ardupilot/ArduCopter/mode_loiter.cpp
Randy Mackay 59e4749fd0 Copter: integrate AC_Loiter
includes param conversion
2018-04-04 10:45:10 +09:00

224 lines
8.0 KiB
C++

#include "Copter.h"
/*
* Init and run calls for loiter flight mode
*/
// loiter_init - initialise loiter controller
bool Copter::ModeLoiter::init(bool ignore_checks)
{
if (copter.position_ok() || ignore_checks) {
// set target to current position
loiter_nav->init_target();
// initialise position and desired velocity
if (!pos_control->is_active_z()) {
pos_control->set_alt_target_to_current_alt();
pos_control->set_desired_velocity_z(inertial_nav.get_velocity_z());
}
return true;
}else{
return false;
}
}
#if PRECISION_LANDING == ENABLED
bool Copter::ModeLoiter::do_precision_loiter()
{
if (!_precision_loiter_enabled) {
return false;
}
if (ap.land_complete_maybe) {
return false; // don't move on the ground
}
// if the pilot *really* wants to move the vehicle, let them....
if (loiter_nav->get_pilot_desired_acceleration().length() > 50.0f) {
return false;
}
if (!copter.precland.target_acquired()) {
return false; // we don't have a good vector
}
return true;
}
void Copter::ModeLoiter::precision_loiter_xy()
{
loiter_nav->clear_pilot_desired_acceleration();
Vector2f target_pos, target_vel_rel;
if (!copter.precland.get_target_position_cm(target_pos)) {
target_pos.x = inertial_nav.get_position().x;
target_pos.y = inertial_nav.get_position().y;
}
if (!copter.precland.get_target_velocity_relative_cms(target_vel_rel)) {
target_vel_rel.x = -inertial_nav.get_velocity().x;
target_vel_rel.y = -inertial_nav.get_velocity().y;
}
pos_control->set_xy_target(target_pos.x, target_pos.y);
pos_control->override_vehicle_velocity_xy(-target_vel_rel);
}
#endif
// loiter_run - runs the loiter controller
// should be called at 100hz or more
void Copter::ModeLoiter::run()
{
LoiterModeState loiter_state;
float target_roll, target_pitch;
float target_yaw_rate = 0.0f;
float target_climb_rate = 0.0f;
float takeoff_climb_rate = 0.0f;
// initialize vertical speed and acceleration
pos_control->set_speed_z(-get_pilot_speed_dn(), g.pilot_speed_up);
pos_control->set_accel_z(g.pilot_accel_z);
// process pilot inputs unless we are in radio failsafe
if (!copter.failsafe.radio) {
// apply SIMPLE mode transform to pilot inputs
update_simple_mode();
// convert pilot input to lean angles
get_pilot_desired_lean_angles(target_roll, target_pitch, loiter_nav->get_angle_max_cd(), attitude_control->get_althold_lean_angle_max());
// process pilot's roll and pitch input
loiter_nav->set_pilot_desired_acceleration(target_roll, target_pitch, G_Dt);
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
// get pilot desired climb rate
target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->get_control_in());
target_climb_rate = constrain_float(target_climb_rate, -get_pilot_speed_dn(), g.pilot_speed_up);
} else {
// clear out pilot desired acceleration in case radio failsafe event occurs and we do not switch to RTL for some reason
loiter_nav->clear_pilot_desired_acceleration();
}
// relax loiter target if we might be landed
if (ap.land_complete_maybe) {
loiter_nav->soften_for_landing();
}
// Loiter State Machine Determination
if (!motors->armed() || !motors->get_interlock()) {
loiter_state = Loiter_MotorStopped;
} else if (takeoff_state.running || takeoff_triggered(target_climb_rate)) {
loiter_state = Loiter_Takeoff;
} else if (!ap.auto_armed || ap.land_complete) {
loiter_state = Loiter_Landed;
} else {
loiter_state = Loiter_Flying;
}
// Loiter State Machine
switch (loiter_state) {
case Loiter_MotorStopped:
motors->set_desired_spool_state(AP_Motors::DESIRED_SHUT_DOWN);
#if FRAME_CONFIG == HELI_FRAME
// force descent rate and call position controller
pos_control->set_alt_target_from_climb_rate(-abs(g.land_speed), G_Dt, false);
#else
loiter_nav->init_target();
attitude_control->reset_rate_controller_I_terms();
attitude_control->set_yaw_target_to_current_heading();
pos_control->relax_alt_hold_controllers(0.0f); // forces throttle output to go to zero
#endif
loiter_nav->update(ekfGndSpdLimit, ekfNavVelGainScaler);
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(loiter_nav->get_roll(), loiter_nav->get_pitch(), target_yaw_rate);
pos_control->update_z_controller();
break;
case Loiter_Takeoff:
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// initiate take-off
if (!takeoff_state.running) {
takeoff_timer_start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f));
// indicate we are taking off
set_land_complete(false);
// clear i term when we're taking off
set_throttle_takeoff();
}
// get takeoff adjusted pilot and takeoff climb rates
takeoff_get_climb_rates(target_climb_rate, takeoff_climb_rate);
// get avoidance adjusted climb rate
target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate);
// run loiter controller
loiter_nav->update(ekfGndSpdLimit, ekfNavVelGainScaler);
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(loiter_nav->get_roll(), loiter_nav->get_pitch(), target_yaw_rate);
// update altitude target and call position controller
pos_control->set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
pos_control->add_takeoff_climb_rate(takeoff_climb_rate, G_Dt);
pos_control->update_z_controller();
break;
case Loiter_Landed:
// set motors to spin-when-armed if throttle below deadzone, otherwise full range (but motors will only spin at min throttle)
if (target_climb_rate < 0.0f) {
motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
} else {
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
}
loiter_nav->init_target();
attitude_control->reset_rate_controller_I_terms();
attitude_control->set_yaw_target_to_current_heading();
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0);
pos_control->relax_alt_hold_controllers(0.0f); // forces throttle output to go to zero
pos_control->update_z_controller();
break;
case Loiter_Flying:
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
#if PRECISION_LANDING == ENABLED
if (do_precision_loiter()) {
precision_loiter_xy();
}
#endif
// run loiter controller
loiter_nav->update(ekfGndSpdLimit, ekfNavVelGainScaler);
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(loiter_nav->get_roll(), loiter_nav->get_pitch(), target_yaw_rate);
// adjust climb rate using rangefinder
if (copter.rangefinder_alt_ok()) {
// if rangefinder is ok, use surface tracking
target_climb_rate = get_surface_tracking_climb_rate(target_climb_rate, pos_control->get_alt_target(), G_Dt);
}
// get avoidance adjusted climb rate
target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate);
// update altitude target and call position controller
pos_control->set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
pos_control->update_z_controller();
break;
}
}
uint32_t Copter::ModeLoiter::wp_distance() const
{
return loiter_nav->get_distance_to_target();
}
int32_t Copter::ModeLoiter::wp_bearing() const
{
return loiter_nav->get_bearing_to_target();
}