ardupilot/ArduCopter/mode.cpp
2018-04-24 10:44:28 +10:00

626 lines
19 KiB
C++

#include "Copter.h"
/*
* High level calls to set and update flight modes logic for individual
* flight modes is in control_acro.cpp, control_stabilize.cpp, etc
*/
/*
constructor for Mode object
*/
Copter::Mode::Mode(void) :
g(copter.g),
g2(copter.g2),
wp_nav(copter.wp_nav),
loiter_nav(copter.loiter_nav),
pos_control(copter.pos_control),
inertial_nav(copter.inertial_nav),
ahrs(copter.ahrs),
attitude_control(copter.attitude_control),
motors(copter.motors),
channel_roll(copter.channel_roll),
channel_pitch(copter.channel_pitch),
channel_throttle(copter.channel_throttle),
channel_yaw(copter.channel_yaw),
G_Dt(copter.G_Dt),
ap(copter.ap),
takeoff_state(copter.takeoff_state),
ekfGndSpdLimit(copter.ekfGndSpdLimit),
#if FRAME_CONFIG == HELI_FRAME
heli_flags(copter.heli_flags),
#endif
ekfNavVelGainScaler(copter.ekfNavVelGainScaler)
{ };
// return the static controller object corresponding to supplied mode
Copter::Mode *Copter::mode_from_mode_num(const uint8_t mode)
{
Copter::Mode *ret = nullptr;
switch (mode) {
#if MODE_ACRO_ENABLED == ENABLED
case ACRO:
ret = &mode_acro;
break;
#endif
case STABILIZE:
ret = &mode_stabilize;
break;
case ALT_HOLD:
ret = &mode_althold;
break;
#if MODE_AUTO_ENABLED == ENABLED
case AUTO:
ret = &mode_auto;
break;
#endif
#if MODE_CIRCLE_ENABLED == ENABLED
case CIRCLE:
ret = &mode_circle;
break;
#endif
#if MODE_LOITER_ENABLED == ENABLED
case LOITER:
ret = &mode_loiter;
break;
#endif
#if MODE_GUIDED_ENABLED == ENABLED
case GUIDED:
ret = &mode_guided;
break;
#endif
case LAND:
ret = &mode_land;
break;
#if MODE_RTL_ENABLED == ENABLED
case RTL:
ret = &mode_rtl;
break;
#endif
#if MODE_DRIFT_ENABLED == ENABLED
case DRIFT:
ret = &mode_drift;
break;
#endif
#if MODE_SPORT_ENABLED == ENABLED
case SPORT:
ret = &mode_sport;
break;
#endif
case FLIP:
ret = &mode_flip;
break;
#if AUTOTUNE_ENABLED == ENABLED
case AUTOTUNE:
ret = &mode_autotune;
break;
#endif
#if MODE_POSHOLD_ENABLED == ENABLED
case POSHOLD:
ret = &mode_poshold;
break;
#endif
#if MODE_BRAKE_ENABLED == ENABLED
case BRAKE:
ret = &mode_brake;
break;
#endif
#if MODE_THROW_ENABLED == ENABLED
case THROW:
ret = &mode_throw;
break;
#endif
#if ADSB_ENABLED == ENABLED
case AVOID_ADSB:
ret = &mode_avoid_adsb;
break;
#endif
#if MODE_GUIDED_NOGPS_ENABLED == ENABLED
case GUIDED_NOGPS:
ret = &mode_guided_nogps;
break;
#endif
#if MODE_SMARTRTL_ENABLED == ENABLED
case SMART_RTL:
ret = &mode_smartrtl;
break;
#endif
#if OPTFLOW == ENABLED
case FLOWHOLD:
ret = (Copter::Mode *)g2.mode_flowhold_ptr;
break;
#endif
#if MODE_FOLLOW_ENABLED == ENABLED
case FOLLOW:
ret = &mode_follow;
break;
#endif
default:
break;
}
return ret;
}
// set_mode - change flight mode and perform any necessary initialisation
// optional force parameter used to force the flight mode change (used only first time mode is set)
// returns true if mode was successfully set
// ACRO, STABILIZE, ALTHOLD, LAND, DRIFT and SPORT can always be set successfully but the return state of other flight modes should be checked and the caller should deal with failures appropriately
bool Copter::set_mode(control_mode_t mode, mode_reason_t reason)
{
// return immediately if we are already in the desired mode
if (mode == control_mode) {
control_mode_reason = reason;
return true;
}
Copter::Mode *new_flightmode = mode_from_mode_num(mode);
if (new_flightmode == nullptr) {
gcs().send_text(MAV_SEVERITY_WARNING,"No such mode");
Log_Write_Error(ERROR_SUBSYSTEM_FLIGHT_MODE,mode);
return false;
}
bool ignore_checks = !motors->armed(); // allow switching to any mode if disarmed. We rely on the arming check to perform
#if FRAME_CONFIG == HELI_FRAME
// do not allow helis to enter a non-manual throttle mode if the
// rotor runup is not complete
if (!ignore_checks && !new_flightmode->has_manual_throttle() && !motors->rotor_runup_complete()){
gcs().send_text(MAV_SEVERITY_WARNING,"Flight mode change failed");
Log_Write_Error(ERROR_SUBSYSTEM_FLIGHT_MODE,mode);
return false;
}
#endif
if (!new_flightmode->init(ignore_checks)) {
gcs().send_text(MAV_SEVERITY_WARNING,"Flight mode change failed");
Log_Write_Error(ERROR_SUBSYSTEM_FLIGHT_MODE,mode);
return false;
}
// perform any cleanup required by previous flight mode
exit_mode(flightmode, new_flightmode);
// update flight mode
flightmode = new_flightmode;
control_mode = mode;
control_mode_reason = reason;
DataFlash.Log_Write_Mode(control_mode, reason);
#if ADSB_ENABLED == ENABLED
adsb.set_is_auto_mode((mode == AUTO) || (mode == RTL) || (mode == GUIDED));
#endif
#if AC_FENCE == ENABLED
// pilot requested flight mode change during a fence breach indicates pilot is attempting to manually recover
// this flight mode change could be automatic (i.e. fence, battery, GPS or GCS failsafe)
// but it should be harmless to disable the fence temporarily in these situations as well
fence.manual_recovery_start();
#endif
#if FRSKY_TELEM_ENABLED == ENABLED
frsky_telemetry.update_control_mode(control_mode);
#endif
#if DEVO_TELEM_ENABLED == ENABLED
devo_telemetry.update_control_mode(control_mode);
#endif
#if CAMERA == ENABLED
camera.set_is_auto_mode(control_mode == AUTO);
#endif
// update notify object
notify_flight_mode();
// return success
return true;
}
// update_flight_mode - calls the appropriate attitude controllers based on flight mode
// called at 100hz or more
void Copter::update_flight_mode()
{
// Update EKF speed limit - used to limit speed when we are using optical flow
ahrs.getEkfControlLimits(ekfGndSpdLimit, ekfNavVelGainScaler);
flightmode->run();
}
// exit_mode - high level call to organise cleanup as a flight mode is exited
void Copter::exit_mode(Copter::Mode *&old_flightmode,
Copter::Mode *&new_flightmode)
{
#if AUTOTUNE_ENABLED == ENABLED
if (old_flightmode == &mode_autotune) {
mode_autotune.stop();
}
#endif
// stop mission when we leave auto mode
#if MODE_AUTO_ENABLED == ENABLED
if (old_flightmode == &mode_auto) {
if (mission.state() == AP_Mission::MISSION_RUNNING) {
mission.stop();
}
#if MOUNT == ENABLED
camera_mount.set_mode_to_default();
#endif // MOUNT == ENABLED
}
#endif
// smooth throttle transition when switching from manual to automatic flight modes
if (old_flightmode->has_manual_throttle() && !new_flightmode->has_manual_throttle() && motors->armed() && !ap.land_complete) {
// this assumes all manual flight modes use get_pilot_desired_throttle to translate pilot input to output throttle
set_accel_throttle_I_from_pilot_throttle();
}
// cancel any takeoffs in progress
takeoff_stop();
#if MODE_SMARTRTL_ENABLED == ENABLED
// call smart_rtl cleanup
if (old_flightmode == &mode_smartrtl) {
mode_smartrtl.exit();
}
#endif
#if FRAME_CONFIG == HELI_FRAME
// firmly reset the flybar passthrough to false when exiting acro mode.
if (old_flightmode == &mode_acro) {
attitude_control->use_flybar_passthrough(false, false);
motors->set_acro_tail(false);
}
// if we are changing from a mode that did not use manual throttle,
// stab col ramp value should be pre-loaded to the correct value to avoid a twitch
// heli_stab_col_ramp should really only be active switching between Stabilize and Acro modes
if (!old_flightmode->has_manual_throttle()){
if (new_flightmode == &mode_stabilize){
input_manager.set_stab_col_ramp(1.0);
} else if (new_flightmode == &mode_acro){
input_manager.set_stab_col_ramp(0.0);
}
}
#endif //HELI_FRAME
}
// notify_flight_mode - sets notify object based on current flight mode. Only used for OreoLED notify device
void Copter::notify_flight_mode() {
AP_Notify::flags.autopilot_mode = flightmode->is_autopilot();
AP_Notify::flags.flight_mode = control_mode;
notify.set_flight_mode_str(flightmode->name4());
}
void Copter::Mode::update_navigation()
{
// run autopilot to make high level decisions about control modes
run_autopilot();
}
// get_pilot_desired_angle - transform pilot's roll or pitch input into a desired lean angle
// returns desired angle in centi-degrees
void Copter::Mode::get_pilot_desired_lean_angles(float &roll_out, float &pitch_out, float angle_max, float angle_limit) const
{
// fetch roll and pitch inputs
roll_out = channel_roll->get_control_in();
pitch_out = channel_pitch->get_control_in();
// limit max lean angle
angle_limit = constrain_float(angle_limit, 1000.0f, angle_max);
// scale roll and pitch inputs to ANGLE_MAX parameter range
float scaler = angle_max/(float)ROLL_PITCH_YAW_INPUT_MAX;
roll_out *= scaler;
pitch_out *= scaler;
// do circular limit
float total_in = norm(pitch_out, roll_out);
if (total_in > angle_limit) {
float ratio = angle_limit / total_in;
roll_out *= ratio;
pitch_out *= ratio;
}
// do lateral tilt to euler roll conversion
roll_out = (18000/M_PI) * atanf(cosf(pitch_out*(M_PI/18000))*tanf(roll_out*(M_PI/18000)));
// roll_out and pitch_out are returned
}
bool Copter::Mode::takeoff_triggered(const float target_climb_rate) const
{
if (!ap.land_complete) {
// can't take off if we're already flying
return false;
}
if (target_climb_rate <= 0.0f) {
// can't takeoff unless we want to go up...
return false;
}
#if FRAME_CONFIG == HELI_FRAME
if (!motors->rotor_runup_complete()) {
// hold heli on the ground until rotor speed runup has finished
return false;
}
#endif
return true;
}
void Copter::Mode::zero_throttle_and_relax_ac()
{
#if FRAME_CONFIG == HELI_FRAME
// Helicopters always stabilize roll/pitch/yaw
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0.0f, 0.0f, 0.0f);
attitude_control->set_throttle_out(0.0f, false, copter.g.throttle_filt);
#else
motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
// multicopters do not stabilize roll/pitch/yaw when disarmed
attitude_control->set_throttle_out_unstabilized(0.0f, true, copter.g.throttle_filt);
#endif
}
/*
get a height above ground estimate for landing
*/
int32_t Copter::Mode::get_alt_above_ground(void)
{
int32_t alt_above_ground;
if (copter.rangefinder_alt_ok()) {
alt_above_ground = copter.rangefinder_state.alt_cm_filt.get();
} else {
bool navigating = pos_control->is_active_xy();
if (!navigating || !copter.current_loc.get_alt_cm(Location_Class::ALT_FRAME_ABOVE_TERRAIN, alt_above_ground)) {
alt_above_ground = copter.current_loc.alt;
}
}
return alt_above_ground;
}
void Copter::Mode::land_run_vertical_control(bool pause_descent)
{
#if PRECISION_LANDING == ENABLED
AC_PrecLand &precland = copter.precland;
const bool navigating = pos_control->is_active_xy();
bool doing_precision_landing = !ap.land_repo_active && precland.target_acquired() && navigating;
#else
bool doing_precision_landing = false;
#endif
// compute desired velocity
const float precland_acceptable_error = 15.0f;
const float precland_min_descent_speed = 10.0f;
const int32_t alt_above_ground = get_alt_above_ground();
float cmb_rate = 0;
if (!pause_descent) {
float max_land_descent_velocity;
if (g.land_speed_high > 0) {
max_land_descent_velocity = -g.land_speed_high;
} else {
max_land_descent_velocity = pos_control->get_speed_down();
}
// Don't speed up for landing.
max_land_descent_velocity = MIN(max_land_descent_velocity, -abs(g.land_speed));
// Compute a vertical velocity demand such that the vehicle approaches g2.land_alt_low. Without the below constraint, this would cause the vehicle to hover at g2.land_alt_low.
cmb_rate = AC_AttitudeControl::sqrt_controller(MAX(g2.land_alt_low,100)-alt_above_ground, pos_control->get_pos_z_p().kP(), pos_control->get_accel_z(), G_Dt);
// Constrain the demanded vertical velocity so that it is between the configured maximum descent speed and the configured minimum descent speed.
cmb_rate = constrain_float(cmb_rate, max_land_descent_velocity, -abs(g.land_speed));
if (doing_precision_landing && copter.rangefinder_alt_ok() && copter.rangefinder_state.alt_cm > 35.0f && copter.rangefinder_state.alt_cm < 200.0f) {
float max_descent_speed = abs(g.land_speed)/2.0f;
float land_slowdown = MAX(0.0f, pos_control->get_horizontal_error()*(max_descent_speed/precland_acceptable_error));
cmb_rate = MIN(-precland_min_descent_speed, -max_descent_speed+land_slowdown);
}
}
// update altitude target and call position controller
pos_control->set_alt_target_from_climb_rate_ff(cmb_rate, G_Dt, true);
pos_control->update_z_controller();
}
void Copter::Mode::land_run_horizontal_control()
{
LowPassFilterFloat &rc_throttle_control_in_filter = copter.rc_throttle_control_in_filter;
AP_Vehicle::MultiCopter &aparm = copter.aparm;
float target_roll = 0.0f;
float target_pitch = 0.0f;
float target_yaw_rate = 0;
// relax loiter target if we might be landed
if (ap.land_complete_maybe) {
loiter_nav->soften_for_landing();
}
// process pilot inputs
if (!copter.failsafe.radio) {
if ((g.throttle_behavior & THR_BEHAVE_HIGH_THROTTLE_CANCELS_LAND) != 0 && rc_throttle_control_in_filter.get() > LAND_CANCEL_TRIGGER_THR){
copter.Log_Write_Event(DATA_LAND_CANCELLED_BY_PILOT);
// exit land if throttle is high
if (!set_mode(LOITER, MODE_REASON_THROTTLE_LAND_ESCAPE)) {
set_mode(ALT_HOLD, MODE_REASON_THROTTLE_LAND_ESCAPE);
}
}
if (g.land_repositioning) {
// apply SIMPLE mode transform to pilot inputs
update_simple_mode();
// convert pilot input to lean angles
get_pilot_desired_lean_angles(target_roll, target_pitch, loiter_nav->get_angle_max_cd(), attitude_control->get_althold_lean_angle_max());
// record if pilot has overriden roll or pitch
if (!is_zero(target_roll) || !is_zero(target_pitch)) {
ap.land_repo_active = true;
}
}
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
}
#if PRECISION_LANDING == ENABLED
AC_PrecLand &precland = copter.precland;
bool doing_precision_landing = !ap.land_repo_active && precland.target_acquired();
// run precision landing
if (doing_precision_landing) {
Vector2f target_pos, target_vel_rel;
if (!precland.get_target_position_cm(target_pos)) {
target_pos.x = inertial_nav.get_position().x;
target_pos.y = inertial_nav.get_position().y;
}
if (!precland.get_target_velocity_relative_cms(target_vel_rel)) {
target_vel_rel.x = -inertial_nav.get_velocity().x;
target_vel_rel.y = -inertial_nav.get_velocity().y;
}
pos_control->set_xy_target(target_pos.x, target_pos.y);
pos_control->override_vehicle_velocity_xy(-target_vel_rel);
}
#endif
// process roll, pitch inputs
loiter_nav->set_pilot_desired_acceleration(target_roll, target_pitch, G_Dt);
// run loiter controller
loiter_nav->update(ekfGndSpdLimit, ekfNavVelGainScaler);
int32_t nav_roll = loiter_nav->get_roll();
int32_t nav_pitch = loiter_nav->get_pitch();
if (g2.wp_navalt_min > 0) {
// user has requested an altitude below which navigation
// attitude is limited. This is used to prevent commanded roll
// over on landing, which particularly affects helicopters if
// there is any position estimate drift after touchdown. We
// limit attitude to 7 degrees below this limit and linearly
// interpolate for 1m above that
const int alt_above_ground = get_alt_above_ground();
float attitude_limit_cd = linear_interpolate(700, aparm.angle_max, alt_above_ground,
g2.wp_navalt_min*100U, (g2.wp_navalt_min+1)*100U);
float total_angle_cd = norm(nav_roll, nav_pitch);
if (total_angle_cd > attitude_limit_cd) {
float ratio = attitude_limit_cd / total_angle_cd;
nav_roll *= ratio;
nav_pitch *= ratio;
// tell position controller we are applying an external limit
pos_control->set_limit_accel_xy();
}
}
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(nav_roll, nav_pitch, target_yaw_rate);
}
// pass-through functions to reduce code churn on conversion;
// these are candidates for moving into the Mode base
// class.
float Copter::Mode::get_surface_tracking_climb_rate(int16_t target_rate, float current_alt_target, float dt)
{
return copter.get_surface_tracking_climb_rate(target_rate, current_alt_target, dt);
}
float Copter::Mode::get_pilot_desired_yaw_rate(int16_t stick_angle)
{
return copter.get_pilot_desired_yaw_rate(stick_angle);
}
float Copter::Mode::get_pilot_desired_climb_rate(float throttle_control)
{
return copter.get_pilot_desired_climb_rate(throttle_control);
}
float Copter::Mode::get_pilot_desired_throttle(int16_t throttle_control, float thr_mid)
{
return copter.get_pilot_desired_throttle(throttle_control, thr_mid);
}
float Copter::Mode::get_non_takeoff_throttle()
{
return copter.get_non_takeoff_throttle();
}
void Copter::Mode::update_simple_mode(void) {
copter.update_simple_mode();
}
bool Copter::Mode::set_mode(control_mode_t mode, mode_reason_t reason)
{
return copter.set_mode(mode, reason);
}
void Copter::Mode::set_land_complete(bool b)
{
return copter.set_land_complete(b);
}
GCS_Copter &Copter::Mode::gcs()
{
return copter.gcs();
}
void Copter::Mode::Log_Write_Event(uint8_t id)
{
return copter.Log_Write_Event(id);
}
void Copter::Mode::set_throttle_takeoff()
{
return copter.set_throttle_takeoff();
}
void Copter::Mode::takeoff_timer_start(float alt_cm)
{
return copter.takeoff_timer_start(alt_cm);
}
void Copter::Mode::takeoff_stop()
{
return copter.takeoff_stop();
}
void Copter::Mode::takeoff_get_climb_rates(float& pilot_climb_rate, float& takeoff_climb_rate)
{
return copter.takeoff_get_climb_rates(pilot_climb_rate, takeoff_climb_rate);
}
float Copter::Mode::get_avoidance_adjusted_climbrate(float target_rate)
{
return copter.get_avoidance_adjusted_climbrate(target_rate);
}
uint16_t Copter::Mode::get_pilot_speed_dn()
{
return copter.get_pilot_speed_dn();
}