ardupilot/libraries/AP_Motors/AP_MotorsHeli_Dual.h
bnsgeyer 28f4c68f2f AP_MotorsHeli: add spool logic support
Also moved heli init_target_on_arming flag in from vehicle code
2019-01-15 11:41:44 +09:00

152 lines
7.3 KiB
C++

/// @file AP_MotorsHeli_Dual.h
/// @brief Motor control class for dual heli (tandem or transverse)
/// @author Fredrik Hedberg
#ifndef __AP_MOTORS_HELI_DUAL_H__
#define __AP_MOTORS_HELI_DUAL_H__
#include <AP_Common/AP_Common.h>
#include <AP_Math/AP_Math.h>
#include <RC_Channel/RC_Channel.h>
#include "AP_MotorsHeli.h"
#include "AP_MotorsHeli_RSC.h"
// servo position defaults
#define AP_MOTORS_HELI_DUAL_SERVO1_POS -60
#define AP_MOTORS_HELI_DUAL_SERVO2_POS 60
#define AP_MOTORS_HELI_DUAL_SERVO3_POS 180
#define AP_MOTORS_HELI_DUAL_SERVO4_POS -60
#define AP_MOTORS_HELI_DUAL_SERVO5_POS 60
#define AP_MOTORS_HELI_DUAL_SERVO6_POS 180
// collective control direction definitions
#define AP_MOTORS_HELI_DUAL_COLLECTIVE_DIRECTION_NORMAL 0
#define AP_MOTORS_HELI_DUAL_COLLECTIVE_DIRECTION_REVERSED 1
// rsc function output channel
#define AP_MOTORS_HELI_DUAL_RSC CH_8
// tandem modes
#define AP_MOTORS_HELI_DUAL_MODE_TANDEM 0 // tandem mode (rotors front and aft)
#define AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE 1 // transverse mode (rotors side by side)
// default differential-collective-pitch scaler
#define AP_MOTORS_HELI_DUAL_DCP_SCALER 0.25f
// maximum number of swashplate servos
#define AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS 6
// default collective min, max and midpoints for the rear swashplate
#define AP_MOTORS_HELI_DUAL_COLLECTIVE2_MIN 1250
#define AP_MOTORS_HELI_DUAL_COLLECTIVE2_MAX 1750
#define AP_MOTORS_HELI_DUAL_COLLECTIVE2_MID 1500
/// @class AP_MotorsHeli_Dual
class AP_MotorsHeli_Dual : public AP_MotorsHeli {
public:
// constructor
AP_MotorsHeli_Dual(uint16_t loop_rate,
uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT) :
AP_MotorsHeli(loop_rate, speed_hz),
_rotor(SRV_Channel::k_heli_rsc, AP_MOTORS_HELI_DUAL_RSC)
{
AP_Param::setup_object_defaults(this, var_info);
};
// set_update_rate - set update rate to motors
void set_update_rate( uint16_t speed_hz ) override;
// output_test_seq - spin a motor at the pwm value specified
virtual void output_test_seq(uint8_t motor_seq, int16_t pwm) override;
// output_to_motors - sends values out to the motors
void output_to_motors() override;
// set_desired_rotor_speed - sets target rotor speed as a number from 0 ~ 1000
void set_desired_rotor_speed(float desired_speed) override;
// get_estimated_rotor_speed - gets estimated rotor speed as a number from 0 ~ 1000
float get_main_rotor_speed() const override { return _rotor.get_rotor_speed(); }
// get_desired_rotor_speed - gets target rotor speed as a number from 0 ~ 1000
float get_desired_rotor_speed() const override { return _rotor.get_rotor_speed(); }
// rotor_speed_above_critical - return true if rotor speed is above that critical for flight
bool rotor_speed_above_critical() const override { return _rotor.get_rotor_speed() > _rotor.get_critical_speed(); }
// calculate_scalars - recalculates various scalars used
void calculate_scalars() override;
// calculate_armed_scalars - recalculates scalars that can change while armed
void calculate_armed_scalars() override;
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
uint16_t get_motor_mask() override;
// has_flybar - returns true if we have a mechical flybar
bool has_flybar() const override { return AP_MOTORS_HELI_NOFLYBAR; }
// supports_yaw_passthrought - returns true if we support yaw passthrough
bool supports_yaw_passthrough() const override { return false; }
// servo_test - move servos through full range of movement
void servo_test() override;
// var_info for holding Parameter information
static const struct AP_Param::GroupInfo var_info[];
protected:
// init_outputs
bool init_outputs () override;
// update_motor_controls - sends commands to motor controllers
void update_motor_control(RotorControlState state) override;
// calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position
void calculate_roll_pitch_collective_factors () override;
// move_actuators - moves swash plate to attitude of parameters passed in
void move_actuators(float roll_out, float pitch_out, float coll_in, float yaw_out) override;
// objects we depend upon
AP_MotorsHeli_RSC _rotor; // main rotor controller
// internal variables
float _oscillate_angle = 0.0f; // cyclic oscillation angle, used by servo_test function
float _servo_test_cycle_time = 0.0f; // cycle time tracker, used by servo_test function
float _collective_test = 0.0f; // over-ride for collective output, used by servo_test function
float _roll_test = 0.0f; // over-ride for roll output, used by servo_test function
float _pitch_test = 0.0f; // over-ride for pitch output, used by servo_test function
float _servo_out[AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS]; // output value sent to motor
// parameters
AP_Int16 _collective2_min; // Lowest possible servo position for the rear swashplate
AP_Int16 _collective2_max; // Highest possible servo position for the rear swashplate
AP_Int16 _collective2_mid; // Swash servo position corresponding to zero collective pitch for the rear swashplate (or zero lift for Asymmetrical blades)
AP_Int16 _servo1_pos; // angular location of swash servo #1
AP_Int16 _servo2_pos; // angular location of swash servo #2
AP_Int16 _servo3_pos; // angular location of swash servo #3
AP_Int16 _servo4_pos; // angular location of swash servo #4
AP_Int16 _servo5_pos; // angular location of swash servo #5
AP_Int16 _servo6_pos; // angular location of swash servo #6
AP_Int8 _collective_direction; // Collective control direction, normal or reversed
AP_Int16 _swash1_phase_angle; // phase angle correction for 1st swash.
AP_Int16 _swash2_phase_angle; // phase angle correction for 2nd swash.
AP_Int8 _dual_mode; // which dual mode the heli is
AP_Float _dcp_scaler; // scaling factor applied to the differential-collective-pitch
AP_Float _dcp_yaw_effect; // feed-forward compensation to automatically add yaw input when differential collective pitch is applied.
AP_Float _yaw_scaler; // scaling factor applied to the yaw mixing
// internal variables
float _collective2_mid_pct = 0.0f; // collective mid parameter value for rear swashplate converted to 0 ~ 1 range
float _rollFactor[AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS];
float _pitchFactor[AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS];
float _collectiveFactor[AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS];
float _yawFactor[AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS];
};
#endif // AP_MotorsHeli_Dual