ardupilot/libraries/SITL/SIM_DroneCANDevice.cpp
Andrew Tridgell 1b6c329de5 SITL: use NaN for invalid rangefinder data
needed to cope properly with terrain errors leading to negative
rangefinder data
2023-08-24 13:06:40 +10:00

239 lines
8.7 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
base class for CAN simulated devices
*/
#include "SIM_DroneCANDevice.h"
#if AP_TEST_DRONECAN_DRIVERS
#include <canard/publisher.h>
#include <AP_Vehicle/AP_Vehicle.h>
#include <AP_Baro/AP_Baro.h>
#include <AP_Baro/AP_Baro_SITL.h>
#include <dronecan_msgs.h>
#include <SITL/SITL.h>
#include <AP_DroneCAN/AP_Canard_iface.h>
using namespace SITL;
void DroneCANDevice::update_baro() {
const uint64_t now = AP_HAL::micros64();
if (((now - _baro_last_update_us) < 10000) && (_baro_last_update_us != 0)) {
return;
}
_baro_last_update_us = now;
const uint32_t now_ms = AP_HAL::millis();
float sim_alt = AP::sitl()->state.altitude;
if (AP::sitl()->baro_count < 1) {
// barometer is disabled
return;
}
sim_alt += AP::sitl()->baro[0].drift * now_ms * 0.001f;
sim_alt += AP::sitl()->baro[0].noise * rand_float();
// add baro glitch
sim_alt += AP::sitl()->baro[0].glitch;
// add delay
uint32_t best_time_delta = 200; // initialise large time representing buffer entry closest to current time - delay.
uint8_t best_index = 0; // initialise number representing the index of the entry in buffer closest to delay.
// storing data from sensor to buffer
if (now_ms - _last_store_time >= 10) { // store data every 10 ms.
_last_store_time = now_ms;
if (_store_index > _buffer_length - 1) { // reset buffer index if index greater than size of buffer
_store_index = 0;
}
// if freezed barometer, report altitude to last recorded altitude
if (AP::sitl()->baro[0].freeze == 1) {
sim_alt = _last_altitude;
} else {
_last_altitude = sim_alt;
}
_buffer[_store_index].data = sim_alt; // add data to current index
_buffer[_store_index].time = _last_store_time; // add time_stamp to current index
_store_index = _store_index + 1; // increment index
}
// return delayed measurement
const uint32_t delayed_time = now_ms - AP::sitl()->baro[0].delay; // get time corresponding to delay
// find data corresponding to delayed time in buffer
for (uint8_t i = 0; i <= _buffer_length - 1; i++) {
// find difference between delayed time and time stamp in buffer
uint32_t time_delta = abs(
(int32_t)(delayed_time - _buffer[i].time));
// if this difference is smaller than last delta, store this time
if (time_delta < best_time_delta) {
best_index = i;
best_time_delta = time_delta;
}
}
if (best_time_delta < 200) { // only output stored state if < 200 msec retrieval error
sim_alt = _buffer[best_index].data;
}
#if !APM_BUILD_TYPE(APM_BUILD_ArduSub)
float sigma, delta, theta;
AP_Baro::SimpleAtmosphere(sim_alt * 0.001f, sigma, delta, theta);
float p = SSL_AIR_PRESSURE * delta;
float T = KELVIN_TO_C(SSL_AIR_TEMPERATURE * theta);
AP_Baro_SITL::temperature_adjustment(p, T);
T = C_TO_KELVIN(T);
#else
float rho, delta, theta;
AP_Baro::SimpleUnderWaterAtmosphere(-sim_alt * 0.001f, rho, delta, theta);
float p = SSL_AIR_PRESSURE * delta;
float T = SSL_AIR_TEMPERATURE * theta;
#endif
// add in correction for wind effects
p += AP_Baro_SITL::wind_pressure_correction(0);
static Canard::Publisher<uavcan_equipment_air_data_StaticPressure> press_pub{CanardInterface::get_test_iface()};
static Canard::Publisher<uavcan_equipment_air_data_StaticTemperature> temp_pub{CanardInterface::get_test_iface()};
uavcan_equipment_air_data_StaticPressure press_msg {};
press_msg.static_pressure = p;
press_pub.broadcast(press_msg);
uavcan_equipment_air_data_StaticTemperature temp_msg {};
temp_msg.static_temperature = T;
temp_pub.broadcast(temp_msg);
}
void DroneCANDevice::update_airspeed() {
const uint32_t now = AP_HAL::micros64();
if ((now - _airspeed_last_update_us < 50000) && (_airspeed_last_update_us != 0)) {
return;
}
_airspeed_last_update_us = now;
uavcan_equipment_air_data_RawAirData msg {};
msg.differential_pressure = AP::sitl()->state.airspeed_raw_pressure[0];
// this was mostly swiped from SIM_Airspeed_DLVR:
const float sim_alt = AP::sitl()->state.altitude;
float sigma, delta, theta;
AP_Baro::SimpleAtmosphere(sim_alt * 0.001f, sigma, delta, theta);
// To Do: Add a sensor board temperature offset parameter
msg.static_air_temperature = SSL_AIR_TEMPERATURE * theta + 25.0;
static Canard::Publisher<uavcan_equipment_air_data_RawAirData> raw_air_pub{CanardInterface::get_test_iface()};
raw_air_pub.broadcast(msg);
}
void DroneCANDevice::_setup_eliptical_correcion(uint8_t i)
{
Vector3f diag = AP::sitl()->mag_diag[i].get();
if (diag.is_zero()) {
diag = {1,1,1};
}
const Vector3f &diagonals = diag;
const Vector3f &offdiagonals = AP::sitl()->mag_offdiag[i];
if (diagonals == _last_dia && offdiagonals == _last_odi) {
return;
}
_eliptical_corr = Matrix3f(diagonals.x, offdiagonals.x, offdiagonals.y,
offdiagonals.x, diagonals.y, offdiagonals.z,
offdiagonals.y, offdiagonals.z, diagonals.z);
if (!_eliptical_corr.invert()) {
_eliptical_corr.identity();
}
_last_dia = diag;
_last_odi = offdiagonals;
}
void DroneCANDevice::update_compass() {
// Sampled at 100Hz
const uint32_t now = AP_HAL::micros64();
if ((now - _compass_last_update_us < 10000) && (_compass_last_update_us != 0)) {
return;
}
_compass_last_update_us = now;
// calculate sensor noise and add to 'truth' field in body frame
// units are milli-Gauss
Vector3f noise = rand_vec3f() * AP::sitl()->mag_noise;
Vector3f new_mag_data = AP::sitl()->state.bodyMagField + noise;
_setup_eliptical_correcion(0);
Vector3f f = (_eliptical_corr * new_mag_data) - AP::sitl()->mag_ofs[0].get();
// rotate compass
f.rotate_inverse((enum Rotation)AP::sitl()->mag_orient[0].get());
f.rotate(AP::compass().get_board_orientation());
// scale the compass to simulate sensor scale factor errors
f *= AP::sitl()->mag_scaling[0];
static Canard::Publisher<uavcan_equipment_ahrs_MagneticFieldStrength> mag_pub{CanardInterface::get_test_iface()};
uavcan_equipment_ahrs_MagneticFieldStrength mag_msg {};
mag_msg.magnetic_field_ga[0] = f.x/1000.0f;
mag_msg.magnetic_field_ga[1] = f.y/1000.0f;
mag_msg.magnetic_field_ga[2] = f.z/1000.0f;
mag_msg.magnetic_field_covariance.len = 0;
mag_pub.broadcast(mag_msg);
static Canard::Publisher<uavcan_equipment_ahrs_MagneticFieldStrength2> mag2_pub{CanardInterface::get_test_iface()};
uavcan_equipment_ahrs_MagneticFieldStrength2 mag2_msg;
mag2_msg.magnetic_field_ga[0] = f.x/1000.0f;
mag2_msg.magnetic_field_ga[1] = f.y/1000.0f;
mag2_msg.magnetic_field_ga[2] = f.z/1000.0f;
mag2_msg.sensor_id = 0;
mag2_msg.magnetic_field_covariance.len = 0;
mag2_pub.broadcast(mag2_msg);
}
void DroneCANDevice::update_rangefinder() {
// Sampled at 100Hz
const uint32_t now = AP_HAL::micros64();
if ((now - _rangefinder_last_update_us < 10000) && (_rangefinder_last_update_us != 0)) {
return;
}
_rangefinder_last_update_us = now;
static Canard::Publisher<uavcan_equipment_range_sensor_Measurement> pub{CanardInterface::get_test_iface()};
uavcan_equipment_range_sensor_Measurement msg;
msg.timestamp.usec = AP_HAL::micros64();
msg.sensor_id = 0;
msg.sensor_type = UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_SENSOR_TYPE_LIDAR;
const float dist = AP::sitl()->get_rangefinder(0);
if (!isnan(dist)) {
msg.reading_type = UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_READING_TYPE_VALID_RANGE;
msg.range = MAX(0, dist);
} else {
msg.reading_type = UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_READING_TYPE_TOO_FAR;
msg.range = 0;
}
pub.broadcast(msg);
}
void DroneCANDevice::update()
{
update_baro();
update_airspeed();
update_compass();
update_rangefinder();
}
#endif // AP_TEST_DRONECAN_DRIVERS