.loiter_requires_position()
super(AutoTestCopter, self).ArmFeatures()
def ParameterChecks(self):
'''Test Arming Parameter Checks'''
self.test_parameter_checks_poscontrol("PSC")
def PosHoldTakeOff(self):
"""ensure vehicle stays put until it is ready to fly"""
self.context_push()
self.set_parameter("PILOT_TKOFF_ALT", 700)
self.change_mode('POSHOLD')
self.set_rc(3, 1000)
self.wait_ready_to_arm()
self.arm_vehicle()
self.delay_sim_time(2)
# check we are still on the ground...
relative_alt = self.get_altitude(relative=True)
if relative_alt > 0.1:
raise NotAchievedException("Took off prematurely")
self.progress("Pushing throttle up")
self.set_rc(3, 1710)
self.delay_sim_time(0.5)
self.progress("Bringing back to hover throttle")
self.set_rc(3, 1500)
# make sure we haven't already reached alt:
relative_alt = self.get_altitude(relative=True)
max_initial_alt = 2.0
if abs(relative_alt) > max_initial_alt:
raise NotAchievedException("Took off too fast (%f > %f" %
(relative_alt, max_initial_alt))
self.progress("Monitoring takeoff-to-alt")
self.wait_altitude(6.9, 8, relative=True, minimum_duration=10)
self.progress("takeoff OK")
self.land_and_disarm()
self.set_rc(8, 1000)
self.context_pop()
def initial_mode(self):
return "STABILIZE"
def initial_mode_switch_mode(self):
return "STABILIZE"
def default_mode(self):
return "STABILIZE"
def rc_defaults(self):
ret = super(AutoTestCopter, self).rc_defaults()
ret[3] = 1000
ret[5] = 1800 # mode switch
return ret
def MANUAL_CONTROL(self):
'''test MANUAL_CONTROL mavlink message'''
self.set_parameter("SYSID_MYGCS", self.mav.source_system)
self.change_mode('STABILIZE')
self.takeoff(10)
tstart = self.get_sim_time_cached()
want_pitch_degrees = -12
while True:
if self.get_sim_time_cached() - tstart > 10:
raise AutoTestTimeoutException("Did not reach pitch")
self.progress("Sending pitch-forward")
self.mav.mav.manual_control_send(
1, # target system
500, # x (pitch)
32767, # y (roll)
32767, # z (thrust)
32767, # r (yaw)
0) # button mask
m = self.mav.recv_match(type='ATTITUDE', blocking=True, timeout=1)
print("m=%s" % str(m))
if m is None:
continue
p = math.degrees(m.pitch)
self.progress("pitch=%f want<=%f" % (p, want_pitch_degrees))
if p <= want_pitch_degrees:
break
self.mav.mav.manual_control_send(
1, # target system
32767, # x (pitch)
32767, # y (roll)
32767, # z (thrust)
32767, # r (yaw)
0) # button mask
self.do_RTL()
def check_avoidance_corners(self):
self.takeoff(10, mode="LOITER")
here = self.mav.location()
self.set_rc(2, 1400)
west_loc = mavutil.location(-35.363007,
149.164911,
here.alt,
0)
self.wait_location(west_loc, accuracy=6)
north_loc = mavutil.location(-35.362908,
149.165051,
here.alt,
0)
self.reach_heading_manual(0)
self.wait_location(north_loc, accuracy=6, timeout=200)
self.reach_heading_manual(90)
east_loc = mavutil.location(-35.363013,
149.165194,
here.alt,
0)
self.wait_location(east_loc, accuracy=6)
self.reach_heading_manual(225)
self.wait_location(west_loc, accuracy=6, timeout=200)
self.set_rc(2, 1500)
self.do_RTL()
def OBSTACLE_DISTANCE_3D_test_angle(self, angle):
now = self.get_sim_time_cached()
distance = 15
right = distance * math.sin(math.radians(angle))
front = distance * math.cos(math.radians(angle))
down = 0
expected_distance_cm = distance * 100
# expected orientation
expected_orientation = int((angle+22.5)/45) % 8
self.progress("Angle %f expected orient %u" %
(angle, expected_orientation))
tstart = self.get_sim_time()
last_send = 0
m = None
while True:
now = self.get_sim_time_cached()
if now - tstart > 100:
raise NotAchievedException("Did not get correct angle back (last-message=%s)" % str(m))
if now - last_send > 0.1:
self.progress("ang=%f sending front=%f right=%f" %
(angle, front, right))
self.mav.mav.obstacle_distance_3d_send(
int(now*1000), # time_boot_ms
mavutil.mavlink.MAV_DISTANCE_SENSOR_LASER,
mavutil.mavlink.MAV_FRAME_BODY_FRD,
65535,
front, # x (m)
right, # y (m)
down, # z (m)
0, # min_distance (m)
20 # max_distance (m)
)
last_send = now
m = self.mav.recv_match(type="DISTANCE_SENSOR",
blocking=True,
timeout=1)
if m is None:
continue
# self.progress("Got (%s)" % str(m))
if m.orientation != expected_orientation:
# self.progress("Wrong orientation (want=%u got=%u)" %
# (expected_orientation, m.orientation))
continue
if abs(m.current_distance - expected_distance_cm) > 1:
# self.progress("Wrong distance (want=%f got=%f)" %
# (expected_distance_cm, m.current_distance))
continue
self.progress("distance-at-angle good")
break
def OBSTACLE_DISTANCE_3D(self):
'''Check round-trip behaviour of distance sensors'''
self.context_push()
self.set_parameters({
"SERIAL5_PROTOCOL": 1,
"PRX1_TYPE": 2,
"SIM_SPEEDUP": 8, # much GCS interaction
})
self.reboot_sitl()
# need yaw estimate to stabilise:
self.wait_ekf_happy(require_absolute=True)
for angle in range(0, 360):
self.OBSTACLE_DISTANCE_3D_test_angle(angle)
self.context_pop()
self.reboot_sitl()
def AC_Avoidance_Proximity(self):
'''Test proximity avoidance slide behaviour'''
self.context_push()
self.load_fence("copter-avoidance-fence.txt")
self.set_parameters({
"FENCE_ENABLE": 1,
"PRX1_TYPE": 10,
"PRX_LOG_RAW": 1,
"RC10_OPTION": 40, # proximity-enable
})
self.reboot_sitl()
self.progress("Enabling proximity")
self.set_rc(10, 2000)
self.check_avoidance_corners()
self.assert_current_onboard_log_contains_message("PRX")
self.assert_current_onboard_log_contains_message("PRXR")
self.disarm_vehicle(force=True)
self.context_pop()
self.reboot_sitl()
def ProximitySensors(self):
'''ensure proximity sensors return appropriate data'''
self.set_parameters({
"SERIAL5_PROTOCOL": 11,
"OA_DB_OUTPUT": 3,
"OA_TYPE": 2,
})
sensors = [ # tuples of name, prx_type
('sf45b', 8, {
mavutil.mavlink.MAV_SENSOR_ROTATION_NONE: 270,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_45: 258,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_90: 1146,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_135: 632,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_180: 629,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_225: 972,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_270: 774,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_315: 774,
}),
('rplidara2', 5, {
mavutil.mavlink.MAV_SENSOR_ROTATION_NONE: 277,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_45: 256,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_90: 1130,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_135: 1288,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_180: 626,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_225: 970,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_270: 762,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_315: 790,
}),
('terarangertower', 3, {
mavutil.mavlink.MAV_SENSOR_ROTATION_NONE: 450,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_45: 282,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_90: 450,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_135: 450,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_180: 450,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_225: 450,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_270: 450,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_315: 450,
}),
]
# the following is a "magic" location SITL understands which
# has some posts near it:
home_string = "%s,%s,%s,%s" % (51.8752066, 14.6487840, 54.15, 0)
for (name, prx_type, expected_distances) in sensors:
self.start_subtest("Testing %s" % name)
self.set_parameter("PRX1_TYPE", prx_type)
self.customise_SITL_commandline([
"--serial5=sim:%s:" % name,
"--home", home_string,
])
self.wait_ready_to_arm()
expected_distances_copy = copy.copy(expected_distances)
tstart = self.get_sim_time()
failed = False
wants = []
gots = []
epsilon = 20
while True:
if self.get_sim_time_cached() - tstart > 30:
raise AutoTestTimeoutException("Failed to get distances")
if len(expected_distances_copy.keys()) == 0:
break
m = self.assert_receive_message("DISTANCE_SENSOR")
if m.orientation not in expected_distances_copy:
continue
got = m.current_distance
want = expected_distances_copy[m.orientation]
wants.append(want)
gots.append(got)
if abs(want - got) > epsilon:
failed = True
del expected_distances_copy[m.orientation]
if failed:
raise NotAchievedException(
"Distance too great (%s) (want=%s != got=%s)" %
(name, wants, gots))
def AC_Avoidance_Proximity_AVOID_ALT_MIN(self):
'''Test proximity avoidance with AVOID_ALT_MIN'''
self.context_push()
ex = None
try:
self.set_parameters({
"PRX1_TYPE": 2,
"AVOID_ALT_MIN": 10,
})
self.set_analog_rangefinder_parameters()
self.reboot_sitl()
self.change_mode('LOITER')
self.wait_ekf_happy()
tstart = self.get_sim_time()
while True:
if self.armed():
break
if self.get_sim_time_cached() - tstart > 60:
raise AutoTestTimeoutException("Did not arm")
self.mav.mav.distance_sensor_send(
0, # time_boot_ms
10, # min_distance cm
500, # max_distance cm
400, # current_distance cm
mavutil.mavlink.MAV_DISTANCE_SENSOR_LASER, # type
26, # id
mavutil.mavlink.MAV_SENSOR_ROTATION_NONE, # orientation
255 # covariance
)
self.send_mavlink_arm_command()
self.takeoff(15, mode='LOITER')
self.progress("Poking vehicle; should avoid")
def shove(a, b):
self.mav.mav.distance_sensor_send(
0, # time_boot_ms
10, # min_distance cm
500, # max_distance cm
20, # current_distance cm
mavutil.mavlink.MAV_DISTANCE_SENSOR_LASER, # type
21, # id
mavutil.mavlink.MAV_SENSOR_ROTATION_NONE, # orientation
255 # covariance
)
self.wait_speed_vector_bf(
Vector3(-0.4, 0.0, 0.0),
timeout=10,
called_function=shove,
)
self.change_alt(5)
tstart = self.get_sim_time()
while True:
if self.get_sim_time_cached() - tstart > 10:
break
vel = self.get_body_frame_velocity()
if vel.length() > 0.5:
raise NotAchievedException("Moved too much (%s)" %
(str(vel),))
shove(None, None)
except Exception as e:
self.progress("Caught exception: %s" %
self.get_exception_stacktrace(e))
ex = e
self.disarm_vehicle(force=True)
self.context_pop()
self.reboot_sitl()
if ex is not None:
raise ex
def AC_Avoidance_Fence(self):
'''Test fence avoidance slide behaviour'''
self.load_fence("copter-avoidance-fence.txt")
self.set_parameter("FENCE_ENABLE", 1)
self.check_avoidance_corners()
def AvoidanceAltFence(self):
'''Test fence avoidance at minimum and maximum altitude'''
ex = None
try:
self.set_parameters({
"FENCE_ENABLE": 1,
"FENCE_TYPE": 9, # min and max alt fence
"FENCE_ALT_MIN": 10,
"FENCE_ALT_MAX": 30,
})
self.change_mode('LOITER')
self.wait_ekf_happy()
tstart = self.get_sim_time()
self.takeoff(15, mode='LOITER')
self.progress("Increasing throttle, vehicle should stay below 30m")
self.set_rc(3, 1920)
tstart = self.get_sim_time()
while True:
if self.get_sim_time_cached() - tstart > 20:
break
alt = self.get_altitude(relative=True)
self.progress("Altitude %s" % alt)
if alt > 30:
raise NotAchievedException("Breached maximum altitude (%s)" % (str(alt),))
self.progress("Decreasing, vehicle should stay above 10m")
self.set_rc(3, 1080)
tstart = self.get_sim_time()
while True:
if self.get_sim_time_cached() - tstart > 20:
break
alt = self.get_altitude(relative=True)
self.progress("Altitude %s" % alt)
if alt < 10:
raise NotAchievedException("Breached minimum altitude (%s)" % (str(alt),))
except Exception as e:
self.progress("Caught exception: %s" %
self.get_exception_stacktrace(e))
ex = e
self.land_and_disarm()
self.disarm_vehicle(force=True)
if ex is not None:
raise ex
def ModeFollow(self):
'''Fly follow mode'''
foll_ofs_x = 30 # metres
self.set_parameters({
"FOLL_ENABLE": 1,
"FOLL_SYSID": self.mav.source_system,
"FOLL_OFS_X": -foll_ofs_x,
"FOLL_OFS_TYPE": 1, # relative to other vehicle heading
})
self.takeoff(10, mode="LOITER")
self.context_push()
self.set_parameter("SIM_SPEEDUP", 1)
self.change_mode("FOLLOW")
new_loc = self.mav.location()
new_loc_offset_n = 20
new_loc_offset_e = 30
self.location_offset_ne(new_loc, new_loc_offset_n, new_loc_offset_e)
self.progress("new_loc: %s" % str(new_loc))
heading = 0
if self.mavproxy is not None:
self.mavproxy.send("map icon %f %f greenplane %f\n" %
(new_loc.lat, new_loc.lng, heading))
expected_loc = copy.copy(new_loc)
self.location_offset_ne(expected_loc, -foll_ofs_x, 0)
if self.mavproxy is not None:
self.mavproxy.send("map icon %f %f hoop\n" %
(expected_loc.lat, expected_loc.lng))
self.progress("expected_loc: %s" % str(expected_loc))
origin = self.poll_message('GPS_GLOBAL_ORIGIN')
last_sent = 0
tstart = self.get_sim_time()
while True:
now = self.get_sim_time_cached()
if now - tstart > 60:
raise NotAchievedException("Did not FOLLOW")
if now - last_sent > 0.5:
gpi = self.mav.mav.global_position_int_encode(
int(now * 1000), # time_boot_ms
int(new_loc.lat * 1e7),
int(new_loc.lng * 1e7),
int(new_loc.alt * 1000), # alt in mm
int(new_loc.alt * 1000 - origin.altitude), # relative alt - urp.
vx=0,
vy=0,
vz=0,
hdg=heading
)
gpi.pack(self.mav.mav)
self.mav.mav.send(gpi)
self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
pos = self.mav.location()
delta = self.get_distance(expected_loc, pos)
max_delta = 3
self.progress("position delta=%f (want <%f)" % (delta, max_delta))
if delta < max_delta:
break
self.context_pop()
self.do_RTL()
def get_global_position_int(self, timeout=30):
tstart = self.get_sim_time()
while True:
if self.get_sim_time_cached() - tstart > timeout:
raise NotAchievedException("Did not get good global_position_int")
m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True, timeout=1)
self.progress("GPI: %s" % str(m))
if m is None:
continue
if m.lat != 0 or m.lon != 0:
return m
def BeaconPosition(self):
'''Fly Beacon Position'''
self.reboot_sitl()
self.wait_ready_to_arm(require_absolute=True)
old_pos = self.get_global_position_int()
print("old_pos=%s" % str(old_pos))
self.set_parameters({
"BCN_TYPE": 10,
"BCN_LATITUDE": SITL_START_LOCATION.lat,
"BCN_LONGITUDE": SITL_START_LOCATION.lng,
"BCN_ALT": SITL_START_LOCATION.alt,
"BCN_ORIENT_YAW": 0,
"AVOID_ENABLE": 4,
"GPS1_TYPE": 0,
"EK3_ENABLE": 1,
"EK3_SRC1_POSXY": 4, # Beacon
"EK3_SRC1_POSZ": 1, # Baro
"EK3_SRC1_VELXY": 0, # None
"EK3_SRC1_VELZ": 0, # None
"EK2_ENABLE": 0,
"AHRS_EKF_TYPE": 3,
})
self.reboot_sitl()
# turn off GPS arming checks. This may be considered a
# bug that we need to do this.
old_arming_check = int(self.get_parameter("ARMING_CHECK"))
if old_arming_check == 1:
old_arming_check = 1 ^ 25 - 1
new_arming_check = int(old_arming_check) & ~(1 << 3)
self.set_parameter("ARMING_CHECK", new_arming_check)
self.reboot_sitl()
# require_absolute=True infers a GPS is present
self.wait_ready_to_arm(require_absolute=False)
tstart = self.get_sim_time()
timeout = 20
while True:
if self.get_sim_time_cached() - tstart > timeout:
raise NotAchievedException("Did not get new position like old position")
self.progress("Fetching location")
new_pos = self.get_global_position_int()
pos_delta = self.get_distance_int(old_pos, new_pos)
max_delta = 1
self.progress("delta=%u want <= %u" % (pos_delta, max_delta))
if pos_delta <= max_delta:
break
self.progress("Moving to ensure location is tracked")
self.takeoff(10, mode="STABILIZE")
self.change_mode("CIRCLE")
self.context_push()
validator = vehicle_test_suite.TestSuite.ValidateGlobalPositionIntAgainstSimState(self, max_allowed_divergence=10)
self.install_message_hook_context(validator)
self.delay_sim_time(20)
self.progress("Tracked location just fine")
self.context_pop()
self.change_mode("LOITER")
self.wait_groundspeed(0, 0.3, timeout=120)
self.land_and_disarm()
self.assert_current_onboard_log_contains_message("BCN")
self.disarm_vehicle(force=True)
def AC_Avoidance_Beacon(self):
'''Test beacon avoidance slide behaviour'''
self.context_push()
ex = None
try:
self.set_parameters({
"BCN_TYPE": 10,
"BCN_LATITUDE": int(SITL_START_LOCATION.lat),
"BCN_LONGITUDE": int(SITL_START_LOCATION.lng),
"BCN_ORIENT_YAW": 45,
"AVOID_ENABLE": 4,
})
self.reboot_sitl()
self.takeoff(10, mode="LOITER")
self.set_rc(2, 1400)
here = self.mav.location()
west_loc = mavutil.location(-35.362919, 149.165055, here.alt, 0)
self.wait_location(west_loc, accuracy=1)
self.reach_heading_manual(0)
north_loc = mavutil.location(-35.362881, 149.165103, here.alt, 0)
self.wait_location(north_loc, accuracy=1)
self.set_rc(2, 1500)
self.set_rc(1, 1600)
east_loc = mavutil.location(-35.362986, 149.165227, here.alt, 0)
self.wait_location(east_loc, accuracy=1)
self.set_rc(1, 1500)
self.set_rc(2, 1600)
south_loc = mavutil.location(-35.363025, 149.165182, here.alt, 0)
self.wait_location(south_loc, accuracy=1)
self.set_rc(2, 1500)
self.do_RTL()
except Exception as e:
self.print_exception_caught(e)
ex = e
self.context_pop()
self.clear_fence()
self.disarm_vehicle(force=True)
self.reboot_sitl()
if ex is not None:
raise ex
def BaroWindCorrection(self):
'''Test wind estimation and baro position error compensation'''
self.context_push()
ex = None
try:
self.customise_SITL_commandline(
[],
defaults_filepath=self.model_defaults_filepath('Callisto'),
model="octa-quad:@ROMFS/models/Callisto.json",
wipe=True,
)
wind_spd_truth = 8.0
wind_dir_truth = 90.0
self.set_parameters({
"EK3_ENABLE": 1,
"EK2_ENABLE": 0,
"AHRS_EKF_TYPE": 3,
"BARO1_WCF_ENABLE": 1.000000,
})
self.reboot_sitl()
self.set_parameters({
"BARO1_WCF_FWD": -0.300000,
"BARO1_WCF_BCK": -0.300000,
"BARO1_WCF_RGT": 0.300000,
"BARO1_WCF_LFT": 0.300000,
"BARO1_WCF_UP": 0.300000,
"BARO1_WCF_DN": 0.300000,
"SIM_BARO_WCF_FWD": -0.300000,
"SIM_BARO_WCF_BAK": -0.300000,
"SIM_BARO_WCF_RGT": 0.300000,
"SIM_BARO_WCF_LFT": 0.300000,
"SIM_BARO_WCF_UP": 0.300000,
"SIM_BARO_WCF_DN": 0.300000,
"SIM_WIND_DIR": wind_dir_truth,
"SIM_WIND_SPD": wind_spd_truth,
"SIM_WIND_T": 1.000000,
})
self.reboot_sitl()
# require_absolute=True infers a GPS is present
self.wait_ready_to_arm(require_absolute=False)
self.progress("Climb to 20m in LOITER and yaw spin for 30 seconds")
self.takeoff(10, mode="LOITER")
self.set_rc(4, 1400)
self.delay_sim_time(30)
# check wind esitmates
m = self.mav.recv_match(type='WIND', blocking=True)
speed_error = abs(m.speed - wind_spd_truth)
angle_error = abs(m.direction - wind_dir_truth)
if (speed_error > 1.0):
raise NotAchievedException("Wind speed incorrect - want %f +-1 got %f m/s" % (wind_spd_truth, m.speed))
if (angle_error > 15.0):
raise NotAchievedException(
"Wind direction incorrect - want %f +-15 got %f deg" %
(wind_dir_truth, m.direction))
self.progress("Wind estimate is good, now check height variation for 30 seconds")
# check height stability over another 30 seconds
z_min = 1E6
z_max = -1E6
tstart = self.get_sim_time()
while (self.get_sim_time() < tstart + 30):
m = self.mav.recv_match(type='LOCAL_POSITION_NED', blocking=True)
if (m.z > z_max):
z_max = m.z
if (m.z < z_min):
z_min = m.z
if (z_max-z_min > 0.5):
raise NotAchievedException("Height variation is excessive")
self.progress("Height variation is good")
self.set_rc(4, 1500)
self.land_and_disarm()
except Exception as e:
self.print_exception_caught(e)
ex = e
self.disarm_vehicle(force=True)
self.reboot_sitl()
self.context_pop()
self.reboot_sitl()
if ex is not None:
raise ex
def wait_generator_speed_and_state(self, rpm_min, rpm_max, want_state, timeout=240):
tstart = self.get_sim_time()
while True:
if self.get_sim_time_cached() - tstart > timeout:
raise NotAchievedException("Did not move to state/speed")
m = self.assert_receive_message("GENERATOR_STATUS", timeout=10)
if m.generator_speed < rpm_min:
self.progress("Too slow (%u<%u)" % (m.generator_speed, rpm_min))
continue
if m.generator_speed > rpm_max:
self.progress("Too fast (%u>%u)" % (m.generator_speed, rpm_max))
continue
if m.status != want_state:
self.progress("Wrong state (got=%u want=%u)" % (m.status, want_state))
break
self.progress("Got generator speed and state")
def RichenPower(self):
'''Test RichenPower generator'''
self.set_parameters({
"SERIAL5_PROTOCOL": 30,
"SIM_RICH_ENABLE": 1,
"SERVO8_FUNCTION": 42,
"SIM_RICH_CTRL": 8,
"RC9_OPTION": 85,
"LOG_DISARMED": 1,
"BATT2_MONITOR": 17,
"GEN_TYPE": 3,
})
self.reboot_sitl()
self.set_rc(9, 1000) # remember this is a switch position - stop
self.customise_SITL_commandline(["--serial5=sim:richenpower"])
self.wait_statustext("requested state is not RUN", timeout=60)
self.set_message_rate_hz("GENERATOR_STATUS", 10)
self.wait_generator_speed_and_state(0, 0, mavutil.mavlink.MAV_GENERATOR_STATUS_FLAG_OFF)
self.context_collect('STATUSTEXT')
self.set_rc(9, 2000) # remember this is a switch position - run
self.wait_statustext("Generator HIGH", check_context=True)
self.set_rc(9, 1000) # remember this is a switch position - stop
self.wait_statustext("requested state is not RUN", timeout=200)
self.set_rc(9, 1500) # remember this is a switch position - idle
self.wait_generator_speed_and_state(3000, 8000, mavutil.mavlink.MAV_GENERATOR_STATUS_FLAG_IDLE)
self.set_rc(9, 2000) # remember this is a switch position - run
# self.wait_generator_speed_and_state(3000, 30000, mavutil.mavlink.MAV_GENERATOR_STATUS_FLAG_WARMING_UP)
self.wait_generator_speed_and_state(8000, 30000, mavutil.mavlink.MAV_GENERATOR_STATUS_FLAG_GENERATING)
bs = self.mav.recv_match(
type="BATTERY_STATUS",
condition="BATTERY_STATUS.id==1", # id is zero-indexed
timeout=1,
blocking=True
)
if bs is None:
raise NotAchievedException("Did not receive BATTERY_STATUS")
self.progress("Received battery status: %s" % str(bs))
want_bs_volt = 50000
if bs.voltages[0] != want_bs_volt:
raise NotAchievedException("Battery voltage not as expected (want=%f) got=(%f)" % (want_bs_volt, bs.voltages[0],))
self.progress("Moving *back* to idle")
self.set_rc(9, 1500) # remember this is a switch position - idle
self.wait_generator_speed_and_state(3000, 10000, mavutil.mavlink.MAV_GENERATOR_STATUS_FLAG_IDLE)
self.progress("Moving *back* to run")
self.set_rc(9, 2000) # remember this is a switch position - run
self.wait_generator_speed_and_state(8000, 30000, mavutil.mavlink.MAV_GENERATOR_STATUS_FLAG_GENERATING)
self.set_message_rate_hz("GENERATOR_STATUS", -1)
self.set_parameter("LOG_DISARMED", 0)
if not self.current_onboard_log_contains_message("GEN"):
raise NotAchievedException("Did not find expected GEN message")
def IE24(self):
'''Test IntelligentEnergy 2.4kWh generator with V1 and V2 telemetry protocols'''
protocol_ver = (1, 2)
for ver in protocol_ver:
self.run_IE24(ver)
def run_IE24(self, proto_ver):
'''Test IntelligentEnergy 2.4kWh generator'''
elec_battery_instance = 2
fuel_battery_instance = 1
self.set_parameters({
"SERIAL5_PROTOCOL": 30,
"SERIAL5_BAUD": 115200,
"GEN_TYPE": 2,
"BATT%u_MONITOR" % (fuel_battery_instance + 1): 18, # fuel-based generator
"BATT%u_MONITOR" % (elec_battery_instance + 1): 17,
"SIM_IE24_ENABLE": proto_ver,
"LOG_DISARMED": 1,
})
self.customise_SITL_commandline(["--serial5=sim:ie24"])
self.start_subtest("Protocol %i: ensure that BATTERY_STATUS for electrical generator message looks right" % proto_ver)
self.start_subsubtest("Protocol %i: Checking original voltage (electrical)" % proto_ver)
# ArduPilot spits out essentially uninitialised battery
# messages until we read things fromthe battery:
self.delay_sim_time(30)
original_elec_m = self.wait_message_field_values('BATTERY_STATUS', {
"charge_state": mavutil.mavlink.MAV_BATTERY_CHARGE_STATE_OK
}, instance=elec_battery_instance)
original_fuel_m = self.wait_message_field_values('BATTERY_STATUS', {
"charge_state": mavutil.mavlink.MAV_BATTERY_CHARGE_STATE_OK
}, instance=fuel_battery_instance)
if original_elec_m.battery_remaining < 90:
raise NotAchievedException("Bad original percentage")
self.start_subsubtest("Ensure percentage is counting down")
self.wait_message_field_values('BATTERY_STATUS', {
"battery_remaining": original_elec_m.battery_remaining - 1,
}, instance=elec_battery_instance)
self.start_subtest("Protocol %i: ensure that BATTERY_STATUS for fuel generator message looks right" % proto_ver)
self.start_subsubtest("Protocol %i: Checking original voltage (fuel)" % proto_ver)
# ArduPilot spits out essentially uninitialised battery
# messages until we read things fromthe battery:
if original_fuel_m.battery_remaining <= 90:
raise NotAchievedException("Bad original percentage (want=>%f got %f" % (90, original_fuel_m.battery_remaining))
self.start_subsubtest("Protocol %i: Ensure percentage is counting down" % proto_ver)
self.wait_message_field_values('BATTERY_STATUS', {
"battery_remaining": original_fuel_m.battery_remaining - 1,
}, instance=fuel_battery_instance)
self.wait_ready_to_arm()
self.arm_vehicle()
self.disarm_vehicle()
# Test for pre-arm check fail when state is not running
self.start_subtest("Protocol %i: Without takeoff generator error should cause failsafe and disarm" % proto_ver)
self.set_parameter("SIM_IE24_STATE", 8)
self.wait_statustext("Status not running", timeout=40)
self.try_arm(result=False,
expect_msg="Status not running")
self.set_parameter("SIM_IE24_STATE", 2) # Explicitly set state to running
# Test that error code does result in failsafe
self.start_subtest("Protocol %i: Without taken off generator error should cause failsafe and disarm" % proto_ver)
self.change_mode("STABILIZE")
self.set_parameter("DISARM_DELAY", 0)
self.arm_vehicle()
self.set_parameter("SIM_IE24_ERROR", 30)
self.disarm_wait(timeout=1)
self.set_parameter("SIM_IE24_ERROR", 0)
self.set_parameter("DISARM_DELAY", 10)
def AuxSwitchOptions(self):
'''Test random aux mode options'''
self.set_parameter("RC7_OPTION", 58) # clear waypoints
self.load_mission("copter_loiter_to_alt.txt")
self.set_rc(7, 1000)
self.assert_mission_count(5)
self.progress("Clear mission")
self.set_rc(7, 2000)
self.delay_sim_time(1) # allow switch to debounce
self.assert_mission_count(0)
self.set_rc(7, 1000)
self.set_parameter("RC7_OPTION", 24) # reset mission
self.delay_sim_time(2)
self.load_mission("copter_loiter_to_alt.txt")
set_wp = 4
self.set_current_waypoint(set_wp)
self.wait_current_waypoint(set_wp, timeout=10)
self.progress("Reset mission")
self.set_rc(7, 2000)
self.delay_sim_time(1)
self.wait_current_waypoint(0, timeout=10)
self.set_rc(7, 1000)
def AuxFunctionsInMission(self):
'''Test use of auxilliary functions in missions'''
self.load_mission("aux_functions.txt")
self.change_mode('LOITER')
self.wait_ready_to_arm()
self.arm_vehicle()
self.change_mode('AUTO')
self.set_rc(3, 1500)
self.wait_mode('ALT_HOLD')
self.change_mode('AUTO')
self.wait_rtl_complete()
def MAV_CMD_AIRFRAME_CONFIGURATION(self):
'''deploy/retract landing gear using mavlink command'''
self.context_push()
self.set_parameters({
"LGR_ENABLE": 1,
"SERVO10_FUNCTION": 29,
"SERVO10_MIN": 1001,
"SERVO10_MAX": 1999,
})
self.reboot_sitl()
# starts loose:
self.wait_servo_channel_value(10, 0)
# 0 is down:
self.start_subtest("Put gear down")
self.run_cmd(mavutil.mavlink.MAV_CMD_AIRFRAME_CONFIGURATION, p2=0)
self.wait_servo_channel_value(10, 1999)
# 1 is up:
self.start_subtest("Put gear up")
self.run_cmd_int(mavutil.mavlink.MAV_CMD_AIRFRAME_CONFIGURATION, p2=1)
self.wait_servo_channel_value(10, 1001)
# 0 is down:
self.start_subtest("Put gear down")
self.run_cmd(mavutil.mavlink.MAV_CMD_AIRFRAME_CONFIGURATION, p2=0)
self.wait_servo_channel_value(10, 1999)
self.context_pop()
self.reboot_sitl()
def WatchAlts(self):
'''Ensure we can monitor different altitudes'''
self.takeoff(30, mode='GUIDED')
self.delay_sim_time(5, reason='let altitude settle')
self.progress("Testing absolute altitudes")
absolute_alt = self.get_altitude(altitude_source='SIM_STATE.alt')
self.progress("absolute_alt=%f" % absolute_alt)
epsilon = 4 # SIM_STATE and vehicle state can be off by a bit...
for source in ['GLOBAL_POSITION_INT.alt', 'SIM_STATE.alt', 'GPS_RAW_INT.alt']:
self.watch_altitude_maintained(
absolute_alt-epsilon,
absolute_alt+epsilon,
altitude_source=source
)
self.progress("Testing absolute altitudes")
relative_alt = self.get_altitude(relative=True)
for source in ['GLOBAL_POSITION_INT.relative_alt']:
self.watch_altitude_maintained(
relative_alt-epsilon,
relative_alt+epsilon,
altitude_source=source
)
self.do_RTL()
def TestTetherStuck(self):
"""Test tethered vehicle stuck because of tether"""
# Enable tether simulation
self.set_parameters({
"SIM_TETH_ENABLE": 1,
})
self.delay_sim_time(2)
self.reboot_sitl()
# Set tether line length
self.set_parameters({
"SIM_TETH_LINELEN": 10,
})
self.delay_sim_time(2)
# Prepare and take off
self.wait_ready_to_arm()
self.arm_vehicle()
self.takeoff(10, mode='LOITER')
# Simulate vehicle getting stuck by increasing RC throttle
self.set_rc(3, 1900)
self.delay_sim_time(5, reason='let tether get stuck')
# Monitor behavior for 10 seconds
tstart = self.get_sim_time()
initial_alt = self.get_altitude()
stuck = True # Assume it's stuck unless proven otherwise
while self.get_sim_time() - tstart < 10:
# Fetch current altitude
current_alt = self.get_altitude()
self.progress(f"current_alt={current_alt}")
# Fetch and log battery status
battery_status = self.mav.recv_match(type='BATTERY_STATUS', blocking=True, timeout=1)
if battery_status:
self.progress(f"Battery: {battery_status}")
# Check if the vehicle is stuck.
# We assume the vehicle is stuck if the current is high and the altitude is not changing
if battery_status and (battery_status.current_battery < 6500 or abs(current_alt - initial_alt) > 2):
stuck = False # Vehicle moved or current is abnormal
break
if not stuck:
raise NotAchievedException("Vehicle did not get stuck as expected")
# Land and disarm the vehicle to ensure we can go down
self.land_and_disarm()
def fly_rangefinder_drivers_fly(self, rangefinders):
'''ensure rangefinder gives height-above-ground'''
self.change_mode('GUIDED')
self.wait_ready_to_arm()
self.arm_vehicle()
expected_alt = 5
self.user_takeoff(alt_min=expected_alt)
rf = self.mav.recv_match(type="RANGEFINDER", timeout=1, blocking=True)
if rf is None:
raise NotAchievedException("Did not receive rangefinder message")
gpi = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True, timeout=1)
if gpi is None:
raise NotAchievedException("Did not receive GLOBAL_POSITION_INT message")
if abs(rf.distance - gpi.relative_alt/1000.0) > 1:
raise NotAchievedException(
"rangefinder alt (%s) disagrees with global-position-int.relative_alt (%s)" %
(rf.distance, gpi.relative_alt/1000.0)
)
for i in range(0, len(rangefinders)):
name = rangefinders[i]
self.progress("i=%u (%s)" % (i, name))
ds = self.mav.recv_match(
type="DISTANCE_SENSOR",
timeout=2,
blocking=True,
condition="DISTANCE_SENSOR.id==%u" % i
)
if ds is None:
raise NotAchievedException("Did not receive DISTANCE_SENSOR message for id==%u (%s)" % (i, name))
self.progress("Got: %s" % str(ds))
if abs(ds.current_distance/100.0 - gpi.relative_alt/1000.0) > 1:
raise NotAchievedException(
"distance sensor.current_distance (%f) (%s) disagrees with global-position-int.relative_alt (%s)" %
(ds.current_distance/100.0, name, gpi.relative_alt/1000.0))
self.land_and_disarm()
self.progress("Ensure RFND messages in log")
if not self.current_onboard_log_contains_message("RFND"):
raise NotAchievedException("No RFND messages in log")
def MAVProximity(self):
'''Test MAVLink proximity driver'''
self.start_subtest("Test mavlink proximity sensor using DISTANCE_SENSOR messages") # noqa
self.context_push()
ex = None
try:
self.set_parameter("SERIAL5_PROTOCOL", 1)
self.set_parameter("PRX1_TYPE", 2) # mavlink
self.reboot_sitl()
self.progress("Should be unhealthy while we don't send messages")
self.assert_sensor_state(mavutil.mavlink.MAV_SYS_STATUS_SENSOR_PROXIMITY, True, True, False)
self.progress("Should be healthy while we're sending good messages")
tstart = self.get_sim_time()
while True:
if self.get_sim_time() - tstart > 5:
raise NotAchievedException("Sensor did not come good")
self.mav.mav.distance_sensor_send(
0, # time_boot_ms
10, # min_distance cm
50, # max_distance cm
20, # current_distance cm
mavutil.mavlink.MAV_DISTANCE_SENSOR_LASER, # type
21, # id
mavutil.mavlink.MAV_SENSOR_ROTATION_NONE, # orientation
255 # covariance
)
if self.sensor_has_state(mavutil.mavlink.MAV_SYS_STATUS_SENSOR_PROXIMITY, True, True, True):
self.progress("Sensor has good state")
break
self.delay_sim_time(0.1)
self.progress("Should be unhealthy again if we stop sending messages")
self.delay_sim_time(1)
self.assert_sensor_state(mavutil.mavlink.MAV_SYS_STATUS_SENSOR_PROXIMITY, True, True, False)
# now make sure we get echoed back the same sorts of things we send:
# distances are in cm
distance_map = {
mavutil.mavlink.MAV_SENSOR_ROTATION_NONE: 30,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_45: 35,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_90: 20,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_135: 15,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_180: 70,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_225: 80,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_270: 10,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_315: 90,
}
wanted_distances = copy.copy(distance_map)
sensor_enum = mavutil.mavlink.enums["MAV_SENSOR_ORIENTATION"]
def my_message_hook(mav, m):
if m.get_type() != 'DISTANCE_SENSOR':
return
self.progress("Got (%s)" % str(m))
want = distance_map[m.orientation]
got = m.current_distance
# ArduPilot's floating point conversions make it imprecise:
delta = abs(want-got)
if delta > 1:
self.progress(
"Wrong distance (%s): want=%f got=%f" %
(sensor_enum[m.orientation].name, want, got))
return
if m.orientation not in wanted_distances:
return
self.progress(
"Correct distance (%s): want=%f got=%f" %
(sensor_enum[m.orientation].name, want, got))
del wanted_distances[m.orientation]
self.install_message_hook_context(my_message_hook)
tstart = self.get_sim_time()
while True:
if self.get_sim_time() - tstart > 5:
raise NotAchievedException("Sensor did not give right distances") # noqa
for (orient, dist) in distance_map.items():
self.mav.mav.distance_sensor_send(
0, # time_boot_ms
10, # min_distance cm
90, # max_distance cm
dist, # current_distance cm
mavutil.mavlink.MAV_DISTANCE_SENSOR_LASER, # type
21, # id
orient, # orientation
255 # covariance
)
self.wait_heartbeat()
if len(wanted_distances.keys()) == 0:
break
except Exception as e:
self.print_exception_caught(e)
ex = e
self.context_pop()
self.reboot_sitl()
if ex is not None:
raise ex
def fly_rangefinder_mavlink_distance_sensor(self):
self.start_subtest("Test mavlink rangefinder using DISTANCE_SENSOR messages")
self.context_push()
self.set_parameters({
"RTL_ALT_TYPE": 0,
"LGR_ENABLE": 1,
"LGR_DEPLOY_ALT": 1,
"LGR_RETRACT_ALT": 10, # metres
"SERVO10_FUNCTION": 29
})
ex = None
try:
self.set_parameter("SERIAL5_PROTOCOL", 1)
self.set_parameter("RNGFND1_TYPE", 10)
self.reboot_sitl()
self.set_parameter("RNGFND1_MAX_CM", 32767)
self.progress("Should be unhealthy while we don't send messages")
self.assert_sensor_state(mavutil.mavlink.MAV_SYS_STATUS_SENSOR_LASER_POSITION, True, True, False)
self.progress("Should be healthy while we're sending good messages")
tstart = self.get_sim_time()
while True:
if self.get_sim_time() - tstart > 5:
raise NotAchievedException("Sensor did not come good")
self.mav.mav.distance_sensor_send(
0, # time_boot_ms
10, # min_distance
50, # max_distance
20, # current_distance
mavutil.mavlink.MAV_DISTANCE_SENSOR_LASER, # type
21, # id
mavutil.mavlink.MAV_SENSOR_ROTATION_PITCH_270, # orientation
255 # covariance
)
if self.sensor_has_state(mavutil.mavlink.MAV_SYS_STATUS_SENSOR_LASER_POSITION, True, True, True):
self.progress("Sensor has good state")
break
self.delay_sim_time(0.1)
self.progress("Should be unhealthy again if we stop sending messages")
self.delay_sim_time(1)
self.assert_sensor_state(mavutil.mavlink.MAV_SYS_STATUS_SENSOR_LASER_POSITION, True, True, False)
self.progress("Landing gear should deploy with current_distance below min_distance")
self.change_mode('STABILIZE')
timeout = 60
tstart = self.get_sim_time()
while not self.sensor_has_state(mavutil.mavlink.MAV_SYS_STATUS_PREARM_CHECK, True, True, True):
if self.get_sim_time() - tstart > timeout:
raise NotAchievedException("Failed to become armable after %f seconds" % timeout)
self.mav.mav.distance_sensor_send(
0, # time_boot_ms
100, # min_distance (cm)
2500, # max_distance (cm)
200, # current_distance (cm)
mavutil.mavlink.MAV_DISTANCE_SENSOR_LASER, # type
21, # id
mavutil.mavlink.MAV_SENSOR_ROTATION_PITCH_270, # orientation
255 # covariance
)
self.arm_vehicle()
self.delay_sim_time(1) # servo function maps only periodically updated
# self.send_debug_trap()
self.run_cmd(
mavutil.mavlink.MAV_CMD_AIRFRAME_CONFIGURATION,
p2=0, # deploy
)
self.context_collect("STATUSTEXT")
tstart = self.get_sim_time()
while True:
if self.get_sim_time_cached() - tstart > 5:
raise NotAchievedException("Retraction did not happen")
self.mav.mav.distance_sensor_send(
0, # time_boot_ms
100, # min_distance (cm)
6000, # max_distance (cm)
1500, # current_distance (cm)
mavutil.mavlink.MAV_DISTANCE_SENSOR_LASER, # type
21, # id
mavutil.mavlink.MAV_SENSOR_ROTATION_PITCH_270, # orientation
255 # covariance
)
self.delay_sim_time(0.1)
try:
self.wait_text("LandingGear: RETRACT", check_context=True, timeout=0.1)
except Exception:
continue
self.progress("Retracted")
break
# self.send_debug_trap()
while True:
if self.get_sim_time_cached() - tstart > 5:
raise NotAchievedException("Deployment did not happen")
self.progress("Sending distance-sensor message")
self.mav.mav.distance_sensor_send(
0, # time_boot_ms
300, # min_distance
500, # max_distance
250, # current_distance
mavutil.mavlink.MAV_DISTANCE_SENSOR_LASER, # type
21, # id
mavutil.mavlink.MAV_SENSOR_ROTATION_PITCH_270, # orientation
255 # covariance
)
try:
self.wait_text("LandingGear: DEPLOY", check_context=True, timeout=0.1)
except Exception:
continue
self.progress("Deployed")
break
self.disarm_vehicle()
except Exception as e:
self.print_exception_caught(e)
ex = e
self.context_pop()
self.reboot_sitl()
if ex is not None:
raise ex
def GSF(self):
'''test the Gaussian Sum filter'''
self.context_push()
self.set_parameter("EK2_ENABLE", 1)
self.reboot_sitl()
self.takeoff(20, mode='LOITER')
self.set_rc(2, 1400)
self.delay_sim_time(5)
self.set_rc(2, 1500)
self.progress("Path: %s" % self.current_onboard_log_filepath())
dfreader = self.dfreader_for_current_onboard_log()
self.do_RTL()
self.context_pop()
self.reboot_sitl()
# ensure log messages present
want = set(["XKY0", "XKY1", "NKY0", "NKY1"])
still_want = want
while len(still_want):
m = dfreader.recv_match(type=want)
if m is None:
raise NotAchievedException("Did not get %s" % want)
still_want.remove(m.get_type())
def GSF_reset(self):
'''test the Gaussian Sum filter based Emergency reset'''
self.context_push()
self.set_parameters({
"COMPASS_ORIENT": 4, # yaw 180
"COMPASS_USE2": 0, # disable backup compasses to avoid pre-arm failures
"COMPASS_USE3": 0,
})
self.reboot_sitl()
self.change_mode('GUIDED')
self.wait_ready_to_arm()
# record starting position
startpos = self.mav.recv_match(type='LOCAL_POSITION_NED', blocking=True)
self.progress("startpos=%s" % str(startpos))
# arm vehicle and takeoff to at least 5m
self.arm_vehicle()
expected_alt = 5
self.user_takeoff(alt_min=expected_alt)
# watch for emergency yaw reset
self.wait_text("EKF3 IMU. emergency yaw reset", timeout=5, regex=True)
# record how far vehicle flew off
endpos = self.mav.recv_match(type='LOCAL_POSITION_NED', blocking=True)
delta_x = endpos.x - startpos.x
delta_y = endpos.y - startpos.y
dist_m = math.sqrt(delta_x*delta_x + delta_y*delta_y)
self.progress("GSF yaw reset triggered at %f meters" % dist_m)
self.do_RTL()
self.context_pop()
self.reboot_sitl()
# ensure vehicle did not fly too far
dist_m_max = 8
if dist_m > dist_m_max:
raise NotAchievedException("GSF reset failed, vehicle flew too far (%f > %f)" % (dist_m, dist_m_max))
def fly_rangefinder_mavlink(self):
self.fly_rangefinder_mavlink_distance_sensor()
# explicit test for the mavlink driver as it doesn't play so nice:
self.set_parameters({
"SERIAL5_PROTOCOL": 1,
"RNGFND1_TYPE": 10,
})
self.customise_SITL_commandline(['--serial5=sim:rf_mavlink'])
self.change_mode('GUIDED')
self.wait_ready_to_arm()
self.arm_vehicle()
expected_alt = 5
self.user_takeoff(alt_min=expected_alt)
tstart = self.get_sim_time()
while True:
if self.get_sim_time() - tstart > 5:
raise NotAchievedException("Mavlink rangefinder not working")
rf = self.mav.recv_match(type="RANGEFINDER", timeout=1, blocking=True)
if rf is None:
raise NotAchievedException("Did not receive rangefinder message")
gpi = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True, timeout=1)
if gpi is None:
raise NotAchievedException("Did not receive GLOBAL_POSITION_INT message")
if abs(rf.distance - gpi.relative_alt/1000.0) > 1:
print("rangefinder alt (%s) disagrees with global-position-int.relative_alt (%s)" %
(rf.distance, gpi.relative_alt/1000.0))
continue
ds = self.mav.recv_match(
type="DISTANCE_SENSOR",
timeout=2,
blocking=True,
)
if ds is None:
raise NotAchievedException("Did not receive DISTANCE_SENSOR message")
self.progress("Got: %s" % str(ds))
if abs(ds.current_distance/100.0 - gpi.relative_alt/1000.0) > 1:
print(
"distance sensor.current_distance (%f) disagrees with global-position-int.relative_alt (%s)" %
(ds.current_distance/100.0, gpi.relative_alt/1000.0))
continue
break
self.progress("mavlink rangefinder OK")
self.land_and_disarm()
def MaxBotixI2CXL(self):
'''Test maxbotix rangefinder drivers'''
ex = None
try:
self.context_push()
self.start_subtest("No messages")
rf = self.mav.recv_match(type="DISTANCE_SENSOR", timeout=5, blocking=True)
if rf is not None:
raise NotAchievedException("Receiving DISTANCE_SENSOR when I shouldn't be")
self.start_subtest("Default address")
self.set_parameter("RNGFND1_TYPE", 2) # maxbotix
self.reboot_sitl()
self.do_timesync_roundtrip()
rf = self.mav.recv_match(type="DISTANCE_SENSOR", timeout=5, blocking=True)
self.progress("Got (%s)" % str(rf))
if rf is None:
raise NotAchievedException("Didn't receive DISTANCE_SENSOR when I should've")
self.start_subtest("Explicitly set to default address")
self.set_parameters({
"RNGFND1_TYPE": 2, # maxbotix
"RNGFND1_ADDR": 0x70,
})
self.reboot_sitl()
self.do_timesync_roundtrip()
rf = self.mav.recv_match(type="DISTANCE_SENSOR", timeout=5, blocking=True)
self.progress("Got (%s)" % str(rf))
if rf is None:
raise NotAchievedException("Didn't receive DISTANCE_SENSOR when I should've")
self.start_subtest("Explicitly set to non-default address")
self.set_parameter("RNGFND1_ADDR", 0x71)
self.reboot_sitl()
self.do_timesync_roundtrip()
rf = self.mav.recv_match(type="DISTANCE_SENSOR", timeout=5, blocking=True)
self.progress("Got (%s)" % str(rf))
if rf is None:
raise NotAchievedException("Didn't receive DISTANCE_SENSOR when I should've")
self.start_subtest("Two MaxBotix RangeFinders")
self.set_parameters({
"RNGFND1_TYPE": 2, # maxbotix
"RNGFND1_ADDR": 0x70,
"RNGFND1_MIN_CM": 150,
"RNGFND2_TYPE": 2, # maxbotix
"RNGFND2_ADDR": 0x71,
"RNGFND2_MIN_CM": 250,
})
self.reboot_sitl()
self.do_timesync_roundtrip()
for i in [0, 1]:
rf = self.mav.recv_match(
type="DISTANCE_SENSOR",
timeout=5,
blocking=True,
condition="DISTANCE_SENSOR.id==%u" % i
)
self.progress("Got id==%u (%s)" % (i, str(rf)))
if rf is None:
raise NotAchievedException("Didn't receive DISTANCE_SENSOR when I should've")
expected_dist = 150
if i == 1:
expected_dist = 250
if rf.min_distance != expected_dist:
raise NotAchievedException("Unexpected min_cm (want=%u got=%u)" %
(expected_dist, rf.min_distance))
self.context_pop()
except Exception as e:
self.print_exception_caught(e)
ex = e
self.reboot_sitl()
if ex is not None:
raise ex
def fly_rangefinder_sitl(self):
self.set_parameters({
"RNGFND1_TYPE": 100,
})
self.reboot_sitl()
self.fly_rangefinder_drivers_fly([("unused", "sitl")])
self.wait_disarmed()
def RangeFinderDrivers(self):
'''Test rangefinder drivers'''
self.set_parameters({
"RTL_ALT": 500,
"RTL_ALT_TYPE": 1,
})
drivers = [
("lightwareserial", 8), # autodetected between this and -binary
("lightwareserial-binary", 8),
("USD1_v0", 11),
("USD1_v1", 11),
("leddarone", 12),
("maxsonarseriallv", 13),
("nmea", 17, {"baud": 9600}),
("wasp", 18),
("benewake_tf02", 19),
("blping", 23),
("benewake_tfmini", 20),
("lanbao", 26),
("benewake_tf03", 27),
("gyus42v2", 31),
("teraranger_serial", 35),
("nooploop_tofsense", 37),
("ainsteinlrd1", 42),
("rds02uf", 43),
]
while len(drivers):
do_drivers = drivers[0:3]
drivers = drivers[3:]
command_line_args = []
self.context_push()
for offs in range(3):
serial_num = offs + 4
if len(do_drivers) > offs:
if len(do_drivers[offs]) > 2:
(sim_name, rngfnd_param_value, kwargs) = do_drivers[offs]
else:
(sim_name, rngfnd_param_value) = do_drivers[offs]
kwargs = {}
command_line_args.append("--serial%s=sim:%s" %
(serial_num, sim_name))
sets = {
"SERIAL%u_PROTOCOL" % serial_num: 9, # rangefinder
"RNGFND%u_TYPE" % (offs+1): rngfnd_param_value,
}
if "baud" in kwargs:
sets["SERIAL%u_BAUD" % serial_num] = kwargs["baud"]
self.set_parameters(sets)
self.customise_SITL_commandline(command_line_args)
self.fly_rangefinder_drivers_fly([x[0] for x in do_drivers])
self.context_pop()
self.fly_rangefinder_mavlink()
self.fly_rangefinder_sitl() # i.e. type 100
i2c_drivers = [
("maxbotixi2cxl", 2),
]
while len(i2c_drivers):
do_drivers = i2c_drivers[0:9]
i2c_drivers = i2c_drivers[9:]
count = 1
p = {}
for d in do_drivers:
(sim_name, rngfnd_param_value) = d
p["RNGFND%u_TYPE" % count] = rngfnd_param_value
count += 1
self.set_parameters(p)
self.reboot_sitl()
self.fly_rangefinder_drivers_fly([x[0] for x in do_drivers])
def RangeFinderDriversMaxAlt(self):
'''test max-height behaviour'''
# lightwareserial goes to 130m when out of range
self.set_parameters({
"SERIAL4_PROTOCOL": 9,
"RNGFND1_TYPE": 8,
"WPNAV_SPEED_UP": 1000, # cm/s
})
self.customise_SITL_commandline([
"--serial4=sim:lightwareserial",
])
self.takeoff(95, mode='GUIDED', timeout=240, max_err=0.5)
self.assert_rangefinder_distance_between(90, 100)
self.wait_rangefinder_distance(90, 100)
rf_bit = mavutil.mavlink.MAV_SYS_STATUS_SENSOR_LASER_POSITION
self.assert_sensor_state(rf_bit, present=True, enabled=True, healthy=True)
self.assert_distance_sensor_quality(100)
self.progress("Moving higher to be out of max rangefinder range")
self.fly_guided_move_local(0, 0, 150)
# sensor remains healthy even out-of-range
self.assert_sensor_state(rf_bit, present=True, enabled=True, healthy=True)
self.assert_distance_sensor_quality(1)
self.do_RTL()
def ShipTakeoff(self):
'''Fly Simulated Ship Takeoff'''
# test ship takeoff
self.wait_groundspeed(0, 2)
self.set_parameters({
"SIM_SHIP_ENABLE": 1,
"SIM_SHIP_SPEED": 10,
"SIM_SHIP_DSIZE": 2,
})
self.wait_ready_to_arm()
# we should be moving with the ship
self.wait_groundspeed(9, 11)
self.takeoff(10)
# above ship our speed drops to 0
self.wait_groundspeed(0, 2)
self.land_and_disarm()
# ship will have moved on, so we land on the water which isn't moving
self.wait_groundspeed(0, 2)
def ParameterValidation(self):
'''Test parameters are checked for validity'''
# wait 10 seconds for initialisation
self.delay_sim_time(10)
self.progress("invalid; min must be less than max:")
self.set_parameters({
"MOT_PWM_MIN": 100,
"MOT_PWM_MAX": 50,
})
self.drain_mav()
self.assert_prearm_failure("Motors: Check MOT_PWM_MIN and MOT_PWM_MAX")
self.progress("invalid; min must be less than max (equal case):")
self.set_parameters({
"MOT_PWM_MIN": 100,
"MOT_PWM_MAX": 100,
})
self.drain_mav()
self.assert_prearm_failure("Motors: Check MOT_PWM_MIN and MOT_PWM_MAX")
self.progress("Spin min more than 0.3")
self.set_parameters({
"MOT_PWM_MIN": 1000,
"MOT_PWM_MAX": 2000,
"MOT_SPIN_MIN": 0.5,
})
self.drain_mav()
self.assert_prearm_failure("PreArm: Motors: MOT_SPIN_MIN too high 0.50 > 0.3")
self.progress("Spin arm more than spin min")
self.set_parameters({
"MOT_SPIN_MIN": 0.1,
"MOT_SPIN_ARM": 0.2,
})
self.drain_mav()
self.assert_prearm_failure("PreArm: Motors: MOT_SPIN_ARM > MOT_SPIN_MIN")
def SensorErrorFlags(self):
'''Test we get ERR messages when sensors have issues'''
self.reboot_sitl()
for (param_names, param_value, expected_subsys, expected_ecode, desc) in [
(['SIM_BARO_DISABLE', 'SIM_BAR2_DISABLE'], 1, 18, 4, 'unhealthy'),
(['SIM_BARO_DISABLE', 'SIM_BAR2_DISABLE'], 0, 18, 0, 'healthy'),
(['SIM_MAG1_FAIL', 'SIM_MAG2_FAIL', 'SIM_MAG3_FAIL'], 1, 3, 4, 'unhealthy'),
(['SIM_MAG1_FAIL', 'SIM_MAG2_FAIL', 'SIM_MAG3_FAIL'], 0, 3, 0, 'healthy'),
]:
sp = dict()
for name in param_names:
sp[name] = param_value
self.set_parameters(sp)
self.delay_sim_time(1)
mlog = self.dfreader_for_current_onboard_log()
success = False
while True:
m = mlog.recv_match(type='ERR')
print("Got (%s)" % str(m))
if m is None:
break
if m.Subsys == expected_subsys and m.ECode == expected_ecode: # baro / ecode
success = True
break
if not success:
raise NotAchievedException("Did not find %s log message" % desc)
def AltEstimation(self):
'''Test that Alt Estimation is mandatory for ALT_HOLD'''
self.context_push()
ex = None
try:
# disable barometer so there is no altitude source
self.set_parameters({
"SIM_BARO_DISABLE": 1,
"SIM_BARO2_DISABL": 1,
})
self.wait_gps_disable(position_vertical=True)
# turn off arming checks (mandatory arming checks will still be run)
self.set_parameter("ARMING_CHECK", 0)
# delay 12 sec to allow EKF to lose altitude estimate
self.delay_sim_time(12)
self.change_mode("ALT_HOLD")
self.assert_prearm_failure("Need Alt Estimate")
# force arm vehicle in stabilize to bypass barometer pre-arm checks
self.change_mode("STABILIZE")
self.arm_vehicle()
self.set_rc(3, 1700)
try:
self.change_mode("ALT_HOLD", timeout=10)
except AutoTestTimeoutException:
self.progress("PASS not able to set mode without Position : %s" % "ALT_HOLD")
# check that mode change to ALT_HOLD has failed (it should)
if self.mode_is("ALT_HOLD"):
raise NotAchievedException("Changed to ALT_HOLD with no altitude estimate")
except Exception as e:
self.print_exception_caught(e)
ex = e
self.context_pop()
self.disarm_vehicle(force=True)
if ex is not None:
raise ex
def EKFSource(self):
'''Check EKF Source Prearms work'''
self.context_push()
ex = None
try:
self.set_parameters({
"EK3_ENABLE": 1,
"AHRS_EKF_TYPE": 3,
})
self.wait_ready_to_arm()
self.start_subtest("bad yaw source")
self.set_parameter("EK3_SRC3_YAW", 17)
self.assert_prearm_failure("Check EK3_SRC3_YAW")
self.context_push()
self.start_subtest("missing required yaw source")
self.set_parameters({
"EK3_SRC3_YAW": 3, # External Yaw with Compass Fallback
"COMPASS_USE": 0,
"COMPASS_USE2": 0,
"COMPASS_USE3": 0,
})
self.assert_prearm_failure("EK3 sources require Compass")
self.context_pop()
except Exception as e:
self.disarm_vehicle(force=True)
self.print_exception_caught(e)
ex = e
self.context_pop()
if ex is not None:
raise ex
def test_replay_gps_bit(self):
self.set_parameters({
"LOG_REPLAY": 1,
"LOG_DISARMED": 1,
"EK3_ENABLE": 1,
"EK2_ENABLE": 1,
"AHRS_TRIM_X": 0.01,
"AHRS_TRIM_Y": -0.03,
"GPS2_TYPE": 1,
"GPS1_POS_X": 0.1,
"GPS1_POS_Y": 0.2,
"GPS1_POS_Z": 0.3,
"GPS2_POS_X": -0.1,
"GPS2_POS_Y": -0.02,
"GPS2_POS_Z": -0.31,
"INS_POS1_X": 0.12,
"INS_POS1_Y": 0.14,
"INS_POS1_Z": -0.02,
"INS_POS2_X": 0.07,
"INS_POS2_Y": 0.012,
"INS_POS2_Z": -0.06,
"RNGFND1_TYPE": 1,
"RNGFND1_PIN": 0,
"RNGFND1_SCALING": 30,
"RNGFND1_POS_X": 0.17,
"RNGFND1_POS_Y": -0.07,
"RNGFND1_POS_Z": -0.005,
"SIM_SONAR_SCALE": 30,
"SIM_GPS2_ENABLE": 1,
})
self.reboot_sitl()
self.wait_sensor_state(mavutil.mavlink.MAV_SYS_STATUS_LOGGING, True, True, True)
current_log_filepath = self.current_onboard_log_filepath()
self.progress("Current log path: %s" % str(current_log_filepath))
self.change_mode("LOITER")
self.wait_ready_to_arm(require_absolute=True)
self.arm_vehicle()
self.takeoffAndMoveAway()
self.do_RTL()
self.reboot_sitl()
return current_log_filepath
def test_replay_beacon_bit(self):
self.set_parameters({
"LOG_REPLAY": 1,
"LOG_DISARMED": 1,
})
old_onboard_logs = sorted(self.log_list())
self.BeaconPosition()
new_onboard_logs = sorted(self.log_list())
log_difference = [x for x in new_onboard_logs if x not in old_onboard_logs]
return log_difference[2]
def test_replay_optical_flow_bit(self):
self.set_parameters({
"LOG_REPLAY": 1,
"LOG_DISARMED": 1,
})
old_onboard_logs = sorted(self.log_list())
self.OpticalFlowLimits()
new_onboard_logs = sorted(self.log_list())
log_difference = [x for x in new_onboard_logs if x not in old_onboard_logs]
print("log difference: %s" % str(log_difference))
return log_difference[0]
def GPSBlendingLog(self):
'''Test GPS Blending'''
'''ensure we get dataflash log messages for blended instance'''
self.context_push()
ex = None
try:
# configure:
self.set_parameters({
"GPS2_TYPE": 1,
"SIM_GPS2_TYPE": 1,
"SIM_GPS2_ENABLE": 1,
"GPS_AUTO_SWITCH": 2,
})
self.reboot_sitl()
# ensure we're seeing the second GPS:
tstart = self.get_sim_time()
while True:
if self.get_sim_time_cached() - tstart > 60:
raise NotAchievedException("Did not get good GPS2_RAW message")
m = self.mav.recv_match(type='GPS2_RAW', blocking=True, timeout=1)
self.progress("%s" % str(m))
if m is None:
continue
if m.lat == 0:
continue
break
# create a log we can expect blended data to appear in:
self.change_mode('LOITER')
self.wait_ready_to_arm()
self.arm_vehicle()
self.delay_sim_time(5)
self.disarm_vehicle()
# inspect generated log for messages:
dfreader = self.dfreader_for_current_onboard_log()
wanted = set([0, 1, 2])
seen_primary_change = False
while True:
m = dfreader.recv_match(type=["GPS", "EV"]) # disarmed
if m is None:
break
mtype = m.get_type()
if mtype == 'GPS':
try:
wanted.remove(m.I)
except KeyError:
continue
elif mtype == 'EV':
if m.Id == 67: # GPS_PRIMARY_CHANGED
seen_primary_change = True
if len(wanted) == 0 and seen_primary_change:
break
if len(wanted):
raise NotAchievedException("Did not get all three GPS types")
if not seen_primary_change:
raise NotAchievedException("Did not see primary change")
except Exception as e:
self.progress("Caught exception: %s" %
self.get_exception_stacktrace(e))
ex = e
self.context_pop()
self.reboot_sitl()
if ex is not None:
raise ex
def GPSBlending(self):
'''Test GPS Blending'''
'''ensure we get dataflash log messages for blended instance'''
# configure:
self.set_parameters({
"WP_YAW_BEHAVIOR": 0, # do not yaw
"GPS2_TYPE": 1,
"SIM_GPS2_TYPE": 1,
"SIM_GPS2_ENABLE": 1,
"SIM_GPS1_POS_X": 1.0,
"SIM_GPS1_POS_Y": -1.0,
"SIM_GPS2_POS_X": -1.0,
"SIM_GPS2_POS_Y": 1.0,
"GPS_AUTO_SWITCH": 2,
})
self.reboot_sitl()
alt = 10
self.takeoff(alt, mode='GUIDED')
self.fly_guided_move_local(30, 0, alt)
self.fly_guided_move_local(30, 30, alt)
self.fly_guided_move_local(0, 30, alt)
self.fly_guided_move_local(0, 0, alt)
self.change_mode('LAND')
current_log_file = self.dfreader_for_current_onboard_log()
self.wait_disarmed()
# ensure that the blended solution is always about half-way
# between the two GPSs:
current_ts = None
while True:
m = current_log_file.recv_match(type='GPS')
if m is None:
break
if current_ts is None:
if m.I != 0: # noqa
continue
current_ts = m.TimeUS
measurements = {}
if m.TimeUS != current_ts:
current_ts = None
continue
measurements[m.I] = (m.Lat, m.Lng)
if len(measurements) == 3:
# check lat:
for n in 0, 1:
expected_blended = (measurements[0][n] + measurements[1][n])/2
epsilon = 0.0000002
error = abs(measurements[2][n] - expected_blended)
if error > epsilon:
raise NotAchievedException("Blended diverged")
current_ts = None
if len(measurements) != 3:
raise NotAchievedException("Did not see three GPS measurements!")
def GPSWeightedBlending(self):
'''Test GPS Weighted Blending'''
self.context_push()
# configure:
self.set_parameters({
"WP_YAW_BEHAVIOR": 0, # do not yaw
"GPS2_TYPE": 1,
"SIM_GPS2_TYPE": 1,
"SIM_GPS2_ENABLE": 1,
"SIM_GPS1_POS_X": 1.0,
"SIM_GPS1_POS_Y": -1.0,
"SIM_GPS2_POS_X": -1.0,
"SIM_GPS2_POS_Y": 1.0,
"GPS_AUTO_SWITCH": 2,
})
# configure velocity errors such that the 1st GPS should be
# 4/5, second GPS 1/5 of result (0.5**2)/((0.5**2)+(1.0**2))
self.set_parameters({
"SIM_GPS1_VERR_X": 0.3, # m/s
"SIM_GPS1_VERR_Y": 0.4,
"SIM_GPS2_VERR_X": 0.6, # m/s
"SIM_GPS2_VERR_Y": 0.8,
"GPS_BLEND_MASK": 4, # use only speed for blend calculations
})
self.reboot_sitl()
alt = 10
self.takeoff(alt, mode='GUIDED')
self.fly_guided_move_local(30, 0, alt)
self.fly_guided_move_local(30, 30, alt)
self.fly_guided_move_local(0, 30, alt)
self.fly_guided_move_local(0, 0, alt)
self.change_mode('LAND')
current_log_file = self.dfreader_for_current_onboard_log()
self.wait_disarmed()
# ensure that the blended solution is always about half-way
# between the two GPSs:
current_ts = None
while True:
m = current_log_file.recv_match(type='GPS')
if m is None:
break
if current_ts is None:
if m.I != 0: # noqa
continue
current_ts = m.TimeUS
measurements = {}
if m.TimeUS != current_ts:
current_ts = None
continue
measurements[m.I] = (m.Lat, m.Lng, m.Alt)
if len(measurements) == 3:
# check lat:
for n in 0, 1, 2:
expected_blended = 0.8*measurements[0][n] + 0.2*measurements[1][n]
axis_epsilons = [0.0000002, 0.0000002, 0.2]
epsilon = axis_epsilons[n]
error = abs(measurements[2][n] - expected_blended)
if error > epsilon:
raise NotAchievedException(f"Blended diverged {n=} {measurements[0][n]=} {measurements[1][n]=}")
current_ts = None
self.context_pop()
self.reboot_sitl()
def GPSBlendingAffinity(self):
'''test blending when affinity in use'''
# configure:
self.set_parameters({
"WP_YAW_BEHAVIOR": 0, # do not yaw
"GPS2_TYPE": 1,
"SIM_GPS2_TYPE": 1,
"SIM_GPS2_ENABLE": 1,
"SIM_GPS1_POS_X": 1.0,
"SIM_GPS1_POS_Y": -1.0,
"SIM_GPS2_POS_X": -1.0,
"SIM_GPS2_POS_Y": 1.0,
"GPS_AUTO_SWITCH": 2,
"EK3_AFFINITY" : 1,
"EK3_IMU_MASK": 7,
"SIM_IMU_COUNT": 3,
"INS_ACC3OFFS_X": 0.001,
"INS_ACC3OFFS_Y": 0.001,
"INS_ACC3OFFS_Z": 0.001,
})
# force-calibration of accel:
self.run_cmd(mavutil.mavlink.MAV_CMD_PREFLIGHT_CALIBRATION, p5=76)
self.reboot_sitl()
alt = 10
self.takeoff(alt, mode='GUIDED')
self.fly_guided_move_local(30, 0, alt)
self.fly_guided_move_local(30, 30, alt)
self.fly_guided_move_local(0, 30, alt)
self.fly_guided_move_local(0, 0, alt)
self.change_mode('LAND')
current_log_file = self.dfreader_for_current_onboard_log()
self.wait_disarmed()
# ensure that the blended solution is always about half-way
# between the two GPSs:
current_ts = None
max_errors = [0, 0, 0]
while True:
m = current_log_file.recv_match(type='XKF1')
if m is None:
break
if current_ts is None:
if m.C != 0: # noqa
continue
current_ts = m.TimeUS
measurements = {}
if m.TimeUS != current_ts:
current_ts = None
continue
measurements[m.C] = (m.PN, m.PE, m.PD)
if len(measurements) == 3:
# check lat:
for n in 0, 1, 2:
expected_blended = 0.5*measurements[0][n] + 0.5*measurements[1][n]
axis_epsilons = [0.02, 0.02, 0.03]
epsilon = axis_epsilons[n]
error = abs(measurements[2][n] - expected_blended)
# self.progress(f"{n=} {error=}")
if error > max_errors[n]:
max_errors[n] = error
if error > epsilon:
raise NotAchievedException(f"Blended diverged {n=} {measurements[0][n]=} {measurements[1][n]=} {measurements[2][n]=} {error=}") # noqa:E501
current_ts = None
self.progress(f"{max_errors=}")
def Callisto(self):
'''Test Callisto'''
self.customise_SITL_commandline(
[],
defaults_filepath=self.model_defaults_filepath('Callisto'),
model="octa-quad:@ROMFS/models/Callisto.json",
wipe=True,
)
self.takeoff(10)
self.do_RTL()
def FlyEachFrame(self):
'''Fly each supported internal frame'''
vinfo = vehicleinfo.VehicleInfo()
copter_vinfo_options = vinfo.options[self.vehicleinfo_key()]
known_broken_frames = {
'heli-compound': "wrong binary, different takeoff regime",
'heli-dual': "wrong binary, different takeoff regime",
'heli': "wrong binary, different takeoff regime",
'heli-gas': "wrong binary, different takeoff regime",
'heli-blade360': "wrong binary, different takeoff regime",
"quad-can" : "needs CAN periph",
}
for frame in sorted(copter_vinfo_options["frames"].keys()):
self.start_subtest("Testing frame (%s)" % str(frame))
if frame in known_broken_frames:
self.progress("Actually, no I'm not - it is known-broken (%s)" %
(known_broken_frames[frame]))
continue
frame_bits = copter_vinfo_options["frames"][frame]
print("frame_bits: %s" % str(frame_bits))
if frame_bits.get("external", False):
self.progress("Actually, no I'm not - it is an external simulation")
continue
model = frame_bits.get("model", frame)
defaults = self.model_defaults_filepath(frame)
if not isinstance(defaults, list):
defaults = [defaults]
self.customise_SITL_commandline(
[],
defaults_filepath=defaults,
model=model,
wipe=True,
)
# add a listener that verifies yaw looks good:
def verify_yaw(mav, m):
if m.get_type() != 'ATTITUDE':
return
yawspeed_thresh_rads = math.radians(20)
if m.yawspeed > yawspeed_thresh_rads:
raise NotAchievedException("Excessive yaw on takeoff: %f deg/s > %f deg/s (frame=%s)" %
(math.degrees(m.yawspeed), math.degrees(yawspeed_thresh_rads), frame))
self.context_push()
self.install_message_hook_context(verify_yaw)
self.takeoff(10)
self.context_pop()
self.hover()
self.change_mode('ALT_HOLD')
self.delay_sim_time(1)
def verify_rollpitch(mav, m):
if m.get_type() != 'ATTITUDE':
return
pitch_thresh_rad = math.radians(2)
if m.pitch > pitch_thresh_rad:
raise NotAchievedException("Excessive pitch %f deg > %f deg" %
(math.degrees(m.pitch), math.degrees(pitch_thresh_rad)))
roll_thresh_rad = math.radians(2)
if m.roll > roll_thresh_rad:
raise NotAchievedException("Excessive roll %f deg > %f deg" %
(math.degrees(m.roll), math.degrees(roll_thresh_rad)))
self.context_push()
self.install_message_hook_context(verify_rollpitch)
for i in range(5):
self.set_rc(4, 2000)
self.delay_sim_time(0.5)
self.set_rc(4, 1500)
self.delay_sim_time(5)
self.context_pop()
self.do_RTL()
def Replay(self):
'''test replay correctness'''
self.progress("Building Replay")
util.build_SITL('tool/Replay', clean=False, configure=False)
self.set_parameters({
"LOG_DARM_RATEMAX": 0,
"LOG_FILE_RATEMAX": 0,
})
bits = [
('GPS', self.test_replay_gps_bit),
('Beacon', self.test_replay_beacon_bit),
('OpticalFlow', self.test_replay_optical_flow_bit),
]
for (name, func) in bits:
self.start_subtest("%s" % name)
self.test_replay_bit(func)
def test_replay_bit(self, bit):
self.context_push()
current_log_filepath = bit()
self.progress("Running replay on (%s) (%u bytes)" % (
(current_log_filepath, os.path.getsize(current_log_filepath))
))
self.run_replay(current_log_filepath)
replay_log_filepath = self.current_onboard_log_filepath()
self.context_pop()
self.progress("Replay log path: %s" % str(replay_log_filepath))
check_replay = util.load_local_module("Tools/Replay/check_replay.py")
ok = check_replay.check_log(replay_log_filepath, self.progress, verbose=True)
if not ok:
raise NotAchievedException("check_replay (%s) failed" % current_log_filepath)
def DefaultIntervalsFromFiles(self):
'''Test setting default mavlink message intervals from files'''
ex = None
intervals_filepath = util.reltopdir("message-intervals-chan0.txt")
self.progress("Using filepath (%s)" % intervals_filepath)
try:
with open(intervals_filepath, "w") as f:
f.write("""30 50
28 100
29 200
""")
f.close()
# other tests may have explicitly set rates, so wipe parameters:
def custom_stream_rate_setter():
for stream in mavutil.mavlink.MAV_DATA_STREAM_EXTRA3, mavutil.mavlink.MAV_DATA_STREAM_RC_CHANNELS:
self.set_streamrate(5, stream=stream)
self.customise_SITL_commandline(
[],
wipe=True,
set_streamrate_callback=custom_stream_rate_setter,
)
self.assert_message_rate_hz("ATTITUDE", 20)
self.assert_message_rate_hz("SCALED_PRESSURE", 5)
except Exception as e:
self.print_exception_caught(e)
ex = e
os.unlink(intervals_filepath)
self.reboot_sitl()
if ex is not None:
raise ex
def BaroDrivers(self):
'''Test Baro Drivers'''
sensors = [
("MS5611", 2),
]
for (name, bus) in sensors:
self.context_push()
if bus is not None:
self.set_parameter("BARO_EXT_BUS", bus)
self.set_parameter("BARO_PROBE_EXT", 1 << 2)
self.reboot_sitl()
self.wait_ready_to_arm()
self.arm_vehicle()
# insert listener to compare airspeeds:
messages = [None, None, None]
global count
count = 0
def check_pressure(mav, m):
global count
m_type = m.get_type()
count += 1
# if count > 500:
# if press_abs[0] is None or press_abs[1] is None:
# raise NotAchievedException("Not receiving messages")
if m_type == 'SCALED_PRESSURE3':
off = 2
elif m_type == 'SCALED_PRESSURE2':
off = 1
elif m_type == 'SCALED_PRESSURE':
off = 0
else:
return
messages[off] = m
if None in messages:
return
first = messages[0]
for msg in messages[1:]:
delta_press_abs = abs(first.press_abs - msg.press_abs)
if delta_press_abs > 0.5: # 50 Pa leeway
raise NotAchievedException("Press_Abs mismatch (press1=%s press2=%s)" % (first, msg))
delta_temperature = abs(first.temperature - msg.temperature)
if delta_temperature > 300: # that's 3-degrees leeway
raise NotAchievedException("Temperature mismatch (t1=%s t2=%s)" % (first, msg))
self.install_message_hook_context(check_pressure)
self.fly_mission("copter_mission.txt", strict=False)
if None in messages:
raise NotAchievedException("Missing a message")
self.context_pop()
self.reboot_sitl()
def PositionWhenGPSIsZero(self):
'''Ensure position doesn't zero when GPS lost'''
# https://github.com/ArduPilot/ardupilot/issues/14236
self.progress("arm the vehicle and takeoff in Guided")
self.takeoff(20, mode='GUIDED')
self.progress("fly 50m North (or whatever)")
old_pos = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
self.fly_guided_move_global_relative_alt(50, 0, 20)
self.set_parameter('GPS1_TYPE', 0)
self.drain_mav()
tstart = self.get_sim_time()
while True:
if self.get_sim_time_cached() - tstart > 30 and self.mode_is('LAND'):
self.progress("Bug not reproduced")
break
m = self.assert_receive_message('GLOBAL_POSITION_INT', timeout=1, verbose=True)
pos_delta = self.get_distance_int(old_pos, m)
self.progress("Distance: %f" % pos_delta)
if pos_delta < 5:
raise NotAchievedException("Bug reproduced - returned to near origin")
self.wait_disarmed()
self.reboot_sitl()
def SMART_RTL(self):
'''Check SMART_RTL'''
self.progress("arm the vehicle and takeoff in Guided")
self.takeoff(20, mode='GUIDED')
self.progress("fly around a bit (or whatever)")
locs = [
(50, 0, 20),
(-50, 50, 20),
(-50, 0, 20),
]
for (lat, lng, alt) in locs:
self.fly_guided_move_local(lat, lng, alt)
self.change_mode('SMART_RTL')
for (lat, lng, alt) in reversed(locs):
self.wait_distance_to_local_position(
(lat, lng, -alt),
0,
10,
timeout=60
)
self.wait_disarmed()
def get_ground_effect_duration_from_current_onboard_log(self, bit, ignore_multi=False):
'''returns a duration in seconds we were expecting to interact with
the ground. Will die if there's more than one such block of
time and ignore_multi is not set (will return first duration
otherwise)
'''
ret = []
dfreader = self.dfreader_for_current_onboard_log()
seen_expected_start_TimeUS = None
first = None
last = None
while True:
m = dfreader.recv_match(type="XKF4")
if m is None:
break
last = m
if first is None:
first = m
# self.progress("%s" % str(m))
expected = m.SS & (1 << bit)
if expected:
if seen_expected_start_TimeUS is None:
seen_expected_start_TimeUS = m.TimeUS
continue
else:
if seen_expected_start_TimeUS is not None:
duration = (m.TimeUS - seen_expected_start_TimeUS)/1000000.0
ret.append(duration)
seen_expected_start_TimeUS = None
if seen_expected_start_TimeUS is not None:
duration = (last.TimeUS - seen_expected_start_TimeUS)/1000000.0
ret.append(duration)
return ret
def get_takeoffexpected_durations_from_current_onboard_log(self, ignore_multi=False):
return self.get_ground_effect_duration_from_current_onboard_log(11, ignore_multi=ignore_multi)
def get_touchdownexpected_durations_from_current_onboard_log(self, ignore_multi=False):
return self.get_ground_effect_duration_from_current_onboard_log(12, ignore_multi=ignore_multi)
def ThrowDoubleDrop(self):
'''Test a more complicated drop-mode scenario'''
self.progress("Getting a lift to altitude")
self.set_parameters({
"SIM_SHOVE_Z": -11,
"THROW_TYPE": 1, # drop
"MOT_SPOOL_TIME": 2,
})
self.change_mode('THROW')
self.wait_ready_to_arm()
self.arm_vehicle()
try:
self.set_parameter("SIM_SHOVE_TIME", 30000)
except ValueError:
# the shove resets this to zero
pass
self.wait_altitude(100, 1000, timeout=100, relative=True)
self.context_collect('STATUSTEXT')
self.wait_statustext("throw detected - spooling motors", check_context=True, timeout=10)
self.wait_statustext("throttle is unlimited - uprighting", check_context=True)
self.wait_statustext("uprighted - controlling height", check_context=True)
self.wait_statustext("height achieved - controlling position", check_context=True)
self.progress("Waiting for still")
self.wait_speed_vector(Vector3(0, 0, 0))
self.change_mode('ALT_HOLD')
self.set_rc(3, 1000)
self.wait_disarmed(timeout=90)
self.zero_throttle()
self.progress("second flight")
self.upload_square_mission_items_around_location(self.poll_home_position())
self.set_parameters({
"THROW_NEXTMODE": 3, # auto
})
self.change_mode('THROW')
self.wait_ready_to_arm()
self.arm_vehicle()
try:
self.set_parameter("SIM_SHOVE_TIME", 30000)
except ValueError:
# the shove resets this to zero
pass
self.wait_altitude(100, 1000, timeout=100, relative=True)
self.wait_statustext("throw detected - spooling motors", check_context=True, timeout=10)
self.wait_statustext("throttle is unlimited - uprighting", check_context=True)
self.wait_statustext("uprighted - controlling height", check_context=True)
self.wait_statustext("height achieved - controlling position", check_context=True)
self.wait_mode('AUTO')
self.wait_disarmed(timeout=240)
def GroundEffectCompensation_takeOffExpected(self):
'''Test EKF's handling of takeoff-expected'''
self.change_mode('ALT_HOLD')
self.set_parameter("LOG_FILE_DSRMROT", 1)
self.progress("Making sure we'll have a short log to look at")
self.wait_ready_to_arm()
self.arm_vehicle()
self.disarm_vehicle()
# arm the vehicle and let it disarm normally. This should
# yield a log where the EKF considers a takeoff imminent until
# disarm
self.start_subtest("Check ground effect compensation remains set in EKF while we're at idle on the ground")
self.arm_vehicle()
self.wait_disarmed()
durations = self.get_takeoffexpected_durations_from_current_onboard_log()
duration = durations[0]
want = 9
self.progress("takeoff-expected duration: %fs" % (duration,))
if duration < want: # assumes default 10-second DISARM_DELAY
raise NotAchievedException("Should have been expecting takeoff for longer than %fs (want>%f)" %
(duration, want))
self.start_subtest("takeoffExpected should be false very soon after we launch into the air")
self.takeoff(mode='ALT_HOLD', alt_min=5)
self.change_mode('LAND')
self.wait_disarmed()
durations = self.get_takeoffexpected_durations_from_current_onboard_log(ignore_multi=True)
self.progress("touchdown-durations: %s" % str(durations))
duration = durations[0]
self.progress("takeoff-expected-duration %f" % (duration,))
want_lt = 5
if duration >= want_lt:
raise NotAchievedException("Was expecting takeoff for longer than expected; got=%f want<=%f" %
(duration, want_lt))
def _MAV_CMD_CONDITION_YAW(self, command):
self.start_subtest("absolute")
self.takeoff(20, mode='GUIDED')
m = self.mav.recv_match(type='VFR_HUD', blocking=True)
initial_heading = m.heading
self.progress("Ensuring initial heading is steady")
target = initial_heading
command(
mavutil.mavlink.MAV_CMD_CONDITION_YAW,
p1=target, # target angle
p2=10, # degrees/second
p3=1, # -1 is counter-clockwise, 1 clockwise
p4=0, # 1 for relative, 0 for absolute
)
self.wait_heading(target, minimum_duration=2, timeout=50)
self.wait_yaw_speed(0)
degsecond = 2
def rate_watcher(mav, m):
if m.get_type() != 'ATTITUDE':
return
if abs(math.degrees(m.yawspeed)) > 5*degsecond:
raise NotAchievedException("Moved too fast (%f>%f)" %
(math.degrees(m.yawspeed), 5*degsecond))
self.install_message_hook_context(rate_watcher)
self.progress("Yaw CW 60 degrees")
target = initial_heading + 60
part_way_target = initial_heading + 10
command(
mavutil.mavlink.MAV_CMD_CONDITION_YAW,
p1=target, # target angle
p2=degsecond, # degrees/second
p3=1, # -1 is counter-clockwise, 1 clockwise
p4=0, # 1 for relative, 0 for absolute
)
self.wait_heading(part_way_target)
self.wait_heading(target, minimum_duration=2)
self.progress("Yaw CCW 60 degrees")
target = initial_heading
part_way_target = initial_heading + 30
command(
mavutil.mavlink.MAV_CMD_CONDITION_YAW,
p1=target, # target angle
p2=degsecond, # degrees/second
p3=-1, # -1 is counter-clockwise, 1 clockwise
p4=0, # 1 for relative, 0 for absolute
)
self.wait_heading(part_way_target)
self.wait_heading(target, minimum_duration=2)
self.disarm_vehicle(force=True)
self.reboot_sitl()
def MAV_CMD_CONDITION_YAW(self):
'''Test response to MAV_CMD_CONDITION_YAW via mavlink'''
self.context_push()
self._MAV_CMD_CONDITION_YAW(self.run_cmd_int)
self.context_pop()
self.context_push()
self._MAV_CMD_CONDITION_YAW(self.run_cmd)
self.context_pop()
def GroundEffectCompensation_touchDownExpected(self):
'''Test EKF's handling of touchdown-expected'''
self.zero_throttle()
self.change_mode('ALT_HOLD')
self.set_parameter("LOG_FILE_DSRMROT", 1)
self.progress("Making sure we'll have a short log to look at")
self.wait_ready_to_arm()
self.arm_vehicle()
self.disarm_vehicle()
self.start_subtest("Make sure touchdown-expected duration is about right")
self.takeoff(20, mode='ALT_HOLD')
self.change_mode('LAND')
self.wait_disarmed()
durations = self.get_touchdownexpected_durations_from_current_onboard_log(ignore_multi=True)
self.progress("touchdown-durations: %s" % str(durations))
duration = durations[-1]
expected = 23 # this is the time in the final descent phase of LAND
if abs(duration - expected) > 5:
raise NotAchievedException("Was expecting roughly %fs of touchdown expected, got %f" % (expected, duration))
def upload_square_mission_items_around_location(self, loc):
alt = 20
loc.alt = alt
items = [
(mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, alt)
]
for (ofs_n, ofs_e) in (20, 20), (20, -20), (-20, -20), (-20, 20), (20, 20):
items.append((mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, ofs_n, ofs_e, alt))
items.append((mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0))
self.upload_simple_relhome_mission(items)
def RefindGPS(self):
'''Refind the GPS and attempt to RTL rather than continue to land'''
# https://github.com/ArduPilot/ardupilot/issues/14236
self.progress("arm the vehicle and takeoff in Guided")
self.takeoff(50, mode='GUIDED')
self.progress("fly 50m North (or whatever)")
old_pos = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
self.fly_guided_move_global_relative_alt(50, 0, 50)
self.set_parameter('GPS1_TYPE', 0)
self.drain_mav()
tstart = self.get_sim_time()
while True:
if self.get_sim_time_cached() - tstart > 30 and self.mode_is('LAND'):
self.progress("Bug not reproduced")
break
m = self.assert_receive_message('GLOBAL_POSITION_INT', timeout=1, verbose=True)
pos_delta = self.get_distance_int(old_pos, m)
self.progress("Distance: %f" % pos_delta)
if pos_delta < 5:
raise NotAchievedException("Bug reproduced - returned to near origin")
self.set_parameter('GPS1_TYPE', 1)
self.do_RTL()
def GPSForYaw(self):
'''Moving baseline GPS yaw'''
self.load_default_params_file("copter-gps-for-yaw.parm")
self.reboot_sitl()
self.wait_gps_fix_type_gte(6, message_type="GPS2_RAW", verbose=True)
m = self.assert_receive_message("GPS2_RAW", very_verbose=True)
want = 27000
if abs(m.yaw - want) > 500:
raise NotAchievedException("Expected to get GPS-from-yaw (want %f got %f)" % (want, m.yaw))
self.wait_ready_to_arm()
def SMART_RTL_EnterLeave(self):
'''check SmartRTL behaviour when entering/leaving'''
# we had a bug where we would consume points when re-entering smartrtl
self.upload_simple_relhome_mission([
# N E U
(mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 10),
(mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0),
])
self.set_parameter('AUTO_OPTIONS', 3)
self.change_mode('AUTO')
self.wait_ready_to_arm()
self.change_mode('ALT_HOLD')
self.change_mode('SMART_RTL')
self.change_mode('ALT_HOLD')
self.change_mode('SMART_RTL')
def SMART_RTL_Repeat(self):
'''Test whether Smart RTL catches the repeat'''
self.takeoff(alt_min=10, mode='GUIDED')
self.set_rc(3, 1500)
self.change_mode("CIRCLE")
self.delay_sim_time(1300)
self.change_mode("SMART_RTL")
self.wait_disarmed()
def GPSForYawCompassLearn(self):
'''Moving baseline GPS yaw - with compass learning'''
self.context_push()
self.load_default_params_file("copter-gps-for-yaw.parm")
self.set_parameter("EK3_SRC1_YAW", 3) # GPS with compass fallback
self.reboot_sitl()
self.wait_gps_fix_type_gte(6, message_type="GPS2_RAW", verbose=True)
self.wait_ready_to_arm()
self.takeoff(10, mode='GUIDED')
tstart = self.get_sim_time()
compass_learn_set = False
while True:
delta_t = self.get_sim_time_cached() - tstart
if delta_t > 30:
break
if not compass_learn_set and delta_t > 10:
self.set_parameter("COMPASS_LEARN", 3)
compass_learn_set = True
self.check_attitudes_match()
self.delay_sim_time(1)
self.context_pop()
self.reboot_sitl()
def AP_Avoidance(self):
'''ADSB-based avoidance'''
self.set_parameters({
"AVD_ENABLE": 1,
"ADSB_TYPE": 1, # mavlink
"AVD_F_ACTION": 2, # climb or descend
})
self.reboot_sitl()
self.wait_ready_to_arm()
here = self.mav.location()
self.context_push()
self.start_subtest("F_ALT_MIN zero - disabled, can't arm in face of threat")
self.set_parameters({
"AVD_F_ALT_MIN": 0,
})
self.wait_ready_to_arm()
self.test_adsb_send_threatening_adsb_message(here)
self.delay_sim_time(1)
self.try_arm(result=False,
expect_msg="ADSB threat detected")
self.wait_ready_to_arm(timeout=60)
self.context_pop()
self.start_subtest("F_ALT_MIN 16m relative - arm in face of threat")
self.context_push()
self.set_parameters({
"AVD_F_ALT_MIN": int(16 + here.alt),
})
self.wait_ready_to_arm()
self.test_adsb_send_threatening_adsb_message(here)
# self.delay_sim_time(1)
self.arm_vehicle()
self.disarm_vehicle()
self.context_pop()
def PAUSE_CONTINUE(self):
'''Test MAV_CMD_DO_PAUSE_CONTINUE in AUTO mode'''
self.load_mission(filename="copter_mission.txt", strict=False)
self.set_parameter(name="AUTO_OPTIONS", value=3)
self.change_mode(mode="AUTO")
self.wait_ready_to_arm()
self.arm_vehicle()
self.wait_current_waypoint(wpnum=3, timeout=500)
self.send_pause_command()
self.wait_groundspeed(speed_min=0, speed_max=1, minimum_duration=5)
self.send_resume_command()
self.wait_current_waypoint(wpnum=4, timeout=500)
self.send_pause_command()
self.wait_groundspeed(speed_min=0, speed_max=1, minimum_duration=5)
self.send_resume_command()
# sending a pause, or resume, to the aircraft twice, doesn't result in reporting a failure
self.wait_current_waypoint(wpnum=5, timeout=500)
self.send_pause_command()
self.send_pause_command()
self.wait_groundspeed(speed_min=0, speed_max=1, minimum_duration=5)
self.send_resume_command()
self.send_resume_command()
self.wait_disarmed(timeout=500)
def PAUSE_CONTINUE_GUIDED(self):
'''Test MAV_CMD_DO_PAUSE_CONTINUE in GUIDED mode'''
self.start_subtest("Started test for Pause/Continue in GUIDED mode with LOCATION!")
self.change_mode(mode="GUIDED")
self.wait_ready_to_arm()
self.arm_vehicle()
self.set_parameter(name="GUID_TIMEOUT", value=120)
self.user_takeoff(alt_min=30)
# send vehicle to global position target
location = self.home_relative_loc_ne(n=300, e=0)
target_typemask = MAV_POS_TARGET_TYPE_MASK.POS_ONLY
self.mav.mav.set_position_target_global_int_send(
0, # timestamp
1, # target system_id
1, # target component id
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT_INT, # relative altitude frame
target_typemask | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE, # target typemask as pos only
int(location.lat * 1e7), # lat
int(location.lng * 1e7), # lon
30, # alt
0, # vx
0, # vy
0, # vz
0, # afx
0, # afy
0, # afz
0, # yaw
0) # yawrate
self.wait_distance_to_home(distance_min=100, distance_max=150, timeout=120)
self.send_pause_command()
self.wait_groundspeed(speed_min=0, speed_max=1, minimum_duration=5)
self.send_resume_command()
self.wait_location(loc=location, timeout=120)
self.end_subtest("Ended test for Pause/Continue in GUIDED mode with LOCATION!")
self.start_subtest("Started test for Pause/Continue in GUIDED mode with DESTINATION!")
self.guided_achieve_heading(heading=270)
# move vehicle on x direction
location = self.offset_location_ne(location=self.mav.location(), metres_north=0, metres_east=-300)
self.mav.mav.set_position_target_global_int_send(
0, # system time in milliseconds
1, # target system
1, # target component
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT_INT, # coordinate frame MAV_FRAME_BODY_NED
MAV_POS_TARGET_TYPE_MASK.POS_ONLY, # type mask (pos only)
int(location.lat*1e7), # position x
int(location.lng*1e7), # position y
30, # position z
0, # velocity x
0, # velocity y
0, # velocity z
0, # accel x
0, # accel y
0, # accel z
0, # yaw
0) # yaw rate
self.wait_location(loc=location, accuracy=200, timeout=120)
self.send_pause_command()
self.wait_groundspeed(speed_min=0, speed_max=1, minimum_duration=5)
self.send_resume_command()
self.wait_location(loc=location, timeout=120)
self.end_subtest("Ended test for Pause/Continue in GUIDED mode with DESTINATION!")
self.start_subtest("Started test for Pause/Continue in GUIDED mode with VELOCITY!")
# give velocity command
vx, vy, vz_up = (5, 5, 0)
self.test_guided_local_velocity_target(vx=vx, vy=vy, vz_up=vz_up, timeout=10)
self.wait_for_local_velocity(vx=vx, vy=vy, vz_up=vz_up, timeout=10)
self.send_pause_command()
self.wait_for_local_velocity(vx=0, vy=0, vz_up=0, timeout=10)
self.send_resume_command()
self.wait_for_local_velocity(vx=vx, vy=vy, vz_up=vz_up, timeout=10)
self.test_guided_local_velocity_target(vx=0, vy=0, vz_up=0, timeout=10)
self.wait_for_local_velocity(vx=0, vy=0, vz_up=0, timeout=10)
self.end_subtest("Ended test for Pause/Continue in GUIDED mode with VELOCITY!")
self.start_subtest("Started test for Pause/Continue in GUIDED mode with ACCELERATION!")
# give acceleration command
ax, ay, az_up = (1, 1, 0)
target_typemask = (MAV_POS_TARGET_TYPE_MASK.POS_IGNORE | MAV_POS_TARGET_TYPE_MASK.VEL_IGNORE |
MAV_POS_TARGET_TYPE_MASK.YAW_IGNORE | MAV_POS_TARGET_TYPE_MASK.YAW_RATE_IGNORE)
self.mav.mav.set_position_target_local_ned_send(
0, # timestamp
1, # target system_id
1, # target component id
mavutil.mavlink.MAV_FRAME_LOCAL_NED,
target_typemask | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE,
0, # x
0, # y
0, # z
0, # vx
0, # vy
0, # vz
ax, # afx
ay, # afy
-az_up, # afz
0, # yaw
0, # yawrate
)
self.wait_for_local_velocity(vx=5, vy=5, vz_up=0, timeout=10)
self.send_pause_command()
self.wait_for_local_velocity(vx=0, vy=0, vz_up=0, timeout=10)
self.send_resume_command()
self.wait_for_local_velocity(vx=5, vy=5, vz_up=0, timeout=10)
self.test_guided_local_velocity_target(vx=0, vy=0, vz_up=0, timeout=10)
self.wait_for_local_velocity(vx=0, vy=0, vz_up=0, timeout=10)
self.end_subtest("Ended test for Pause/Continue in GUIDED mode with ACCELERATION!")
# start pause/continue subtest with posvelaccel
self.start_subtest("Started test for Pause/Continue in GUIDED mode with POSITION and VELOCITY and ACCELERATION!")
self.guided_achieve_heading(heading=0)
# give posvelaccel command
x, y, z_up = (-300, 0, 30)
target_typemask = (MAV_POS_TARGET_TYPE_MASK.YAW_IGNORE | MAV_POS_TARGET_TYPE_MASK.YAW_RATE_IGNORE)
self.mav.mav.set_position_target_local_ned_send(
0, # timestamp
1, # target system_id
1, # target component id
mavutil.mavlink.MAV_FRAME_LOCAL_NED,
target_typemask | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE,
x, # x
y, # y
-z_up, # z
0, # vx
0, # vy
0, # vz
0, # afx
0, # afy
0, # afz
0, # yaw
0, # yawrate
)
self.wait_distance_to_local_position(local_position=(x, y, -z_up), distance_min=400, distance_max=450, timeout=120)
self.send_pause_command()
self.wait_for_local_velocity(0, 0, 0, timeout=10)
self.send_resume_command()
self.wait_distance_to_local_position(local_position=(x, y, -z_up), distance_min=0, distance_max=10, timeout=120)
self.end_subtest("Ended test for Pause/Continue in GUIDED mode with POSITION and VELOCITY and ACCELERATION!")
self.do_RTL(timeout=120)
def DO_CHANGE_SPEED(self):
'''Change speed during misison using waypoint items'''
self.load_mission("mission.txt", strict=False)
self.set_parameters({
"AUTO_OPTIONS": 3,
"ANGLE_MAX": 4500,
})
self.change_mode('AUTO')
self.wait_ready_to_arm()
self.arm_vehicle()
self.wait_current_waypoint(1)
self.wait_groundspeed(
3.5, 4.5,
minimum_duration=5,
timeout=60,
)
self.wait_current_waypoint(3)
self.wait_groundspeed(
14.5, 15.5,
minimum_duration=10,
timeout=60,
)
self.wait_current_waypoint(5)
self.wait_groundspeed(
9.5, 11.5,
minimum_duration=10,
timeout=60,
)
self.set_parameter("ANGLE_MAX", 6000)
self.wait_current_waypoint(7)
self.wait_groundspeed(
15.5, 16.5,
minimum_duration=10,
timeout=60,
)
self.wait_disarmed()
def AUTO_LAND_TO_BRAKE(self):
'''ensure terrain altitude is taken into account when braking'''
self.set_parameters({
"PLND_ACC_P_NSE": 2.500000,
"PLND_ALT_MAX": 8.000000,
"PLND_ALT_MIN": 0.750000,
"PLND_BUS": -1,
"PLND_CAM_POS_X": 0.000000,
"PLND_CAM_POS_Y": 0.000000,
"PLND_CAM_POS_Z": 0.000000,
"PLND_ENABLED": 1,
"PLND_EST_TYPE": 1,
"PLND_LAG": 0.020000,
"PLND_LAND_OFS_X": 0.000000,
"PLND_LAND_OFS_Y": 0.000000,
"PLND_OPTIONS": 0,
"PLND_RET_BEHAVE": 0,
"PLND_RET_MAX": 4,
"PLND_STRICT": 1,
"PLND_TIMEOUT": 4.000000,
"PLND_TYPE": 4,
"PLND_XY_DIST_MAX": 2.500000,
"PLND_YAW_ALIGN": 0.000000,
"SIM_PLD_ALT_LMT": 15.000000,
"SIM_PLD_DIST_LMT": 10.000000,
"SIM_PLD_ENABLE": 1,
"SIM_PLD_HEIGHT": 0,
"SIM_PLD_LAT": -20.558929,
"SIM_PLD_LON": -47.415035,
"SIM_PLD_RATE": 100,
"SIM_PLD_TYPE": 1,
"SIM_PLD_YAW": 87,
"SIM_SONAR_SCALE": 12,
})
self.set_analog_rangefinder_parameters()
self.load_mission('mission.txt')
self.customise_SITL_commandline([
"--home", self.sitl_home_string_from_mission("mission.txt"),
])
self.set_parameter('AUTO_OPTIONS', 3)
self.change_mode('AUTO')
self.wait_ready_to_arm()
self.arm_vehicle()
self.wait_current_waypoint(7)
self.wait_altitude(10, 15, relative=True, timeout=60)
self.change_mode('BRAKE')
# monitor altitude here
self.wait_altitude(10, 15, relative=True, minimum_duration=20)
self.change_mode('AUTO')
self.wait_disarmed()
def MAVLandedStateTakeoff(self):
'''check EXTENDED_SYS_STATE message'''
ex = None
try:
self.set_message_rate_hz(id=mavutil.mavlink.MAVLINK_MSG_ID_EXTENDED_SYS_STATE, rate_hz=1)
self.wait_extended_sys_state(vtol_state=mavutil.mavlink.MAV_VTOL_STATE_MC,
landed_state=mavutil.mavlink.MAV_LANDED_STATE_ON_GROUND, timeout=10)
self.load_mission(filename="copter_mission.txt")
self.set_parameter(name="AUTO_OPTIONS", value=3)
self.change_mode(mode="AUTO")
self.wait_ready_to_arm()
self.arm_vehicle()
self.wait_extended_sys_state(vtol_state=mavutil.mavlink.MAV_VTOL_STATE_MC,
landed_state=mavutil.mavlink.MAV_LANDED_STATE_TAKEOFF, timeout=30)
self.wait_extended_sys_state(vtol_state=mavutil.mavlink.MAV_VTOL_STATE_MC,
landed_state=mavutil.mavlink.MAV_LANDED_STATE_IN_AIR, timeout=60)
self.land_and_disarm()
except Exception as e:
self.print_exception_caught(e)
ex = e
self.set_message_rate_hz(mavutil.mavlink.MAVLINK_MSG_ID_EXTENDED_SYS_STATE, -1)
if ex is not None:
raise ex
def ATTITUDE_FAST(self):
'''ensure that when ATTITDE_FAST is set we get many messages'''
self.context_push()
ex = None
try:
old = self.get_parameter('LOG_BITMASK')
new = int(old) | (1 << 0) # see defines.h
self.set_parameters({
"LOG_BITMASK": new,
"LOG_DISARMED": 1,
"LOG_DARM_RATEMAX": 0,
"LOG_FILE_RATEMAX": 0,
})
path = self.generate_rate_sample_log()
except Exception as e:
self.print_exception_caught(e)
ex = e
self.context_pop()
self.reboot_sitl()
if ex is not None:
raise ex
self.delay_sim_time(10) # NFI why this is required
self.check_dflog_message_rates(path, {
'ANG': 400,
})
def BaseLoggingRates(self):
'''ensure messages come out at specific rates'''
self.set_parameters({
"LOG_DARM_RATEMAX": 0,
"LOG_FILE_RATEMAX": 0,
})
path = self.generate_rate_sample_log()
self.delay_sim_time(10) # NFI why this is required
self.check_dflog_message_rates(path, {
"ATT": 10,
"IMU": 25,
})
def FETtecESC_flight(self):
'''fly with servo outputs from FETtec ESC'''
self.start_subtest("FETtec ESC flight")
num_wp = self.load_mission("copter_mission.txt", strict=False)
self.fly_loaded_mission(num_wp)
def FETtecESC_esc_power_checks(self):
'''Make sure state machine copes with ESCs rebooting'''
self.start_subtest("FETtec ESC reboot")
self.wait_ready_to_arm()
self.context_collect('STATUSTEXT')
self.progress("Turning off an ESC off ")
mask = int(self.get_parameter("SIM_FTOWESC_POW"))
for mot_id_to_kill in 1, 2:
self.progress("Turning ESC=%u off" % mot_id_to_kill)
self.set_parameter("SIM_FTOWESC_POW", mask & ~(1 << mot_id_to_kill))
self.delay_sim_time(1)
self.assert_prearm_failure("are not running")
self.progress("Turning it back on")
self.set_parameter("SIM_FTOWESC_POW", mask)
self.wait_ready_to_arm()
self.progress("Turning ESC=%u off (again)" % mot_id_to_kill)
self.set_parameter("SIM_FTOWESC_POW", mask & ~(1 << mot_id_to_kill))
self.delay_sim_time(1)
self.assert_prearm_failure("are not running")
self.progress("Turning it back on")
self.set_parameter("SIM_FTOWESC_POW", mask)
self.wait_ready_to_arm()
self.progress("Turning all ESCs off")
self.set_parameter("SIM_FTOWESC_POW", 0)
self.delay_sim_time(1)
self.assert_prearm_failure("are not running")
self.progress("Turning them back on")
self.set_parameter("SIM_FTOWESC_POW", mask)
self.wait_ready_to_arm()
def fettec_assert_bad_mask(self, mask):
'''assert the mask is bad for fettec driver'''
self.start_subsubtest("Checking mask (%s) is bad" % (mask,))
self.context_push()
self.set_parameter("SERVO_FTW_MASK", mask)
self.reboot_sitl()
self.delay_sim_time(12) # allow accels/gyros to be happy
tstart = self.get_sim_time()
while True:
if self.get_sim_time_cached() - tstart > 20:
raise NotAchievedException("Expected mask to be only problem within 20 seconds")
try:
self.assert_prearm_failure("Invalid motor mask")
break
except NotAchievedException:
self.delay_sim_time(1)
self.context_pop()
self.reboot_sitl()
def fettec_assert_good_mask(self, mask):
'''assert the mask is bad for fettec driver'''
self.start_subsubtest("Checking mask (%s) is good" % (mask,))
self.context_push()
self.set_parameter("SERVO_FTW_MASK", mask)
self.reboot_sitl()
self.wait_ready_to_arm()
self.context_pop()
self.reboot_sitl()
def FETtecESC_safety_switch(self):
mot = self.find_first_set_bit(int(self.get_parameter("SERVO_FTW_MASK"))) + 1
self.wait_esc_telem_rpm(mot, 0, 0)
self.wait_ready_to_arm()
self.context_push()
self.set_parameter("DISARM_DELAY", 0)
self.arm_vehicle()
# we have to wait for a while for the arming tone to go out
# before the motors will spin:
self.wait_esc_telem_rpm(
esc=mot,
rpm_min=17640,
rpm_max=17640,
minimum_duration=2,
timeout=5,
)
self.set_safetyswitch_on()
self.wait_esc_telem_rpm(mot, 0, 0)
self.set_safetyswitch_off()
self.wait_esc_telem_rpm(
esc=mot,
rpm_min=17640,
rpm_max=17640,
minimum_duration=2,
timeout=5,
)
self.context_pop()
self.wait_disarmed()
def FETtecESC_btw_mask_checks(self):
'''ensure prearm checks work as expected'''
for bad_mask in [0b1000000000000000, 0b10100000000000000]:
self.fettec_assert_bad_mask(bad_mask)
for good_mask in [0b00001, 0b00101, 0b110000000000]:
self.fettec_assert_good_mask(good_mask)
def FETtecESC(self):
'''Test FETtecESC'''
self.set_parameters({
"SERIAL5_PROTOCOL": 38,
"SERVO_FTW_MASK": 0b11101000,
"SIM_FTOWESC_ENA": 1,
"SERVO1_FUNCTION": 0,
"SERVO2_FUNCTION": 0,
"SERVO3_FUNCTION": 0,
"SERVO4_FUNCTION": 33,
"SERVO5_FUNCTION": 0,
"SERVO6_FUNCTION": 34,
"SERVO7_FUNCTION": 35,
"SERVO8_FUNCTION": 36,
"SIM_ESC_TELEM": 0,
})
self.customise_SITL_commandline(["--serial5=sim:fetteconewireesc"])
self.FETtecESC_safety_switch()
self.FETtecESC_esc_power_checks()
self.FETtecESC_btw_mask_checks()
self.FETtecESC_flight()
def PerfInfo(self):
'''Test Scheduler PerfInfo output'''
self.set_parameter('SCHED_OPTIONS', 1) # enable gathering
# sometimes we need to trigger collection....
content = self.fetch_file_via_ftp("@SYS/tasks.txt")
self.delay_sim_time(5)
content = self.fetch_file_via_ftp("@SYS/tasks.txt")
self.progress("Got content (%s)" % str(content))
lines = content.split("\n")
if not lines[0].startswith("TasksV2"):
raise NotAchievedException("Expected TasksV2 as first line first not (%s)" % lines[0])
# last line is empty, so -2 here
if not lines[-2].startswith("AP_Vehicle::update_arming"):
raise NotAchievedException("Expected EFI last not (%s)" % lines[-2])
def RTL_TO_RALLY(self, target_system=1, target_component=1):
'''Check RTL to rally point'''
self.wait_ready_to_arm()
rally_loc = self.home_relative_loc_ne(50, -25)
rally_alt = 37
items = [
self.mav.mav.mission_item_int_encode(
target_system,
target_component,
0, # seq
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_RALLY_POINT,
0, # current
0, # autocontinue
0, # p1
0, # p2
0, # p3
0, # p4
int(rally_loc.lat * 1e7), # latitude
int(rally_loc.lng * 1e7), # longitude
rally_alt, # altitude
mavutil.mavlink.MAV_MISSION_TYPE_RALLY),
]
self.upload_using_mission_protocol(
mavutil.mavlink.MAV_MISSION_TYPE_RALLY,
items
)
self.set_parameters({
'RALLY_INCL_HOME': 0,
})
self.takeoff(10)
self.change_mode('RTL')
self.wait_location(rally_loc)
self.assert_altitude(rally_alt, relative=True)
self.progress("Ensuring we're descending")
self.wait_altitude(20, 25, relative=True)
self.change_mode('LOITER')
self.progress("Flying home")
self.clear_mission(mavutil.mavlink.MAV_MISSION_TYPE_RALLY)
self.change_mode('RTL')
self.wait_disarmed()
self.assert_at_home()
def NoRCOnBootPreArmFailure(self):
'''Ensure we can't arm with no RC on boot if THR_FS_VALUE set'''
self.context_push()
for rc_failure_mode in 1, 2:
self.set_parameters({
"SIM_RC_FAIL": rc_failure_mode,
})
self.reboot_sitl()
if rc_failure_mode == 1:
self.assert_prearm_failure("RC not found",
other_prearm_failures_fatal=False)
elif rc_failure_mode == 2:
self.assert_prearm_failure("Throttle below failsafe",
other_prearm_failures_fatal=False)
self.context_pop()
self.reboot_sitl()
def IMUConsistency(self):
'''test IMUs must be consistent with one another'''
self.wait_ready_to_arm()
self.start_subsubtest("prearm checks for accel inconsistency")
self.context_push()
self.set_parameters({
"SIM_ACC1_BIAS_X": 5,
})
self.assert_prearm_failure("Accels inconsistent")
self.context_pop()
tstart = self.get_sim_time()
self.wait_ready_to_arm()
if self.get_sim_time() - tstart < 8:
raise NotAchievedException("Should take 10 seconds to become armableafter IMU upset")
self.start_subsubtest("prearm checks for gyro inconsistency")
self.context_push()
self.set_parameters({
"SIM_GYR1_BIAS_X": math.radians(10),
})
self.assert_prearm_failure("Gyros inconsistent")
self.context_pop()
tstart = self.get_sim_time()
self.wait_ready_to_arm()
if self.get_sim_time() - tstart < 8:
raise NotAchievedException("Should take 10 seconds to become armableafter IMU upset")
def Sprayer(self):
"""Test sprayer functionality."""
self.context_push()
rc_ch = 9
pump_ch = 5
spinner_ch = 6
pump_ch_min = 1050
pump_ch_trim = 1520
pump_ch_max = 1950
spinner_ch_min = 975
spinner_ch_trim = 1510
spinner_ch_max = 1975
self.set_parameters({
"SPRAY_ENABLE": 1,
"SERVO%u_FUNCTION" % pump_ch: 22,
"SERVO%u_MIN" % pump_ch: pump_ch_min,
"SERVO%u_TRIM" % pump_ch: pump_ch_trim,
"SERVO%u_MAX" % pump_ch: pump_ch_max,
"SERVO%u_FUNCTION" % spinner_ch: 23,
"SERVO%u_MIN" % spinner_ch: spinner_ch_min,
"SERVO%u_TRIM" % spinner_ch: spinner_ch_trim,
"SERVO%u_MAX" % spinner_ch: spinner_ch_max,
"SIM_SPR_ENABLE": 1,
"SIM_SPR_PUMP": pump_ch,
"SIM_SPR_SPIN": spinner_ch,
"RC%u_OPTION" % rc_ch: 15,
"LOG_DISARMED": 1,
})
self.reboot_sitl()
self.wait_ready_to_arm()
self.arm_vehicle()
self.progress("test bootup state - it's zero-output!")
self.wait_servo_channel_value(spinner_ch, 0)
self.wait_servo_channel_value(pump_ch, 0)
self.progress("Enable sprayer")
self.set_rc(rc_ch, 2000)
self.progress("Testing zero-speed state")
self.wait_servo_channel_value(spinner_ch, spinner_ch_min)
self.wait_servo_channel_value(pump_ch, pump_ch_min)
self.progress("Testing turning it off")
self.set_rc(rc_ch, 1000)
self.wait_servo_channel_value(spinner_ch, spinner_ch_min)
self.wait_servo_channel_value(pump_ch, pump_ch_min)
self.progress("Testing turning it back on")
self.set_rc(rc_ch, 2000)
self.wait_servo_channel_value(spinner_ch, spinner_ch_min)
self.wait_servo_channel_value(pump_ch, pump_ch_min)
self.takeoff(30, mode='LOITER')
self.progress("Testing speed-ramping")
self.set_rc(1, 1700) # start driving forward
# this is somewhat empirical...
self.wait_servo_channel_value(
pump_ch,
1458,
timeout=60,
comparator=lambda x, y : abs(x-y) < 5
)
self.progress("Turning it off again")
self.set_rc(rc_ch, 1000)
self.wait_servo_channel_value(spinner_ch, spinner_ch_min)
self.wait_servo_channel_value(pump_ch, pump_ch_min)
self.start_subtest("Checking mavlink commands")
self.progress("Starting Sprayer")
self.run_cmd_int(mavutil.mavlink.MAV_CMD_DO_SPRAYER, p1=1)
self.progress("Testing speed-ramping")
self.wait_servo_channel_value(
pump_ch,
1458,
timeout=60,
comparator=lambda x, y : abs(x-y) < 5
)
self.start_subtest("Stopping Sprayer")
self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SPRAYER, p1=0)
self.wait_servo_channel_value(pump_ch, pump_ch_min)
self.disarm_vehicle(force=True)
self.context_pop()
self.reboot_sitl()
self.progress("Sprayer OK")
def tests1a(self):
'''return list of all tests'''
ret = super(AutoTestCopter, self).tests() # about 5 mins and ~20 initial tests from autotest/vehicle_test_suite.py
ret.extend([
self.NavDelayTakeoffAbsTime,
self.NavDelayAbsTime,
self.NavDelay,
self.GuidedSubModeChange,
self.MAV_CMD_CONDITION_YAW,
self.LoiterToAlt,
self.PayloadPlaceMission,
self.PrecisionLoiterCompanion,
self.Landing,
self.PrecisionLanding,
self.SetModesViaModeSwitch,
self.SetModesViaAuxSwitch,
self.AuxSwitchOptions,
self.AuxFunctionsInMission,
self.AutoTune,
self.AutoTuneYawD,
self.NoRCOnBootPreArmFailure,
])
return ret
def tests1b(self):
'''return list of all tests'''
ret = ([
self.ThrowMode,
self.BrakeMode,
self.RecordThenPlayMission,
self.ThrottleFailsafe,
self.ThrottleFailsafePassthrough,
self.GCSFailsafe,
self.CustomController,
])
return ret
def tests1c(self):
'''return list of all tests'''
ret = ([
self.BatteryFailsafe,
self.BatteryMissing,
self.VibrationFailsafe,
self.EK3AccelBias,
self.StabilityPatch,
self.OBSTACLE_DISTANCE_3D,
self.AC_Avoidance_Proximity,
self.AC_Avoidance_Proximity_AVOID_ALT_MIN,
self.AC_Avoidance_Fence,
self.AC_Avoidance_Beacon,
self.AvoidanceAltFence,
self.BaroWindCorrection,
self.SetpointGlobalPos,
self.ThrowDoubleDrop,
self.SetpointGlobalVel,
self.SetpointBadVel,
self.SplineTerrain,
self.TakeoffCheck,
self.GainBackoffTakeoff,
])
return ret
def tests1d(self):
'''return list of all tests'''
ret = ([
self.HorizontalFence,
self.HorizontalAvoidFence,
self.MaxAltFence,
self.MaxAltFenceAvoid,
self.MinAltFence,
self.MinAltFenceAvoid,
self.FenceFloorEnabledLanding,
self.FenceFloorAutoDisableLanding,
self.FenceFloorAutoEnableOnArming,
self.AutoTuneSwitch,
self.GPSGlitchLoiter,
self.GPSGlitchLoiter2,
self.GPSGlitchAuto,
self.ModeAltHold,
self.ModeLoiter,
self.SimpleMode,
self.SuperSimpleCircle,
self.ModeCircle,
self.MagFail,
self.OpticalFlow,
self.OpticalFlowLocation,
self.OpticalFlowLimits,
self.OpticalFlowCalibration,
self.MotorFail,
self.ModeFlip,
self.CopterMission,
self.TakeoffAlt,
self.SplineLastWaypoint,
self.Gripper,
self.TestLocalHomePosition,
self.TestGripperMission,
self.VisionPosition,
self.ATTITUDE_FAST,
self.BaseLoggingRates,
self.BodyFrameOdom,
self.GPSViconSwitching,
])
return ret
def tests1e(self):
'''return list of all tests'''
ret = ([
self.BeaconPosition,
self.RTLSpeed,
self.Mount,
self.MountYawVehicleForMountROI,
self.MAV_CMD_DO_MOUNT_CONTROL,
self.MAV_CMD_DO_GIMBAL_MANAGER_CONFIGURE,
self.AutoYawDO_MOUNT_CONTROL,
self.Button,
self.ShipTakeoff,
self.RangeFinder,
self.BaroDrivers,
self.SurfaceTracking,
self.Parachute,
self.ParameterChecks,
self.ManualThrottleModeChange,
self.MANUAL_CONTROL,
self.ModeZigZag,
self.PosHoldTakeOff,
self.ModeFollow,
self.RangeFinderDrivers,
self.RangeFinderDriversMaxAlt,
self.MaxBotixI2CXL,
self.MAVProximity,
self.ParameterValidation,
self.AltTypes,
self.PAUSE_CONTINUE,
self.PAUSE_CONTINUE_GUIDED,
self.RichenPower,
self.IE24,
self.MAVLandedStateTakeoff,
self.Weathervane,
self.MAV_CMD_AIRFRAME_CONFIGURATION,
self.MAV_CMD_NAV_LOITER_UNLIM,
self.MAV_CMD_NAV_RETURN_TO_LAUNCH,
self.MAV_CMD_NAV_VTOL_LAND,
self.clear_roi,
])
return ret
def tests2a(self):
'''return list of all tests'''
ret = ([
# something about SITLCompassCalibration appears to fail
# this one, so we put it first:
self.FixedYawCalibration,
# we run this single 8min-and-40s test on its own, apart
# from requiring FixedYawCalibration right before it
# because without it, it fails to calibrate this
# autotest appears to interfere with
# FixedYawCalibration, no idea why.
self.SITLCompassCalibration,
])
return ret
def ScriptMountPOI(self):
'''test the MountPOI example script'''
self.context_push()
self.install_terrain_handlers_context()
self.set_parameters({
"SCR_ENABLE": 1,
"RC12_OPTION": 300,
})
self.setup_servo_mount()
self.reboot_sitl()
self.set_rc(6, 1300)
self.install_applet_script_context('mount-poi.lua')
self.reboot_sitl()
self.wait_ready_to_arm()
self.context_collect('STATUSTEXT')
self.set_rc(12, 2000)
self.wait_statustext('POI.*-35.*149', check_context=True, regex=True)
self.set_rc(12, 1000)
self.context_pop()
self.reboot_sitl()
def ScriptCopterPosOffsets(self):
'''test the copter-posoffset.lua example script'''
self.context_push()
# enable scripting and arming/takingoff in Auto mode
self.set_parameters({
"SCR_ENABLE": 1,
"AUTO_OPTIONS": 3,
"RC12_OPTION": 300
})
self.reboot_sitl()
# install copter-posoffset script
self.install_example_script_context('copter-posoffset.lua')
self.reboot_sitl()
# create simple mission with a single takeoff command
self.upload_simple_relhome_mission([
(mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 20)
])
# switch to loiter to wait for position estimate (aka GPS lock)
self.change_mode('LOITER')
self.wait_ready_to_arm()
# arm and takeoff in Auto mode
self.change_mode('AUTO')
self.arm_vehicle()
# wait for vehicle to climb to at least 10m
self.wait_altitude(8, 12, relative=True)
# add position offset to East and confirm vehicle moves
self.set_parameter("PSC_OFS_POS_E", 20)
self.set_rc(12, 2000)
self.wait_distance(18)
# remove position offset and wait for vehicle to return home
self.set_parameter("PSC_OFS_POS_E", 0)
self.wait_distance_to_home(distance_min=0, distance_max=4, timeout=20)
# add velocity offset and confirm vehicle moves
self.set_parameter("PSC_OFS_VEL_N", 5)
self.wait_groundspeed(4.8, 5.2, minimum_duration=5, timeout=20)
# remove velocity offset and switch to RTL
self.set_parameter("PSC_OFS_VEL_N", 0)
self.set_rc(12, 1000)
self.do_RTL()
self.context_pop()
self.reboot_sitl()
def AHRSTrimLand(self):
'''test land detector with significant AHRS trim'''
self.context_push()
self.set_parameters({
"SIM_ACC_TRIM_X": 0.12,
"AHRS_TRIM_X": 0.12,
})
self.reboot_sitl()
self.wait_ready_to_arm()
self.takeoff(alt_min=20, mode='LOITER')
self.do_RTL()
self.context_pop()
self.reboot_sitl()
def GainBackoffTakeoff(self):
'''test gain backoff on takeoff'''
self.context_push()
self.progress("Test gains are fully backed off")
self.set_parameters({
"ATC_LAND_R_MULT": 0.0,
"ATC_LAND_P_MULT": 0.0,
"ATC_LAND_Y_MULT": 0.0,
"GCS_PID_MASK" : 7,
"LOG_BITMASK": 180222,
})
self.reboot_sitl()
self.wait_ready_to_arm()
self.change_mode('ALT_HOLD')
class ValidatePDZero(vehicle_test_suite.TestSuite.MessageHook):
'''asserts correct values in PID_TUNING'''
def __init__(self, suite, axis):
super(ValidatePDZero, self).__init__(suite)
self.pid_tuning_count = 0
self.p_sum = 0
self.d_sum = 0
self.i_sum = 0
self.axis = axis
def hook_removed(self):
if self.pid_tuning_count == 0:
raise NotAchievedException("Did not get PID_TUNING")
if self.i_sum == 0:
raise ValueError("I sum is zero")
print(f"ValidatePDZero: PID_TUNING count: {self.pid_tuning_count}")
def process(self, mav, m):
if m.get_type() != 'PID_TUNING' or m.axis != self.axis:
return
self.pid_tuning_count += 1
self.p_sum += m.P
self.d_sum += m.D
self.i_sum += m.I
if self.p_sum > 0:
raise ValueError("P sum is not zero")
if self.d_sum > 0:
raise ValueError("D sum is not zero")
self.progress("Check that PD values are zero")
self.install_message_hook_context(ValidatePDZero(self, mavutil.mavlink.PID_TUNING_ROLL))
self.install_message_hook_context(ValidatePDZero(self, mavutil.mavlink.PID_TUNING_PITCH))
self.install_message_hook_context(ValidatePDZero(self, mavutil.mavlink.PID_TUNING_YAW))
# until the context pop happens, all received PID_TUNINGS will be verified as good
self.arm_vehicle()
self.set_rc(3, 1500)
self.delay_sim_time(2)
self.set_rc(2, 1250)
self.delay_sim_time(5)
self.assert_receive_message('PID_TUNING', timeout=5)
self.set_rc_default()
self.zero_throttle()
self.disarm_vehicle()
self.context_pop()
self.context_push()
self.progress("Test gains are not backed off")
self.set_parameters({
"ATC_LAND_R_MULT": 1.0,
"ATC_LAND_P_MULT": 1.0,
"ATC_LAND_Y_MULT": 1.0,
"GCS_PID_MASK" : 7,
"LOG_BITMASK": 180222,
})
self.reboot_sitl()
self.wait_ready_to_arm()
self.change_mode('ALT_HOLD')
class ValidatePDNonZero(vehicle_test_suite.TestSuite.MessageHook):
'''asserts correct values in PID_TUNING'''
def __init__(self, suite, axis):
super(ValidatePDNonZero, self).__init__(suite)
self.pid_tuning_count = 0
self.p_sum = 0
self.d_sum = 0
self.i_sum = 0
self.axis = axis
def hook_removed(self):
if self.pid_tuning_count == 0:
raise NotAchievedException("Did not get PID_TUNING")
if self.p_sum == 0:
raise ValueError("P sum is zero")
if self.i_sum == 0:
raise ValueError("I sum is zero")
print(f"ValidatePDNonZero: PID_TUNING count: {self.pid_tuning_count}")
def process(self, mav, m):
if m.get_type() != 'PID_TUNING' or m.axis != self.axis:
return
self.pid_tuning_count += 1
self.p_sum += m.P
self.d_sum += m.D
self.i_sum += m.I
self.progress("Check that PD values are non-zero")
self.install_message_hook_context(ValidatePDNonZero(self, mavutil.mavlink.PID_TUNING_ROLL))
self.install_message_hook_context(ValidatePDNonZero(self, mavutil.mavlink.PID_TUNING_PITCH))
self.install_message_hook_context(ValidatePDNonZero(self, mavutil.mavlink.PID_TUNING_YAW))
# until the context pop happens, all received PID_TUNINGS will be verified as good
self.arm_vehicle()
self.set_rc(3, 1500)
self.delay_sim_time(2)
self.set_rc(2, 1250)
self.delay_sim_time(5)
self.assert_receive_message('PID_TUNING', timeout=5)
self.set_rc_default()
self.zero_throttle()
self.disarm_vehicle()
self.context_pop()
self.reboot_sitl()
def turn_safety_x(self, value):
self.mav.mav.set_mode_send(
self.mav.target_system,
mavutil.mavlink.MAV_MODE_FLAG_DECODE_POSITION_SAFETY,
value)
def turn_safety_off(self):
self.turn_safety_x(0)
def turn_safety_on(self):
self.turn_safety_x(1)
def SafetySwitch(self):
'''test safety switch behaviour'''
self.wait_ready_to_arm()
self.turn_safety_on()
self.assert_prearm_failure("safety switch")
self.turn_safety_off()
self.wait_ready_to_arm()
self.takeoff(2, mode='LOITER')
self.turn_safety_on()
self.wait_servo_channel_value(1, 0)
self.turn_safety_off()
self.change_mode('LAND')
self.wait_disarmed()
# test turning safty on/off using explicit MAVLink command:
self.run_cmd_int(mavutil.mavlink.MAV_CMD_DO_SET_SAFETY_SWITCH_STATE, mavutil.mavlink.SAFETY_SWITCH_STATE_SAFE)
self.assert_prearm_failure("safety switch")
self.run_cmd_int(mavutil.mavlink.MAV_CMD_DO_SET_SAFETY_SWITCH_STATE, mavutil.mavlink.SAFETY_SWITCH_STATE_DANGEROUS)
self.wait_ready_to_arm()
def ArmSwitchAfterReboot(self):
'''test that the arming switch does not trigger after a reboot'''
self.wait_ready_to_arm()
self.set_parameters({
"RC8_OPTION": 153,
})
self.set_rc(8, 2000)
self.wait_armed()
self.disarm_vehicle()
self.context_collect('STATUSTEXT')
self.reboot_sitl()
tstart = self.get_sim_time()
while True:
if self.get_sim_time_cached() - tstart > 60:
break
if self.armed():
raise NotAchievedException("Armed after reboot with switch high")
armmsg = self.statustext_in_collections('Arm: ')
if armmsg is not None:
raise NotAchievedException("statustext(%s) means we tried to arm" % armmsg.text)
self.progress("Did not arm via arming switfch after a reboot")
def GuidedYawRate(self):
'''ensuer guided yaw rate is not affected by rate of sewt-attitude messages'''
self.takeoff(30, mode='GUIDED')
rates = {}
for rate in 1, 10:
# command huge yaw rate for a while
tstart = self.get_sim_time()
interval = 1/rate
yawspeed_rads_sum = 0
yawspeed_rads_count = 0
last_sent = 0
while True:
self.drain_mav()
tnow = self.get_sim_time_cached()
if tnow - last_sent > interval:
self.do_yaw_rate(60) # this is... unlikely
last_sent = tnow
if tnow - tstart < 5: # let it spin up to speed first
continue
yawspeed_rads_sum += self.mav.messages['ATTITUDE'].yawspeed
yawspeed_rads_count += 1
if tnow - tstart > 15: # 10 seconds of measurements
break
yawspeed_degs = math.degrees(yawspeed_rads_sum / yawspeed_rads_count)
rates[rate] = yawspeed_degs
self.progress("Input rate %u hz: average yaw rate %f deg/s" % (rate, yawspeed_degs))
if rates[10] < rates[1] * 0.95:
raise NotAchievedException("Guided yaw rate slower for higher rate updates")
self.do_RTL()
def test_rplidar(self, sim_device_name, expected_distances):
'''plonks a Copter with a RPLidarA2 in the middle of a simulated field
of posts and checks that the measurements are what we expect.'''
self.set_parameters({
"SERIAL5_PROTOCOL": 11,
"PRX1_TYPE": 5,
})
self.customise_SITL_commandline([
"--serial5=sim:%s:" % sim_device_name,
"--home", "51.8752066,14.6487840,0,0", # SITL has "posts" here
])
self.wait_ready_to_arm()
wanting_distances = copy.copy(expected_distances)
tstart = self.get_sim_time()
timeout = 60
while True:
now = self.get_sim_time_cached()
if now - tstart > timeout:
raise NotAchievedException("Did not get all distances")
m = self.mav.recv_match(type="DISTANCE_SENSOR",
blocking=True,
timeout=1)
if m is None:
continue
self.progress("Got (%s)" % str(m))
if m.orientation not in wanting_distances:
continue
if abs(m.current_distance - wanting_distances[m.orientation]) > 5:
self.progress("Wrong distance orient=%u want=%u got=%u" %
(m.orientation,
wanting_distances[m.orientation],
m.current_distance))
continue
self.progress("Correct distance for orient %u (want=%u got=%u)" %
(m.orientation,
wanting_distances[m.orientation],
m.current_distance))
del wanting_distances[m.orientation]
if len(wanting_distances.items()) == 0:
break
def RPLidarA2(self):
'''test Raspberry Pi Lidar A2'''
expected_distances = {
mavutil.mavlink.MAV_SENSOR_ROTATION_NONE: 276,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_45: 256,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_90: 1130,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_135: 1286,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_180: 626,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_225: 971,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_270: 762,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_315: 792,
}
self.test_rplidar("rplidara2", expected_distances)
def RPLidarA1(self):
'''test Raspberry Pi Lidar A1'''
return # we don't send distances when too long?
expected_distances = {
mavutil.mavlink.MAV_SENSOR_ROTATION_NONE: 276,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_45: 256,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_90: 800,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_135: 800,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_180: 626,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_225: 800,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_270: 762,
mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_315: 792,
}
self.test_rplidar("rplidara1", expected_distances)
def BrakeZ(self):
'''check jerk limit correct in Brake mode'''
self.set_parameter('PSC_JERK_Z', 3)
self.takeoff(50, mode='GUIDED')
vx, vy, vz_up = (0, 0, -1)
self.test_guided_local_velocity_target(vx=vx, vy=vy, vz_up=vz_up, timeout=10)
self.wait_for_local_velocity(vx=vx, vy=vy, vz_up=vz_up, timeout=10)
self.change_mode('BRAKE')
self.wait_for_local_velocity(vx=0, vy=0, vz_up=0, timeout=10)
self.land_and_disarm()
def MISSION_START(self):
'''test mavlink command MAV_CMD_MISSION_START'''
self.upload_simple_relhome_mission([
(mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 200),
(mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0),
])
for command in self.run_cmd, self.run_cmd_int:
self.change_mode('LOITER')
self.set_current_waypoint(1)
self.wait_ready_to_arm()
self.arm_vehicle()
self.change_mode('AUTO')
command(mavutil.mavlink.MAV_CMD_MISSION_START)
self.wait_altitude(20, 1000, relative=True)
self.change_mode('RTL')
self.wait_disarmed()
def DO_CHANGE_SPEED_in_guided(self):
'''test Copter DO_CHANGE_SPEED handling in guided mode'''
self.takeoff(20, mode='GUIDED')
new_loc = self.mav.location()
new_loc_offset_n = 2000
new_loc_offset_e = 0
self.location_offset_ne(new_loc, new_loc_offset_n, new_loc_offset_e)
second_loc_offset_n = -1000
second_loc_offset_e = 0
second_loc = self.mav.location()
self.location_offset_ne(second_loc, second_loc_offset_n, second_loc_offset_e)
# for run_cmd we fly away from home
for (tloc, command) in (new_loc, self.run_cmd), (second_loc, self.run_cmd_int):
self.run_cmd_int(
mavutil.mavlink.MAV_CMD_DO_REPOSITION,
p1=-1, # "default"
p2=0, # flags; none supplied here
p3=0, # loiter radius for planes, zero ignored
p4=float("nan"), # nan means do whatever you want to do
p5=int(tloc.lat * 1e7),
p6=int(tloc.lng * 1e7),
p7=tloc.alt,
frame=mavutil.mavlink.MAV_FRAME_GLOBAL,
)
for speed in [2, 10, 4]:
command(
mavutil.mavlink.MAV_CMD_DO_CHANGE_SPEED,
p1=1, # groundspeed,
p2=speed,
p3=-1, # throttle, -1 is no-change
p4=0, # absolute value, not relative
)
self.wait_groundspeed(speed-0.2, speed+0.2, minimum_duration=10, timeout=20)
# we've made random changes to vehicle guided speeds above;
# reboot vehicle to reset those:
self.disarm_vehicle(force=True)
self.reboot_sitl()
def _MAV_CMD_DO_FLIGHTTERMINATION(self, command):
self.set_parameters({
"SYSID_MYGCS": self.mav.source_system,
"DISARM_DELAY": 0,
})
self.wait_ready_to_arm()
self.arm_vehicle()
self.context_collect('STATUSTEXT')
command(mavutil.mavlink.MAV_CMD_DO_FLIGHTTERMINATION, p1=1)
self.wait_disarmed()
self.reboot_sitl()
def MAV_CMD_DO_FLIGHTTERMINATION(self):
'''test MAV_CMD_DO_FLIGHTTERMINATION works on Copter'''
self._MAV_CMD_DO_FLIGHTTERMINATION(self.run_cmd)
self._MAV_CMD_DO_FLIGHTTERMINATION(self.run_cmd_int)
def MAV_CMD_NAV_LOITER_UNLIM(self):
'''ensure MAV_CMD_NAV_LOITER_UNLIM via mavlink works'''
for command in self.run_cmd, self.run_cmd_int:
self.change_mode('STABILIZE')
command(mavutil.mavlink.MAV_CMD_NAV_LOITER_UNLIM)
self.wait_mode('LOITER')
def MAV_CMD_NAV_RETURN_TO_LAUNCH(self):
'''ensure MAV_CMD_NAV_RETURN_TO_LAUNCH via mavlink works'''
for command in self.run_cmd, self.run_cmd_int:
self.change_mode('STABILIZE')
command(mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH)
self.wait_mode('RTL')
def MAV_CMD_NAV_VTOL_LAND(self):
'''ensure MAV_CMD_NAV_LAND via mavlink works'''
for command in self.run_cmd, self.run_cmd_int:
self.change_mode('STABILIZE')
command(mavutil.mavlink.MAV_CMD_NAV_VTOL_LAND)
self.wait_mode('LAND')
self.change_mode('STABILIZE')
command(mavutil.mavlink.MAV_CMD_NAV_LAND)
self.wait_mode('LAND')
def clear_roi(self):
'''ensure three commands that clear ROI are equivalent'''
self.upload_simple_relhome_mission([
(mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 20),
(mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 20),
(mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 200, 0, 20), # directly North, i.e. 0 degrees
(mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 400, 0, 20), # directly North, i.e. 0 degrees
])
self.set_parameter("AUTO_OPTIONS", 3)
self.change_mode('AUTO')
self.wait_ready_to_arm()
self.arm_vehicle()
home_loc = self.mav.location()
cmd_ids = [
mavutil.mavlink.MAV_CMD_DO_SET_ROI,
mavutil.mavlink.MAV_CMD_DO_SET_ROI_LOCATION,
mavutil.mavlink.MAV_CMD_DO_SET_ROI_NONE,
]
for command in self.run_cmd, self.run_cmd_int:
for cmd_id in cmd_ids:
self.wait_waypoint(2, 2)
# Set an ROI at the Home location, expect to point at Home
self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_ROI_LOCATION, p5=home_loc.lat, p6=home_loc.lng, p7=home_loc.alt)
self.wait_heading(180)
# Clear the ROI, expect to point at the next Waypoint
self.progress("Clear ROI using %s(%d)" % (command.__name__, cmd_id))
command(cmd_id)
self.wait_heading(0)
self.wait_waypoint(4, 4)
self.set_current_waypoint_using_mav_cmd_do_set_mission_current(seq=2)
self.land_and_disarm()
def start_flying_simple_rehome_mission(self, items):
'''uploads items, changes mode to auto, waits ready to arm and arms
vehicle. If the first item it a takeoff you can expect the
vehicle to fly after this method returns
'''
self.upload_simple_relhome_mission(items)
self.set_parameter("AUTO_OPTIONS", 3)
self.change_mode('AUTO')
self.wait_ready_to_arm()
self.arm_vehicle()
def _MAV_CMD_DO_LAND_START(self, run_cmd):
alt = 5
self.start_flying_simple_rehome_mission([
(mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, alt),
(mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 200, 0, alt),
(mavutil.mavlink.MAV_CMD_NAV_LAND, 0, 0, 0),
(mavutil.mavlink.MAV_CMD_DO_LAND_START, 0, 0, alt),
(mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 200, 2000, alt),
(mavutil.mavlink.MAV_CMD_NAV_LAND, 0, 0, 0),
])
self.wait_current_waypoint(2)
run_cmd(mavutil.mavlink.MAV_CMD_DO_LAND_START)
self.wait_current_waypoint(5)
# we pretend to be in RTL mode while doing this:
self.wait_mode("AUTO_RTL")
self.do_RTL()
def MAV_CMD_DO_LAND_START(self):
'''test handling of mavlink-received MAV_CMD_DO_LAND_START command'''
self._MAV_CMD_DO_LAND_START(self.run_cmd)
self.zero_throttle()
self._MAV_CMD_DO_LAND_START(self.run_cmd_int)
def _MAV_CMD_SET_EKF_SOURCE_SET(self, run_cmd):
run_cmd(
mavutil.mavlink.MAV_CMD_SET_EKF_SOURCE_SET,
17,
want_result=mavutil.mavlink.MAV_RESULT_DENIED,
)
self.change_mode('LOITER')
self.wait_ready_to_arm()
run_cmd(mavutil.mavlink.MAV_CMD_SET_EKF_SOURCE_SET, 2)
self.assert_prearm_failure('Need Position Estimate')
run_cmd(mavutil.mavlink.MAV_CMD_SET_EKF_SOURCE_SET, 1)
self.wait_ready_to_arm()
def MAV_CMD_SET_EKF_SOURCE_SET(self):
'''test setting of source sets using mavlink command'''
self._MAV_CMD_SET_EKF_SOURCE_SET(self.run_cmd)
self._MAV_CMD_SET_EKF_SOURCE_SET(self.run_cmd_int)
def MAV_CMD_NAV_TAKEOFF(self):
'''test issuing takeoff command via mavlink'''
self.change_mode('GUIDED')
self.wait_ready_to_arm()
self.arm_vehicle()
self.run_cmd(mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, p7=5)
self.wait_altitude(4.5, 5.5, minimum_duration=5, relative=True)
self.change_mode('LAND')
self.wait_disarmed()
self.start_subtest("Check NAV_TAKEOFF is above home location, not current location")
# reset home 20 metres above current location
current_alt_abs = self.get_altitude(relative=False)
loc = self.mav.location()
home_z_ofs = 20
self.run_cmd(
mavutil.mavlink.MAV_CMD_DO_SET_HOME,
p5=loc.lat,
p6=loc.lng,
p7=current_alt_abs + home_z_ofs,
)
self.change_mode('GUIDED')
self.arm_vehicle()
takeoff_alt = 5
self.run_cmd(mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, p7=takeoff_alt)
self.wait_altitude(
current_alt_abs + home_z_ofs + takeoff_alt - 0.5,
current_alt_abs + home_z_ofs + takeoff_alt + 0.5,
minimum_duration=5,
relative=False,
)
self.change_mode('LAND')
self.wait_disarmed()
self.reboot_sitl() # unlock home position
def MAV_CMD_NAV_TAKEOFF_command_int(self):
'''test issuing takeoff command via mavlink and command_int'''
self.change_mode('GUIDED')
self.wait_ready_to_arm()
self.start_subtest("Check NAV_TAKEOFF is above home location, not current location")
# reset home 20 metres above current location
current_alt_abs = self.get_altitude(relative=False)
loc = self.mav.location()
home_z_ofs = 20
self.run_cmd(
mavutil.mavlink.MAV_CMD_DO_SET_HOME,
p5=loc.lat,
p6=loc.lng,
p7=current_alt_abs + home_z_ofs,
)
self.change_mode('GUIDED')
self.arm_vehicle()
takeoff_alt = 5
self.run_cmd_int(
mavutil.mavlink.MAV_CMD_NAV_TAKEOFF,
p7=takeoff_alt,
frame=mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
)
self.wait_altitude(
current_alt_abs + home_z_ofs + takeoff_alt - 0.5,
current_alt_abs + home_z_ofs + takeoff_alt + 0.5,
minimum_duration=5,
relative=False,
)
self.change_mode('LAND')
self.wait_disarmed()
self.reboot_sitl() # unlock home position
def Ch6TuningWPSpeed(self):
'''test waypoint speed can be changed via Ch6 tuning knob'''
self.set_parameters({
"RC6_OPTION": 219, # RC6 used for tuning
"TUNE": 10, # 10 is waypoint speed
"TUNE_MIN": 0.02, # 20cm/s
"TUNE_MAX": 1000, # 10m/s
"AUTO_OPTIONS": 3,
})
self.set_rc(6, 2000)
self.upload_simple_relhome_mission([
(mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 20),
(mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 2000, 0, 20),
(mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0),
])
self.change_mode('AUTO')
self.wait_ready_to_arm()
self.arm_vehicle()
self.wait_groundspeed(9.5, 10.5, minimum_duration=5)
self.set_rc(6, 1500)
self.wait_groundspeed(4.5, 5.5, minimum_duration=5)
self.set_rc(6, 2000)
self.wait_groundspeed(9.5, 10.5, minimum_duration=5)
self.set_rc(6, 1300)
self.wait_groundspeed(2.5, 3.5, minimum_duration=5)
self.do_RTL()
def PILOT_THR_BHV(self):
'''test the PILOT_THR_BHV parameter'''
self.start_subtest("Test default behaviour, no disarm on land")
self.set_parameters({
"DISARM_DELAY": 0,
})
self.takeoff(2, mode='GUIDED')
self.set_rc(3, 1500)
self.change_mode('LOITER')
self.set_rc(3, 1300)
maintain_armed = WaitAndMaintainArmed(self, minimum_duration=20)
maintain_armed.run()
self.start_subtest("Test THR_BEHAVE_DISARM_ON_LAND_DETECT")
self.set_parameters({
"PILOT_THR_BHV": 4, # Disarm on land detection
})
self.zero_throttle()
self.takeoff(2, mode='GUIDED')
self.set_rc(3, 1500)
self.change_mode('LOITER')
self.set_rc(3, 1300)
self.wait_disarmed()
def CameraLogMessages(self):
'''ensure Camera log messages are good'''
self.set_parameter("RC12_OPTION", 9) # CameraTrigger
self.set_parameter("CAM1_TYPE", 1) # Camera with servo trigger
self.reboot_sitl() # needed for RC12_OPTION to take effect
gpis = []
gps_raws = []
self.takeoff(10, mode='GUIDED')
self.set_rc(12, 2000)
gpis.append(self.assert_receive_message('GLOBAL_POSITION_INT'))
gps_raws.append(self.assert_receive_message('GPS_RAW_INT'))
self.set_rc(12, 1000)
self.fly_guided_move_local(0, 0, 20)
self.set_rc(12, 2000)
gpis.append(self.assert_receive_message('GLOBAL_POSITION_INT'))
gps_raws.append(self.assert_receive_message('GPS_RAW_INT'))
self.set_rc(12, 1000)
dfreader = self.dfreader_for_current_onboard_log()
self.do_RTL()
for i in range(len(gpis)):
gpi = gpis[i]
gps_raw = gps_raws[i]
m = dfreader.recv_match(type="CAM")
things = [
["absalt", gpi.alt*0.001, m.Alt],
["relalt", gpi.relative_alt*0.001, m.RelAlt],
["gpsalt", gps_raw.alt*0.001, m.GPSAlt], # use GPS_RAW here?
]
for (name, want, got) in things:
if abs(got - want) > 1:
raise NotAchievedException(f"Incorrect {name} {want=} {got=}")
self.progress(f"{name} {want=} {got=}")
want = gpi.relative_alt*0.001
got = m.RelAlt
if abs(got - want) > 1:
raise NotAchievedException(f"Incorrect relalt {want=} {got=}")
def LoiterToGuidedHomeVSOrigin(self):
'''test moving from guided to loiter mode when home is a different alt
to origin'''
self.set_parameters({
"TERRAIN_ENABLE": 1,
"SIM_TERRAIN": 1,
})
self.takeoff(10, mode='GUIDED')
here = self.mav.location()
self.set_home(here)
self.change_mode('LOITER')
self.wait_altitude(here.alt-1, here.alt+1, minimum_duration=10)
self.disarm_vehicle(force=True)
self.reboot_sitl() # to "unstick" home
def GuidedModeThrust(self):
'''test handling of option-bit-3, where mavlink commands are
intrepreted as thrust not climb rate'''
self.set_parameter('GUID_OPTIONS', 8)
self.change_mode('GUIDED')
self.wait_ready_to_arm()
self.arm_vehicle()
self.mav.mav.set_attitude_target_send(
0, # time_boot_ms
1, # target sysid
1, # target compid
0, # bitmask of things to ignore
mavextra.euler_to_quat([0, 0, 0]), # att
0, # roll rate (rad/s)
0, # pitch rate (rad/s)
0, # yaw rate (rad/s)
0.5
) # thrust, 0 to 1
self.wait_altitude(0.5, 100, relative=True, timeout=10)
self.do_RTL()
def AutoRTL(self):
'''Test Auto RTL mode using do land start and return path start mission items'''
alt = 50
guided_loc = self.home_relative_loc_ne(1000, 0)
guided_loc.alt += alt
# Arm, take off and fly to guided location
self.takeoff(mode='GUIDED')
self.fly_guided_move_to(guided_loc, timeout=240)
# Try auto RTL mode, should fail with no mission
try:
self.change_mode('AUTO_RTL', timeout=10)
raise NotAchievedException("Should not change mode with no mission")
except WaitModeTimeout:
pass
except Exception as e:
raise e
# pymavlink does not understand the new return path command yet, at some point it will
cmd_return_path_start = 188 # mavutil.mavlink.MAV_CMD_DO_RETURN_PATH_START
# Do land start and do return path should both fail as commands too
self.run_cmd(mavutil.mavlink.MAV_CMD_DO_LAND_START, want_result=mavutil.mavlink.MAV_RESULT_FAILED)
self.run_cmd(cmd_return_path_start, want_result=mavutil.mavlink.MAV_RESULT_FAILED)
# Load mission with do land start
self.upload_simple_relhome_mission([
(mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 1000, 0, alt), # 1
(mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 750, 0, alt), # 2
self.create_MISSION_ITEM_INT(mavutil.mavlink.MAV_CMD_DO_LAND_START), # 3
(mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 500, 0, alt), # 4
(mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 250, 0, alt), # 5
])
# Return path should still fail
self.run_cmd(cmd_return_path_start, want_result=mavutil.mavlink.MAV_RESULT_FAILED)
# Do land start should jump to the waypoint following the item
self.run_cmd(mavutil.mavlink.MAV_CMD_DO_LAND_START, want_result=mavutil.mavlink.MAV_RESULT_ACCEPTED)
self.drain_mav()
self.assert_current_waypoint(4)
# Back to guided location
self.change_mode('GUIDED')
self.fly_guided_move_to(guided_loc)
# mode change to Auto RTL should do the same
self.change_mode('AUTO_RTL')
self.drain_mav()
self.assert_current_waypoint(4)
# Back to guided location
self.change_mode('GUIDED')
self.fly_guided_move_to(guided_loc)
# Add a return path item
self.upload_simple_relhome_mission([
(mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 1250, 0, alt), # 1
self.create_MISSION_ITEM_INT(cmd_return_path_start), # 2
(mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 900, 0, alt), # 3
(mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 750, 0, alt), # 4
(mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 550, 0, alt), # 5
(mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 500, 0, alt), # 6
self.create_MISSION_ITEM_INT(mavutil.mavlink.MAV_CMD_DO_LAND_START), # 7
(mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 250, 0, alt), # 8
(mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, -250, 0, alt), # 9
(mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, -500, 0, alt), # 10
])
# Return path should now work
self.run_cmd(cmd_return_path_start, want_result=mavutil.mavlink.MAV_RESULT_ACCEPTED)
self.drain_mav()
self.assert_current_waypoint(3)
# Back to guided location
self.change_mode('GUIDED')
self.fly_guided_move_to(guided_loc)
# mode change to Auto RTL should join the return path
self.change_mode('AUTO_RTL')
self.drain_mav()
self.assert_current_waypoint(3)
# do land start should still work
self.run_cmd(mavutil.mavlink.MAV_CMD_DO_LAND_START, want_result=mavutil.mavlink.MAV_RESULT_ACCEPTED)
self.drain_mav()
self.assert_current_waypoint(8)
# Move a bit closer in guided
return_path_test = self.home_relative_loc_ne(600, 0)
return_path_test.alt += alt
self.change_mode('GUIDED')
self.fly_guided_move_to(return_path_test, timeout=100)
# check the mission is joined further along
self.run_cmd(cmd_return_path_start, want_result=mavutil.mavlink.MAV_RESULT_ACCEPTED)
self.drain_mav()
self.assert_current_waypoint(5)
# fly over home
home = self.home_relative_loc_ne(0, 0)
home.alt += alt
self.change_mode('GUIDED')
self.fly_guided_move_to(home, timeout=140)
# Should never join return path after do land start
self.run_cmd(cmd_return_path_start, want_result=mavutil.mavlink.MAV_RESULT_ACCEPTED)
self.drain_mav()
self.assert_current_waypoint(6)
# Done
self.land_and_disarm()
def EK3_OGN_HGT_MASK(self):
'''test baraometer-alt-compensation based on long-term GPS readings'''
self.context_push()
self.set_parameters({
'EK3_OGN_HGT_MASK': 1, # compensate baro drift using GPS
})
self.reboot_sitl()
expected_alt = 10
self.change_mode('GUIDED')
self.wait_ready_to_arm()
current_alt = self.get_altitude()
expected_alt_abs = current_alt + expected_alt
self.takeoff(expected_alt, mode='GUIDED')
self.delay_sim_time(5)
self.set_parameter("SIM_BARO_DRIFT", 0.01) # 1cm/second
def check_altitude(mav, m):
m_type = m.get_type()
epsilon = 10 # in metres
if m_type == 'GPS_RAW_INT':
got_gps_alt = m.alt * 0.001
if abs(expected_alt_abs - got_gps_alt) > epsilon:
raise NotAchievedException(f"Bad GPS altitude (got={got_gps_alt} want={expected_alt_abs})")
elif m_type == 'GLOBAL_POSITION_INT':
got_canonical_alt = m.relative_alt * 0.001
if abs(expected_alt - got_canonical_alt) > epsilon:
raise NotAchievedException(f"Bad canonical altitude (got={got_canonical_alt} want={expected_alt})")
self.install_message_hook_context(check_altitude)
self.delay_sim_time(1500)
self.disarm_vehicle(force=True)
self.context_pop()
self.reboot_sitl(force=True)
def GuidedForceArm(self):
'''ensure Guided acts appropriately when force-armed'''
self.set_parameters({
"EK3_SRC2_VELXY": 5,
"SIM_GPS1_ENABLE": 0,
})
self.load_default_params_file("copter-optflow.parm")
self.reboot_sitl()
self.delay_sim_time(30)
self.change_mode('GUIDED')
self.arm_vehicle(force=True)
self.takeoff(20, mode='GUIDED')
location = self.offset_location_ne(self.sim_location(), metres_north=0, metres_east=-300)
self.progress("Ensure we don't move for 10 seconds")
tstart = self.get_sim_time()
startpos = self.sim_location_int()
while True:
now = self.get_sim_time_cached()
if now - tstart > 10:
break
self.send_set_position_target_global_int(int(location.lat*1e7), int(location.lng*1e7), 10)
dist = self.get_distance_int(startpos, self.sim_location_int())
if dist > 10:
raise NotAchievedException("Wandered too far from start position")
self.delay_sim_time(1)
self.disarm_vehicle(force=True)
self.reboot_sitl()
def EK3_OGN_HGT_MASK_climbing(self):
'''check combination of height bits doesn't cause climb'''
self.context_push()
self.set_parameters({
'EK3_OGN_HGT_MASK': 5,
})
self.reboot_sitl()
expected_alt = 10
self.change_mode('GUIDED')
self.wait_ready_to_arm()
current_alt = self.get_altitude()
expected_alt_abs = current_alt + expected_alt
self.takeoff(expected_alt, mode='GUIDED')
self.delay_sim_time(5)
def check_altitude(mav, m):
m_type = m.get_type()
epsilon = 10 # in metres
if m_type == 'GPS_RAW_INT':
got_gps_alt = m.alt * 0.001
if abs(expected_alt_abs - got_gps_alt) > epsilon:
raise NotAchievedException(f"Bad GPS altitude (got={got_gps_alt} want={expected_alt_abs})")
elif m_type == 'GLOBAL_POSITION_INT':
if abs(expected_alt - m.relative_alt * 0.001) > epsilon:
raise NotAchievedException("Bad canonical altitude")
self.install_message_hook_context(check_altitude)
self.delay_sim_time(1500)
self.disarm_vehicle(force=True)
self.context_pop()
self.reboot_sitl(force=True)
def GuidedWeatherVane(self):
'''check Copter Guided mode weathervane option'''
self.set_parameters({
'SIM_WIND_SPD': 10,
'SIM_WIND_DIR': 90,
'WVANE_ENABLE': 1,
})
self.takeoff(20, mode='GUIDED')
self.guided_achieve_heading(0)
self.set_parameter("GUID_OPTIONS", 128)
self.wait_heading(90, timeout=60, minimum_duration=10)
self.do_RTL()
def Clamp(self):
'''test Copter docking clamp'''
clamp_ch = 11
self.set_parameters({
"SIM_CLAMP_CH": clamp_ch,
})
self.takeoff(1, mode='LOITER')
self.context_push()
self.context_collect('STATUSTEXT')
self.progress("Ensure can't take off with clamp in place")
self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_SERVO, p1=11, p2=2000)
self.wait_statustext("SITL: Clamp: grabbed vehicle", check_context=True)
self.arm_vehicle()
self.set_rc(3, 2000)
self.wait_altitude(0, 5, minimum_duration=5, relative=True)
self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_SERVO, p1=11, p2=1000)
self.wait_statustext("SITL: Clamp: released vehicle", check_context=True)
self.wait_altitude(5, 5000, minimum_duration=1, relative=True)
self.do_RTL()
self.set_rc(3, 1000)
self.change_mode('LOITER')
self.context_pop()
self.progress("Same again for repeatability")
self.context_push()
self.context_collect('STATUSTEXT')
self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_SERVO, p1=11, p2=2000)
self.wait_statustext("SITL: Clamp: grabbed vehicle", check_context=True)
self.arm_vehicle()
self.set_rc(3, 2000)
self.wait_altitude(0, 1, minimum_duration=5, relative=True)
self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_SERVO, p1=11, p2=1000)
self.wait_statustext("SITL: Clamp: released vehicle", check_context=True)
self.wait_altitude(5, 5000, minimum_duration=1, relative=True)
self.do_RTL()
self.set_rc(3, 1000)
self.change_mode('LOITER')
self.context_pop()
here = self.mav.location()
loc = self.offset_location_ne(here, 10, 0)
self.takeoff(5, mode='GUIDED')
self.send_do_reposition(loc, frame=mavutil.mavlink.MAV_FRAME_GLOBAL)
self.wait_location(loc, timeout=120)
self.land_and_disarm()
# explicitly set home so we RTL to the right spot
self.set_home(here)
self.context_push()
self.context_collect('STATUSTEXT')
self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_SERVO, p1=11, p2=2000)
self.wait_statustext("SITL: Clamp: missed vehicle", check_context=True)
self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_SERVO, p1=11, p2=1000)
self.context_pop()
self.takeoff(5, mode='GUIDED')
self.do_RTL()
self.takeoff(5, mode='GUIDED')
self.land_and_disarm()
self.context_push()
self.context_collect('STATUSTEXT')
self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_SERVO, p1=11, p2=2000)
self.wait_statustext("SITL: Clamp: grabbed vehicle", check_context=True)
self.context_pop()
self.reboot_sitl() # because we set home
def GripperReleaseOnThrustLoss(self):
'''tests that gripper is released on thrust loss if option set'''
self.context_push()
self.set_servo_gripper_parameters()
self.reboot_sitl()
self.takeoff(30, mode='LOITER')
self.context_push()
self.context_collect('STATUSTEXT')
self.set_parameters({
"SIM_ENGINE_MUL": 0.5,
"SIM_ENGINE_FAIL": 1 << 1, # motor 2
"FLIGHT_OPTIONS": 4,
})
self.wait_statustext("Gripper Load Released", timeout=60)
self.context_pop()
self.do_RTL()
self.context_pop()
self.reboot_sitl()
def assert_home_position_not_set(self):
try:
self.poll_home_position()
except NotAchievedException:
return
# if home.lng != 0: etc
raise NotAchievedException("Home is set when it shouldn't be")
def REQUIRE_POSITION_FOR_ARMING(self):
'''check FlightOption::REQUIRE_POSITION_FOR_ARMING works'''
self.context_push()
self.set_parameters({
"SIM_GPS1_NUMSATS": 3, # EKF does not like < 6
})
self.reboot_sitl()
self.change_mode('STABILIZE')
self.wait_prearm_sys_status_healthy()
self.assert_home_position_not_set()
self.arm_vehicle()
self.disarm_vehicle()
self.change_mode('LOITER')
self.assert_prearm_failure("waiting for home", other_prearm_failures_fatal=False)
self.change_mode('STABILIZE')
self.set_parameters({
"FLIGHT_OPTIONS": 8,
})
self.assert_prearm_failure("Need Position Estimate", other_prearm_failures_fatal=False)
self.context_pop()
self.reboot_sitl()
def AutoContinueOnRCFailsafe(self):
'''check LOITER when entered after RC failsafe is ignored in auto'''
self.set_parameters({
"FS_OPTIONS": 1, # 1 is "RC continue if in auto"
})
self.upload_simple_relhome_mission([
# N E U
(mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 10),
(mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 20, 0, 10),
(mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 40, 0, 10),
(mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 120, 0, 10),
])
self.takeoff(mode='LOITER')
self.set_rc(1, 1200)
self.delay_sim_time(1) # build up some pilot desired stuff
self.change_mode('AUTO')
self.wait_waypoint(2, 2)
self.set_parameters({
'SIM_RC_FAIL': 1,
})
# self.set_rc(1, 1500) # note we are still in RC fail!
self.wait_waypoint(3, 3)
self.assert_mode_is('AUTO')
self.change_mode('LOITER')
self.wait_groundspeed(0, 0.1, minimum_duration=30, timeout=450)
self.do_RTL()
def MissionRTLYawBehaviour(self):
'''check end-of-mission yaw behaviour'''
self.set_parameters({
"AUTO_OPTIONS": 3,
})
self.start_subtest("behaviour with WP_YAW_BEHAVE set to next-waypoint-except-RTL")
self.upload_simple_relhome_mission([
# N E U
(mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 10),
(mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 20, 0, 10),
(mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0),
])
self.change_mode('AUTO')
self.wait_ready_to_arm()
original_heading = self.get_heading()
if abs(original_heading) < 5:
raise NotAchievedException(f"Bad original heading {original_heading}")
self.arm_vehicle()
self.wait_current_waypoint(3)
self.wait_rtl_complete()
self.wait_disarmed()
if abs(self.get_heading()) > 5:
raise NotAchievedException("Should have yaw zero without option")
# must change out of auto and back in again to reset state machine:
self.change_mode('LOITER')
self.change_mode('AUTO')
self.start_subtest("behaviour with WP_YAW_BEHAVE set to next-waypoint")
self.upload_simple_relhome_mission([
# N E U
(mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 10),
(mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 20, 20),
(mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0),
])
self.set_parameters({
"WP_YAW_BEHAVIOR": 1, # look at next waypoint (including in RTL)
})
self.change_mode('AUTO')
self.wait_ready_to_arm()
original_heading = self.get_heading()
if abs(original_heading) > 1:
raise NotAchievedException("Bad original heading")
self.arm_vehicle()
self.wait_current_waypoint(3)
self.wait_rtl_complete()
self.wait_disarmed()
new_heading = self.get_heading()
if abs(new_heading - original_heading) > 5:
raise NotAchievedException(f"Should return to original heading want={original_heading} got={new_heading}")
def BatteryInternalUseOnly(self):
'''batteries marked as internal use only should not appear over mavlink'''
self.set_parameters({
"BATT_MONITOR": 4, # 4 is analog volt+curr
"BATT2_MONITOR": 4,
})
self.reboot_sitl()
self.wait_message_field_values('BATTERY_STATUS', {
"id": 0,
})
self.wait_message_field_values('BATTERY_STATUS', {
"id": 1,
})
self.progress("Making battery private")
self.set_parameters({
"BATT_OPTIONS": 256,
})
self.wait_message_field_values('BATTERY_STATUS', {
"id": 1,
})
for i in range(10):
self.assert_received_message_field_values('BATTERY_STATUS', {
"id": 1
})
def MAV_CMD_MISSION_START_p1_p2(self):
'''make sure we deny MAV_CMD_MISSION_START if either p1 or p2 non-zero'''
self.upload_simple_relhome_mission([
(mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 20),
])
self.set_parameters({
"AUTO_OPTIONS": 3,
})
self.change_mode('AUTO')
self.wait_ready_to_arm()
self.run_cmd(
mavutil.mavlink.MAV_CMD_MISSION_START,
p1=1,
want_result=mavutil.mavlink.MAV_RESULT_DENIED,
)
self.run_cmd(
mavutil.mavlink.MAV_CMD_MISSION_START,
p2=1,
want_result=mavutil.mavlink.MAV_RESULT_DENIED,
)
self.run_cmd(
mavutil.mavlink.MAV_CMD_MISSION_START,
p1=1,
p2=1,
want_result=mavutil.mavlink.MAV_RESULT_DENIED,
)
def ScriptingAHRSSource(self):
'''test ahrs-source.lua script'''
self.install_example_script_context("ahrs-source.lua")
self.set_parameters({
"RC10_OPTION": 90,
"SCR_ENABLE": 1,
"SCR_USER1": 10, # something else
"SCR_USER2": 10, # GPS something
"SCR_USER3": 0.2, # ExtNav innovation
})
self.set_rc(10, 2000)
self.reboot_sitl()
self.context_collect('STATUSTEXT')
self.set_rc(10, 1000)
self.wait_statustext('Using EKF Source Set 1', check_context=True)
self.set_rc(10, 1500)
self.wait_statustext('Using EKF Source Set 2', check_context=True)
self.set_rc(10, 2000)
self.wait_statustext('Using EKF Source Set 3', check_context=True)
def CommonOrigin(self):
"""Test common origin between EKF2 and EKF3"""
self.context_push()
# start on EKF2
self.set_parameters({
'AHRS_EKF_TYPE': 2,
'EK2_ENABLE': 1,
'EK3_CHECK_SCALE': 1, # make EK3 slow to get origin
})
self.reboot_sitl()
self.context_collect('STATUSTEXT')
self.wait_statustext("EKF2 IMU0 origin set", timeout=60, check_context=True)
self.wait_statustext("EKF2 IMU0 is using GPS", timeout=60, check_context=True)
self.wait_statustext("EKF2 active", timeout=60, check_context=True)
self.context_collect('GPS_GLOBAL_ORIGIN')
# get EKF2 origin
self.run_cmd(mavutil.mavlink.MAV_CMD_GET_HOME_POSITION)
ek2_origin = self.assert_receive_message('GPS_GLOBAL_ORIGIN', check_context=True)
# switch to EKF3
self.set_parameters({
'SIM_GPS1_GLTCH_X' : 0.001, # about 100m
'EK3_CHECK_SCALE' : 100,
'AHRS_EKF_TYPE' : 3})
self.wait_statustext("EKF3 IMU0 is using GPS", timeout=60, check_context=True)
self.wait_statustext("EKF3 active", timeout=60, check_context=True)
self.run_cmd(mavutil.mavlink.MAV_CMD_GET_HOME_POSITION)
ek3_origin = self.assert_receive_message('GPS_GLOBAL_ORIGIN', check_context=True)
self.progress("Checking origins")
if ek2_origin.time_usec == ek3_origin.time_usec:
raise NotAchievedException("Did not get a new GPS_GLOBAL_ORIGIN message")
print(ek2_origin, ek3_origin)
if (ek2_origin.latitude != ek3_origin.latitude or
ek2_origin.longitude != ek3_origin.longitude or
ek2_origin.altitude != ek3_origin.altitude):
raise NotAchievedException("Did not get matching EK2 and EK3 origins")
self.context_pop()
# restart GPS driver
self.reboot_sitl()
def tests2b(self): # this block currently around 9.5mins here
'''return list of all tests'''
ret = ([
self.MotorVibration,
Test(self.DynamicNotches, attempts=4),
self.PositionWhenGPSIsZero,
self.DynamicRpmNotches, # Do not add attempts to this - failure is sign of a bug
self.DynamicRpmNotchesRateThread,
self.PIDNotches,
self.StaticNotches,
self.RefindGPS,
Test(self.GyroFFT, attempts=1, speedup=8),
Test(self.GyroFFTHarmonic, attempts=4, speedup=8),
Test(self.GyroFFTAverage, attempts=1, speedup=8),
Test(self.GyroFFTContinuousAveraging, attempts=4, speedup=8),
self.GyroFFTPostFilter,
self.GyroFFTMotorNoiseCheck,
self.CompassReordering,
self.CRSF,
self.MotorTest,
self.AltEstimation,
self.EKFSource,
self.GSF,
self.GSF_reset,
self.AP_Avoidance,
self.SMART_RTL,
self.SMART_RTL_EnterLeave,
self.SMART_RTL_Repeat,
self.RTL_TO_RALLY,
self.FlyEachFrame,
self.GPSBlending,
self.GPSWeightedBlending,
self.GPSBlendingLog,
self.GPSBlendingAffinity,
self.DataFlash,
Test(self.DataFlashErase, attempts=8),
self.Callisto,
self.PerfInfo,
self.Replay,
self.FETtecESC,
self.ProximitySensors,
self.GroundEffectCompensation_touchDownExpected,
self.GroundEffectCompensation_takeOffExpected,
self.DO_CHANGE_SPEED,
self.MISSION_START,
self.AUTO_LAND_TO_BRAKE,
self.WPNAV_SPEED,
self.WPNAV_SPEED_UP,
self.WPNAV_SPEED_DN,
self.DO_WINCH,
self.SensorErrorFlags,
self.GPSForYaw,
self.DefaultIntervalsFromFiles,
self.GPSTypes,
self.MultipleGPS,
self.WatchAlts,
self.GuidedEKFLaneChange,
self.Sprayer,
self.AutoContinueOnRCFailsafe,
self.EK3_RNG_USE_HGT,
self.TerrainDBPreArm,
self.ThrottleGainBoost,
self.ScriptMountPOI,
self.ScriptCopterPosOffsets,
self.MountSolo,
self.FlyMissionTwice,
self.FlyMissionTwiceWithReset,
self.MissionIndexValidity,
self.InvalidJumpTags,
self.IMUConsistency,
self.AHRSTrimLand,
self.IBus,
self.GuidedYawRate,
self.NoArmWithoutMissionItems,
self.DO_CHANGE_SPEED_in_guided,
self.ArmSwitchAfterReboot,
self.RPLidarA1,
self.RPLidarA2,
self.SafetySwitch,
self.BrakeZ,
self.MAV_CMD_DO_FLIGHTTERMINATION,
self.MAV_CMD_DO_LAND_START,
self.MAV_CMD_SET_EKF_SOURCE_SET,
self.MAV_CMD_NAV_TAKEOFF,
self.MAV_CMD_NAV_TAKEOFF_command_int,
self.Ch6TuningWPSpeed,
self.PILOT_THR_BHV,
self.GPSForYawCompassLearn,
self.CameraLogMessages,
self.LoiterToGuidedHomeVSOrigin,
self.GuidedModeThrust,
self.CompassMot,
self.AutoRTL,
self.EK3_OGN_HGT_MASK_climbing,
self.EK3_OGN_HGT_MASK,
self.FarOrigin,
self.GuidedForceArm,
self.GuidedWeatherVane,
self.Clamp,
self.GripperReleaseOnThrustLoss,
self.REQUIRE_POSITION_FOR_ARMING,
self.LoggingFormat,
self.MissionRTLYawBehaviour,
self.BatteryInternalUseOnly,
self.MAV_CMD_MISSION_START_p1_p2,
self.ScriptingAHRSSource,
self.CommonOrigin,
self.TestTetherStuck,
])
return ret
def testcan(self):
ret = ([
self.CANGPSCopterMission,
self.TestLogDownloadMAVProxyCAN,
])
return ret
def BattCANSplitAuxInfo(self):
'''test CAN battery periphs'''
self.start_subtest("Swap UAVCAN backend at runtime")
self.set_parameters({
"CAN_P1_DRIVER": 1,
"BATT_MONITOR": 4, # 4 is ananlog volt+curr
"BATT2_MONITOR": 8, # 8 is UAVCAN_BatteryInfo
"BATT_SERIAL_NUM": 0,
"BATT2_SERIAL_NUM": 0,
"BATT_OPTIONS": 128, # allow split auxinfo
"BATT2_OPTIONS": 128, # allow split auxinfo
})
self.reboot_sitl()
self.delay_sim_time(2)
self.set_parameters({
"BATT_MONITOR": 8, # 8 is UAVCAN_BatteryInfo
"BATT2_MONITOR": 4, # 8 is UAVCAN_BatteryInfo
})
self.delay_sim_time(2)
self.set_parameters({
"BATT_MONITOR": 4, # 8 is UAVCAN_BatteryInfo
"BATT2_MONITOR": 8, # 8 is UAVCAN_BatteryInfo
})
self.delay_sim_time(2)
self.set_parameters({
"BATT_MONITOR": 8, # 8 is UAVCAN_BatteryInfo
"BATT2_MONITOR": 4, # 8 is UAVCAN_BatteryInfo
})
self.delay_sim_time(2)
def BattCANReplaceRuntime(self):
'''test CAN battery periphs'''
self.start_subtest("Replace UAVCAN backend at runtime")
self.set_parameters({
"CAN_P1_DRIVER": 1,
"BATT_MONITOR": 11, # 4 is ananlog volt+curr
})
self.reboot_sitl()
self.delay_sim_time(2)
self.set_parameters({
"BATT_MONITOR": 8, # 4 is UAVCAN batterinfo
})
self.delay_sim_time(2)
def testcanbatt(self):
ret = ([
self.BattCANReplaceRuntime,
self.BattCANSplitAuxInfo,
])
return ret
def tests(self):
ret = []
ret.extend(self.tests1a())
ret.extend(self.tests1b())
ret.extend(self.tests1c())
ret.extend(self.tests1d())
ret.extend(self.tests1e())
ret.extend(self.tests2a())
ret.extend(self.tests2b())
return ret
def disabled_tests(self):
return {
"Parachute": "See https://github.com/ArduPilot/ardupilot/issues/4702",
"AltEstimation": "See https://github.com/ArduPilot/ardupilot/issues/15191",
"GroundEffectCompensation_takeOffExpected": "Flapping",
"GroundEffectCompensation_touchDownExpected": "Flapping",
"FlyMissionTwice": "See https://github.com/ArduPilot/ardupilot/pull/18561",
"GPSForYawCompassLearn": "Vehicle currently crashed in spectacular fashion",
"CompassMot": "Cuases an arithmetic exception in the EKF",
"SMART_RTL_EnterLeave": "Causes a panic",
"SMART_RTL_Repeat": "Currently fails due to issue with loop detection",
}
class AutoTestCopterTests1a(AutoTestCopter):
def tests(self):
return self.tests1a()
class AutoTestCopterTests1b(AutoTestCopter):
def tests(self):
return self.tests1b()
class AutoTestCopterTests1c(AutoTestCopter):
def tests(self):
return self.tests1c()
class AutoTestCopterTests1d(AutoTestCopter):
def tests(self):
return self.tests1d()
class AutoTestCopterTests1e(AutoTestCopter):
def tests(self):
return self.tests1e()
class AutoTestCopterTests2a(AutoTestCopter):
def tests(self):
return self.tests2a()
class AutoTestCopterTests2b(AutoTestCopter):
def tests(self):
return self.tests2b()
class AutoTestCAN(AutoTestCopter):
def tests(self):
return self.testcan()
class AutoTestBattCAN(AutoTestCopter):
def tests(self):
return self.testcanbatt()