ardupilot/libraries/AP_GPS/AP_GPS_UAVCAN.cpp

909 lines
33 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//
// UAVCAN GPS driver
//
#include <AP_HAL/AP_HAL.h>
#if HAL_ENABLE_LIBUAVCAN_DRIVERS
#include "AP_GPS_UAVCAN.h"
#include <AP_CANManager/AP_CANManager.h>
#include <AP_UAVCAN/AP_UAVCAN.h>
#include <GCS_MAVLink/GCS.h>
#include <AP_Logger/AP_Logger.h>
#include <uavcan/equipment/gnss/Fix2.hpp>
#include <uavcan/equipment/gnss/Auxiliary.hpp>
#include <ardupilot/gnss/Heading.hpp>
#include <ardupilot/gnss/Status.hpp>
#if GPS_MOVING_BASELINE
#include <ardupilot/gnss/MovingBaselineData.hpp>
#include <ardupilot/gnss/RelPosHeading.hpp>
#endif
#include <AP_BoardConfig/AP_BoardConfig.h>
#define GPS_PPS_EMULATION 0
extern const AP_HAL::HAL& hal;
#define GPS_UAVCAN_DEBUGGING 0
#if GPS_UAVCAN_DEBUGGING
#if defined(HAL_BUILD_AP_PERIPH)
extern "C" {
void can_printf(const char *fmt, ...);
}
# define Debug(fmt, args ...) do {can_printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args);} while(0)
#else
# define Debug(fmt, args ...) do {hal.console->printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args); hal.scheduler->delay(1); } while(0)
#endif
#else
# define Debug(fmt, args ...)
#endif
#define LOG_TAG "GPS"
UC_REGISTRY_BINDER(Fix2Cb, uavcan::equipment::gnss::Fix2);
UC_REGISTRY_BINDER(AuxCb, uavcan::equipment::gnss::Auxiliary);
UC_REGISTRY_BINDER(HeadingCb, ardupilot::gnss::Heading);
UC_REGISTRY_BINDER(StatusCb, ardupilot::gnss::Status);
#if GPS_MOVING_BASELINE
UC_REGISTRY_BINDER(MovingBaselineDataCb, ardupilot::gnss::MovingBaselineData);
UC_REGISTRY_BINDER(RelPosHeadingCb, ardupilot::gnss::RelPosHeading);
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#define NATIVE_TIME_OFFSET (AP_HAL::micros64() - AP_HAL::native_micros64())
#else
#define NATIVE_TIME_OFFSET 0
#endif
AP_GPS_UAVCAN::DetectedModules AP_GPS_UAVCAN::_detected_modules[];
HAL_Semaphore AP_GPS_UAVCAN::_sem_registry;
// Member Methods
AP_GPS_UAVCAN::AP_GPS_UAVCAN(AP_GPS &_gps, AP_GPS::GPS_State &_state, AP_GPS::GPS_Role _role) :
AP_GPS_Backend(_gps, _state, nullptr),
interim_state(_state),
role(_role)
{
param_int_cb = FUNCTOR_BIND_MEMBER(&AP_GPS_UAVCAN::handle_param_get_set_response_int, bool, AP_UAVCAN*, const uint8_t, const char*, int32_t &);
param_float_cb = FUNCTOR_BIND_MEMBER(&AP_GPS_UAVCAN::handle_param_get_set_response_float, bool, AP_UAVCAN*, const uint8_t, const char*, float &);
param_save_cb = FUNCTOR_BIND_MEMBER(&AP_GPS_UAVCAN::handle_param_save_response, void, AP_UAVCAN*, const uint8_t, bool);
}
AP_GPS_UAVCAN::~AP_GPS_UAVCAN()
{
WITH_SEMAPHORE(_sem_registry);
_detected_modules[_detected_module].driver = nullptr;
#if GPS_MOVING_BASELINE
if (rtcm3_parser != nullptr) {
delete rtcm3_parser;
}
#endif
}
void AP_GPS_UAVCAN::subscribe_msgs(AP_UAVCAN* ap_uavcan)
{
if (ap_uavcan == nullptr) {
return;
}
auto* node = ap_uavcan->get_node();
uavcan::Subscriber<uavcan::equipment::gnss::Fix2, Fix2Cb> *gnss_fix2;
gnss_fix2 = new uavcan::Subscriber<uavcan::equipment::gnss::Fix2, Fix2Cb>(*node);
if (gnss_fix2 == nullptr) {
AP_BoardConfig::allocation_error("gnss_fix2");
}
const int gnss_fix2_start_res = gnss_fix2->start(Fix2Cb(ap_uavcan, &handle_fix2_msg_trampoline));
if (gnss_fix2_start_res < 0) {
AP_HAL::panic("UAVCAN GNSS subscriber start problem\n\r");
}
uavcan::Subscriber<uavcan::equipment::gnss::Auxiliary, AuxCb> *gnss_aux;
gnss_aux = new uavcan::Subscriber<uavcan::equipment::gnss::Auxiliary, AuxCb>(*node);
if (gnss_aux == nullptr) {
AP_BoardConfig::allocation_error("gnss_aux");
}
const int gnss_aux_start_res = gnss_aux->start(AuxCb(ap_uavcan, &handle_aux_msg_trampoline));
if (gnss_aux_start_res < 0) {
AP_HAL::panic("UAVCAN GNSS subscriber start problem\n\r");
}
uavcan::Subscriber<ardupilot::gnss::Heading, HeadingCb> *gnss_heading;
gnss_heading = new uavcan::Subscriber<ardupilot::gnss::Heading, HeadingCb>(*node);
if (gnss_heading == nullptr) {
AP_BoardConfig::allocation_error("gnss_heading");
}
const int gnss_heading_start_res = gnss_heading->start(HeadingCb(ap_uavcan, &handle_heading_msg_trampoline));
if (gnss_heading_start_res < 0) {
AP_HAL::panic("UAVCAN GNSS subscriber start problem\n\r");
}
uavcan::Subscriber<ardupilot::gnss::Status, StatusCb> *gnss_status;
gnss_status = new uavcan::Subscriber<ardupilot::gnss::Status, StatusCb>(*node);
if (gnss_status == nullptr) {
AP_BoardConfig::allocation_error("gnss_status");
}
const int gnss_status_start_res = gnss_status->start(StatusCb(ap_uavcan, &handle_status_msg_trampoline));
if (gnss_status_start_res < 0) {
AP_HAL::panic("UAVCAN GNSS subscriber start problem\n\r");
}
#if GPS_MOVING_BASELINE
uavcan::Subscriber<ardupilot::gnss::MovingBaselineData, MovingBaselineDataCb> *gnss_moving_baseline;
gnss_moving_baseline = new uavcan::Subscriber<ardupilot::gnss::MovingBaselineData, MovingBaselineDataCb>(*node);
if (gnss_moving_baseline == nullptr) {
AP_BoardConfig::allocation_error("gnss_moving_baseline");
}
const int gnss_moving_baseline_start_res = gnss_moving_baseline->start(MovingBaselineDataCb(ap_uavcan, &handle_moving_baseline_msg_trampoline));
if (gnss_moving_baseline_start_res < 0) {
AP_HAL::panic("UAVCAN GNSS subscriber start problem\n\r");
}
uavcan::Subscriber<ardupilot::gnss::RelPosHeading, RelPosHeadingCb> *gnss_relposheading;
gnss_relposheading = new uavcan::Subscriber<ardupilot::gnss::RelPosHeading, RelPosHeadingCb>(*node);
if (gnss_relposheading == nullptr) {
AP_BoardConfig::allocation_error("gnss_relposheading");
}
const int gnss_relposheading_start_res = gnss_relposheading->start(RelPosHeadingCb(ap_uavcan, &handle_relposheading_msg_trampoline));
if (gnss_relposheading_start_res < 0) {
AP_HAL::panic("UAVCAN GNSS subscriber start problem\n\r");
}
#endif
}
AP_GPS_Backend* AP_GPS_UAVCAN::probe(AP_GPS &_gps, AP_GPS::GPS_State &_state)
{
WITH_SEMAPHORE(_sem_registry);
int8_t found_match = -1, last_match = -1;
AP_GPS_UAVCAN* backend = nullptr;
bool bad_override_config = false;
for (int8_t i = GPS_MAX_RECEIVERS - 1; i >= 0; i--) {
if (_detected_modules[i].driver == nullptr && _detected_modules[i].ap_uavcan != nullptr) {
if (_gps._override_node_id[_state.instance] != 0 &&
_gps._override_node_id[_state.instance] != _detected_modules[i].node_id) {
continue; // This device doesn't match the correct node
}
last_match = found_match;
for (uint8_t j = 0; j < GPS_MAX_RECEIVERS; j++) {
if (_detected_modules[i].node_id == _gps._override_node_id[j] &&
(j != _state.instance)) {
//wrong instance
found_match = -1;
break;
}
found_match = i;
}
// Handle Duplicate overrides
for (uint8_t j = 0; j < GPS_MAX_RECEIVERS; j++) {
if (_gps._override_node_id[i] != 0 && (i != j) &&
_gps._override_node_id[i] == _gps._override_node_id[j]) {
bad_override_config = true;
}
}
if (bad_override_config) {
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "Same Node Id %lu set for multiple GPS", (unsigned long int)_gps._override_node_id[i].get());
last_match = i;
}
if (found_match == -1) {
found_match = last_match;
continue;
}
break;
}
}
if (found_match == -1) {
return NULL;
}
// initialise the backend based on the UAVCAN Moving baseline selection
switch (_gps.get_type(_state.instance)) {
case AP_GPS::GPS_TYPE_UAVCAN:
backend = new AP_GPS_UAVCAN(_gps, _state, AP_GPS::GPS_ROLE_NORMAL);
break;
#if GPS_MOVING_BASELINE
case AP_GPS::GPS_TYPE_UAVCAN_RTK_BASE:
backend = new AP_GPS_UAVCAN(_gps, _state, AP_GPS::GPS_ROLE_MB_BASE);
break;
case AP_GPS::GPS_TYPE_UAVCAN_RTK_ROVER:
backend = new AP_GPS_UAVCAN(_gps, _state, AP_GPS::GPS_ROLE_MB_ROVER);
break;
#endif
default:
return NULL;
}
if (backend == nullptr) {
AP::can().log_text(AP_CANManager::LOG_ERROR,
LOG_TAG,
"Failed to register UAVCAN GPS Node %d on Bus %d\n",
_detected_modules[found_match].node_id,
_detected_modules[found_match].ap_uavcan->get_driver_index());
} else {
_detected_modules[found_match].driver = backend;
backend->_detected_module = found_match;
AP::can().log_text(AP_CANManager::LOG_INFO,
LOG_TAG,
"Registered UAVCAN GPS Node %d on Bus %d as instance %d\n",
_detected_modules[found_match].node_id,
_detected_modules[found_match].ap_uavcan->get_driver_index(),
_state.instance);
snprintf(backend->_name, ARRAY_SIZE(backend->_name), "UAVCAN%u-%u", _detected_modules[found_match].ap_uavcan->get_driver_index()+1, _detected_modules[found_match].node_id);
_detected_modules[found_match].instance = _state.instance;
for (uint8_t i=0; i < GPS_MAX_RECEIVERS; i++) {
if (_detected_modules[found_match].node_id == AP::gps()._node_id[i]) {
if (i == _state.instance) {
// Nothing to do here
break;
}
// else swap
uint8_t tmp = AP::gps()._node_id[_state.instance].get();
AP::gps()._node_id[_state.instance].set_and_notify(_detected_modules[found_match].node_id);
AP::gps()._node_id[i].set_and_notify(tmp);
}
}
#if GPS_MOVING_BASELINE
if (backend->role == AP_GPS::GPS_ROLE_MB_BASE) {
backend->rtcm3_parser = new RTCM3_Parser;
if (backend->rtcm3_parser == nullptr) {
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "UAVCAN%u-%u: failed RTCMv3 parser allocation", _detected_modules[found_match].ap_uavcan->get_driver_index()+1, _detected_modules[found_match].node_id);
}
}
#endif // GPS_MOVING_BASELINE
}
return backend;
}
bool AP_GPS_UAVCAN::backends_healthy(char failure_msg[], uint16_t failure_msg_len)
{
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS; i++) {
bool overriden_node_found = false;
bool bad_override_config = false;
if (AP::gps()._override_node_id[i] == 0) {
//anything goes
continue;
}
for (uint8_t j = 0; j < GPS_MAX_RECEIVERS; j++) {
if (AP::gps()._override_node_id[i] == AP::gps()._override_node_id[j] && (i != j)) {
bad_override_config = true;
break;
}
if (i == _detected_modules[j].instance && _detected_modules[j].driver) {
if (AP::gps()._override_node_id[i] == _detected_modules[j].node_id) {
overriden_node_found = true;
break;
}
}
}
if (bad_override_config) {
snprintf(failure_msg, failure_msg_len, "Same Node Id %lu set for multiple GPS", (unsigned long int)AP::gps()._override_node_id[i].get());
return false;
}
if (!overriden_node_found) {
snprintf(failure_msg, failure_msg_len, "Selected GPS Node %lu not set as instance %d", (unsigned long int)AP::gps()._override_node_id[i].get(), i + 1);
return false;
}
}
return true;
}
AP_GPS_UAVCAN* AP_GPS_UAVCAN::get_uavcan_backend(AP_UAVCAN* ap_uavcan, uint8_t node_id)
{
if (ap_uavcan == nullptr) {
return nullptr;
}
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS; i++) {
if (_detected_modules[i].driver != nullptr &&
_detected_modules[i].ap_uavcan == ap_uavcan &&
_detected_modules[i].node_id == node_id) {
return _detected_modules[i].driver;
}
}
bool already_detected = false;
// Check if there's an empty spot for possible registeration
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS; i++) {
if (_detected_modules[i].ap_uavcan == ap_uavcan && _detected_modules[i].node_id == node_id) {
// Already Detected
already_detected = true;
break;
}
}
if (!already_detected) {
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS; i++) {
if (_detected_modules[i].ap_uavcan == nullptr) {
_detected_modules[i].ap_uavcan = ap_uavcan;
_detected_modules[i].node_id = node_id;
// Just set the Node ID in order of appearance
// This will be used to set select ids
AP::gps()._node_id[i].set_and_notify(node_id);
break;
}
}
}
struct DetectedModules tempslot;
// Sort based on the node_id, larger values first
// we do this, so that we have repeatable GPS
// registration
for (uint8_t i = 1; i < GPS_MAX_RECEIVERS; i++) {
for (uint8_t j = i; j > 0; j--) {
if (_detected_modules[j].node_id > _detected_modules[j-1].node_id) {
tempslot = _detected_modules[j];
_detected_modules[j] = _detected_modules[j-1];
_detected_modules[j-1] = tempslot;
// also fix the _detected_module in the driver so that RTCM injection
// can determine if it has the bus to itself
if (_detected_modules[j].driver) {
_detected_modules[j].driver->_detected_module = j;
}
if (_detected_modules[j-1].driver) {
_detected_modules[j-1].driver->_detected_module = j-1;
}
}
}
}
return nullptr;
}
/*
handle velocity element of message
*/
void AP_GPS_UAVCAN::handle_velocity(const float vx, const float vy, const float vz)
{
if (!uavcan::isNaN(vx)) {
const Vector3f vel(vx, vy, vz);
interim_state.velocity = vel;
velocity_to_speed_course(interim_state);
// assume we have vertical velocity if we ever get a non-zero Z velocity
if (!isnan(vel.z) && !is_zero(vel.z)) {
interim_state.have_vertical_velocity = true;
} else {
interim_state.have_vertical_velocity = state.have_vertical_velocity;
}
} else {
interim_state.have_vertical_velocity = false;
}
}
void AP_GPS_UAVCAN::handle_fix2_msg(const Fix2Cb &cb)
{
bool process = false;
seen_fix2 = true;
WITH_SEMAPHORE(sem);
if (cb.msg->status == uavcan::equipment::gnss::Fix2::STATUS_NO_FIX) {
interim_state.status = AP_GPS::GPS_Status::NO_FIX;
} else {
if (cb.msg->status == uavcan::equipment::gnss::Fix2::STATUS_TIME_ONLY) {
interim_state.status = AP_GPS::GPS_Status::NO_FIX;
} else if (cb.msg->status == uavcan::equipment::gnss::Fix2::STATUS_2D_FIX) {
interim_state.status = AP_GPS::GPS_Status::GPS_OK_FIX_2D;
process = true;
} else if (cb.msg->status == uavcan::equipment::gnss::Fix2::STATUS_3D_FIX) {
interim_state.status = AP_GPS::GPS_Status::GPS_OK_FIX_3D;
process = true;
}
if (cb.msg->gnss_time_standard == uavcan::equipment::gnss::Fix2::GNSS_TIME_STANDARD_UTC) {
uint64_t epoch_ms = uavcan::UtcTime(cb.msg->gnss_timestamp).toUSec();
if (epoch_ms != 0) {
epoch_ms /= 1000;
uint64_t gps_ms = epoch_ms - UNIX_OFFSET_MSEC;
interim_state.time_week = (uint16_t)(gps_ms / AP_MSEC_PER_WEEK);
interim_state.time_week_ms = (uint32_t)(gps_ms - (interim_state.time_week) * AP_MSEC_PER_WEEK);
}
}
if (interim_state.status == AP_GPS::GPS_Status::GPS_OK_FIX_3D) {
if (cb.msg->mode == uavcan::equipment::gnss::Fix2::MODE_DGPS) {
interim_state.status = AP_GPS::GPS_Status::GPS_OK_FIX_3D_DGPS;
} else if (cb.msg->mode == uavcan::equipment::gnss::Fix2::MODE_RTK) {
if (cb.msg->sub_mode == uavcan::equipment::gnss::Fix2::SUB_MODE_RTK_FLOAT) {
interim_state.status = AP_GPS::GPS_Status::GPS_OK_FIX_3D_RTK_FLOAT;
} else if (cb.msg->sub_mode == uavcan::equipment::gnss::Fix2::SUB_MODE_RTK_FIXED) {
interim_state.status = AP_GPS::GPS_Status::GPS_OK_FIX_3D_RTK_FIXED;
}
}
}
}
if (process) {
Location loc = { };
loc.lat = cb.msg->latitude_deg_1e8 / 10;
loc.lng = cb.msg->longitude_deg_1e8 / 10;
const int32_t alt_amsl_cm = cb.msg->height_msl_mm / 10;
interim_state.have_undulation = true;
interim_state.undulation = (cb.msg->height_msl_mm - cb.msg->height_ellipsoid_mm) * 0.001;
interim_state.location = loc;
set_alt_amsl_cm(interim_state, alt_amsl_cm);
handle_velocity(cb.msg->ned_velocity[0], cb.msg->ned_velocity[1], cb.msg->ned_velocity[2]);
if (cb.msg->covariance.size() == 6) {
if (!uavcan::isNaN(cb.msg->covariance[0])) {
interim_state.horizontal_accuracy = sqrtf(cb.msg->covariance[0]);
interim_state.have_horizontal_accuracy = true;
} else {
interim_state.have_horizontal_accuracy = false;
}
if (!uavcan::isNaN(cb.msg->covariance[2])) {
interim_state.vertical_accuracy = sqrtf(cb.msg->covariance[2]);
interim_state.have_vertical_accuracy = true;
} else {
interim_state.have_vertical_accuracy = false;
}
if (!uavcan::isNaN(cb.msg->covariance[3]) &&
!uavcan::isNaN(cb.msg->covariance[4]) &&
!uavcan::isNaN(cb.msg->covariance[5])) {
interim_state.speed_accuracy = sqrtf((cb.msg->covariance[3] + cb.msg->covariance[4] + cb.msg->covariance[5])/3);
interim_state.have_speed_accuracy = true;
} else {
interim_state.have_speed_accuracy = false;
}
}
interim_state.num_sats = cb.msg->sats_used;
} else {
interim_state.have_vertical_velocity = false;
interim_state.have_vertical_accuracy = false;
interim_state.have_horizontal_accuracy = false;
interim_state.have_speed_accuracy = false;
interim_state.num_sats = 0;
}
if (!seen_aux) {
// if we haven't seen an Aux message then populate vdop and
// hdop from pdop. Some GPS modules don't provide the Aux message
interim_state.hdop = interim_state.vdop = cb.msg->pdop * 100.0;
}
if ((cb.msg->timestamp.usec > cb.msg->gnss_timestamp.usec) && (cb.msg->gnss_timestamp.usec > 0)) {
// we have a valid timestamp based on gnss_timestamp timescale, we can use that to correct our gps message time
interim_state.last_corrected_gps_time_us = jitter_correction.correct_offboard_timestamp_usec(cb.msg->timestamp.usec, (cb.msg->getUtcTimestamp().toUSec() + NATIVE_TIME_OFFSET));
interim_state.last_gps_time_ms = interim_state.last_corrected_gps_time_us/1000U;
interim_state.last_corrected_gps_time_us -= cb.msg->timestamp.usec - cb.msg->gnss_timestamp.usec;
// this is also the time the message was received on the UART on other end.
interim_state.corrected_timestamp_updated = true;
} else {
interim_state.last_gps_time_ms = jitter_correction.correct_offboard_timestamp_usec(cb.msg->timestamp.usec, cb.msg->getUtcTimestamp().toUSec() + NATIVE_TIME_OFFSET)/1000U;
}
#if GPS_PPS_EMULATION
// Emulates a PPS signal, can be used to check how close are we to real GPS time
static virtual_timer_t timeout_vt;
hal.gpio->pinMode(51, 1);
auto handle_timeout = [](void *arg)
{
(void)arg;
//we are called from ISR context
chSysLockFromISR();
hal.gpio->toggle(51);
chSysUnlockFromISR();
};
static uint64_t next_toggle, last_toggle;
next_toggle = (cb.msg->timestamp.usec) + (1000000ULL - ((cb.msg->timestamp.usec) % 1000000ULL));
next_toggle += jitter_correction.get_link_offset_usec();
if (next_toggle != last_toggle) {
chVTSet(&timeout_vt, chTimeUS2I(next_toggle - AP_HAL::micros64()), handle_timeout, nullptr);
last_toggle = next_toggle;
}
#endif
_new_data = true;
if (!seen_message) {
if (interim_state.status == AP_GPS::GPS_Status::NO_GPS) {
// the first time we see a fix message we change from
// NO_GPS to NO_FIX, indicating to user that a UAVCAN GPS
// has been seen
interim_state.status = AP_GPS::GPS_Status::NO_FIX;
}
seen_message = true;
}
}
void AP_GPS_UAVCAN::handle_aux_msg(const AuxCb &cb)
{
WITH_SEMAPHORE(sem);
if (!uavcan::isNaN(cb.msg->hdop)) {
seen_aux = true;
interim_state.hdop = cb.msg->hdop * 100.0;
}
if (!uavcan::isNaN(cb.msg->vdop)) {
seen_aux = true;
interim_state.vdop = cb.msg->vdop * 100.0;
}
}
void AP_GPS_UAVCAN::handle_heading_msg(const HeadingCb &cb)
{
#if GPS_MOVING_BASELINE
if (seen_relposheading && gps.mb_params[interim_state.instance].type.get() != 0) {
// we prefer to use the relposheading to get yaw as it allows
// the user to more easily control the relative antenna positions
return;
}
#endif
WITH_SEMAPHORE(sem);
if (interim_state.gps_yaw_configured == false) {
interim_state.gps_yaw_configured = cb.msg->heading_valid;
}
interim_state.have_gps_yaw = cb.msg->heading_valid;
interim_state.gps_yaw = degrees(cb.msg->heading_rad);
if (interim_state.have_gps_yaw) {
interim_state.gps_yaw_time_ms = AP_HAL::millis();
}
interim_state.have_gps_yaw_accuracy = cb.msg->heading_accuracy_valid;
interim_state.gps_yaw_accuracy = degrees(cb.msg->heading_accuracy_rad);
}
void AP_GPS_UAVCAN::handle_status_msg(const StatusCb &cb)
{
WITH_SEMAPHORE(sem);
seen_status = true;
healthy = cb.msg->healthy;
status_flags = cb.msg->status;
if (error_code != cb.msg->error_codes) {
AP::logger().Write_MessageF("GPS %d: error changed (0x%08x/0x%08x)",
(unsigned int)(state.instance + 1),
error_code,
cb.msg->error_codes);
error_code = cb.msg->error_codes;
}
}
#if GPS_MOVING_BASELINE
/*
handle moving baseline data.
*/
void AP_GPS_UAVCAN::handle_moving_baseline_msg(const MovingBaselineDataCb &cb, uint8_t node_id)
{
WITH_SEMAPHORE(sem);
if (role != AP_GPS::GPS_ROLE_MB_BASE) {
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "Incorrect Role set for UAVCAN GPS, %d should be Base", node_id);
return;
}
if (rtcm3_parser == nullptr) {
return;
}
for (const auto &c : cb.msg->data) {
rtcm3_parser->read(c);
}
}
/*
handle relposheading message
*/
void AP_GPS_UAVCAN::handle_relposheading_msg(const RelPosHeadingCb &cb, uint8_t node_id)
{
WITH_SEMAPHORE(sem);
interim_state.gps_yaw_configured = true;
seen_relposheading = true;
// push raw heading data to calculate moving baseline heading states
if (calculate_moving_base_yaw(interim_state,
cb.msg->reported_heading_deg,
cb.msg->relative_distance_m,
cb.msg->relative_down_pos_m)) {
if (cb.msg->reported_heading_acc_available) {
interim_state.gps_yaw_accuracy = cb.msg->reported_heading_acc_deg;
}
interim_state.have_gps_yaw_accuracy = cb.msg->reported_heading_acc_available;
}
}
// support for retrieving RTCMv3 data from a moving baseline base
bool AP_GPS_UAVCAN::get_RTCMV3(const uint8_t *&bytes, uint16_t &len)
{
WITH_SEMAPHORE(sem);
if (rtcm3_parser != nullptr) {
len = rtcm3_parser->get_len(bytes);
return len > 0;
}
return false;
}
// clear previous RTCM3 packet
void AP_GPS_UAVCAN::clear_RTCMV3(void)
{
WITH_SEMAPHORE(sem);
if (rtcm3_parser != nullptr) {
rtcm3_parser->clear_packet();
}
}
#endif // GPS_MOVING_BASELINE
void AP_GPS_UAVCAN::handle_fix2_msg_trampoline(AP_UAVCAN* ap_uavcan, uint8_t node_id, const Fix2Cb &cb)
{
WITH_SEMAPHORE(_sem_registry);
AP_GPS_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id);
if (driver != nullptr) {
driver->handle_fix2_msg(cb);
}
}
void AP_GPS_UAVCAN::handle_aux_msg_trampoline(AP_UAVCAN* ap_uavcan, uint8_t node_id, const AuxCb &cb)
{
WITH_SEMAPHORE(_sem_registry);
AP_GPS_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id);
if (driver != nullptr) {
driver->handle_aux_msg(cb);
}
}
void AP_GPS_UAVCAN::handle_heading_msg_trampoline(AP_UAVCAN* ap_uavcan, uint8_t node_id, const HeadingCb &cb)
{
WITH_SEMAPHORE(_sem_registry);
AP_GPS_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id);
if (driver != nullptr) {
driver->handle_heading_msg(cb);
}
}
void AP_GPS_UAVCAN::handle_status_msg_trampoline(AP_UAVCAN* ap_uavcan, uint8_t node_id, const StatusCb &cb)
{
WITH_SEMAPHORE(_sem_registry);
AP_GPS_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id);
if (driver != nullptr) {
driver->handle_status_msg(cb);
}
}
#if GPS_MOVING_BASELINE
// Moving Baseline msg trampoline
void AP_GPS_UAVCAN::handle_moving_baseline_msg_trampoline(AP_UAVCAN* ap_uavcan, uint8_t node_id, const MovingBaselineDataCb &cb)
{
WITH_SEMAPHORE(_sem_registry);
AP_GPS_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id);
if (driver != nullptr) {
driver->handle_moving_baseline_msg(cb, node_id);
}
}
// RelPosHeading msg trampoline
void AP_GPS_UAVCAN::handle_relposheading_msg_trampoline(AP_UAVCAN* ap_uavcan, uint8_t node_id, const RelPosHeadingCb &cb)
{
WITH_SEMAPHORE(_sem_registry);
AP_GPS_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id);
if (driver != nullptr) {
driver->handle_relposheading_msg(cb, node_id);
}
}
#endif
bool AP_GPS_UAVCAN::do_config()
{
AP_UAVCAN *ap_uavcan = _detected_modules[_detected_module].ap_uavcan;
if (ap_uavcan == nullptr) {
return false;
}
uint8_t node_id = _detected_modules[_detected_module].node_id;
switch(cfg_step) {
case STEP_SET_TYPE:
ap_uavcan->get_parameter_on_node(node_id, "GPS_TYPE", &param_int_cb);
break;
case STEP_SET_MB_CAN_TX:
if (role != AP_GPS::GPS_Role::GPS_ROLE_NORMAL) {
ap_uavcan->get_parameter_on_node(node_id, "GPS_MB_ONLY_PORT", &param_int_cb);
} else {
cfg_step++;
}
break;
case STEP_SAVE_AND_REBOOT:
if (requires_save_and_reboot) {
ap_uavcan->save_parameters_on_node(node_id, &param_save_cb);
} else {
cfg_step++;
}
break;
case STEP_FINISHED:
return true;
default:
break;
}
return false;
}
// Consume new data and mark it received
bool AP_GPS_UAVCAN::read(void)
{
if (gps._auto_config >= AP_GPS::GPS_AUTO_CONFIG_ENABLE_ALL) {
if (!do_config()) {
return false;
}
}
WITH_SEMAPHORE(sem);
if (_new_data) {
_new_data = false;
// the encoding of accuracies in UAVCAN can result in infinite
// values. These cause problems with blending. Use 1000m and 1000m/s instead
interim_state.horizontal_accuracy = MIN(interim_state.horizontal_accuracy, 1000.0);
interim_state.vertical_accuracy = MIN(interim_state.vertical_accuracy, 1000.0);
interim_state.speed_accuracy = MIN(interim_state.speed_accuracy, 1000.0);
state = interim_state;
if (interim_state.last_corrected_gps_time_us) {
// If we were able to get a valid last_corrected_gps_time_us
// we have had a valid GPS message time, from which we calculate
// the time of week.
_last_itow_ms = interim_state.time_week_ms;
_have_itow = true;
}
return true;
}
if (!seen_message) {
// start with NO_GPS until we get first packet
state.status = AP_GPS::GPS_Status::NO_GPS;
}
return false;
}
bool AP_GPS_UAVCAN::is_healthy(void) const
{
// if we don't have any health reports, assume it's healthy
if (!seen_status) {
return true;
}
return healthy;
}
bool AP_GPS_UAVCAN::logging_healthy(void) const
{
// if we don't have status, assume it's valid
if (!seen_status) {
return true;
}
return (status_flags & ardupilot::gnss::Status::STATUS_LOGGING) != 0;
}
bool AP_GPS_UAVCAN::is_configured(void) const
{
// if we don't have status assume it's configured
if (!seen_status) {
return true;
}
return (status_flags & ardupilot::gnss::Status::STATUS_ARMABLE) != 0;
}
/*
handle RTCM data from MAVLink GPS_RTCM_DATA, forwarding it over MAVLink
*/
void AP_GPS_UAVCAN::inject_data(const uint8_t *data, uint16_t len)
{
// we only handle this if we are the first UAVCAN GPS or we are
// using a different uavcan instance than the first GPS, as we
// send the data as broadcast on all UAVCAN devive ports and we
// don't want to send duplicates
const uint32_t now_ms = AP_HAL::millis();
if (_detected_module == 0 ||
_detected_modules[_detected_module].ap_uavcan != _detected_modules[0].ap_uavcan ||
now_ms - _detected_modules[0].last_inject_ms > 2000) {
_detected_modules[_detected_module].ap_uavcan->send_RTCMStream(data, len);
_detected_modules[_detected_module].last_inject_ms = now_ms;
}
}
/*
handle param get/set response
*/
bool AP_GPS_UAVCAN::handle_param_get_set_response_int(AP_UAVCAN* ap_uavcan, uint8_t node_id, const char* name, int32_t &value)
{
Debug("AP_GPS_UAVCAN: param set/get response from %d %s %ld\n", node_id, name, value);
if (strcmp(name, "GPS_TYPE") == 0 && cfg_step == STEP_SET_TYPE) {
if (role == AP_GPS::GPS_ROLE_MB_BASE && value != AP_GPS::GPS_TYPE_UBLOX_RTK_BASE) {
value = (int32_t)AP_GPS::GPS_TYPE_UBLOX_RTK_BASE;
requires_save_and_reboot = true;
return true;
} else if (role == AP_GPS::GPS_ROLE_MB_ROVER && value != AP_GPS::GPS_TYPE_UBLOX_RTK_ROVER) {
value = (int32_t)AP_GPS::GPS_TYPE_UBLOX_RTK_ROVER;
requires_save_and_reboot = true;
return true;
} else {
cfg_step++;
}
}
if (strcmp(name, "GPS_MB_ONLY_PORT") == 0 && cfg_step == STEP_SET_MB_CAN_TX) {
if (option_set(AP_GPS::UAVCAN_MBUseDedicatedBus) && !value) {
// set up so that another CAN port is used for the Moving Baseline Data
// setting this value will allow another CAN port to be used as dedicated
// line for the Moving Baseline Data
value = 1;
requires_save_and_reboot = true;
return true;
} else if (!option_set(AP_GPS::UAVCAN_MBUseDedicatedBus) && value) {
// set up so that all CAN ports are used for the Moving Baseline Data
value = 0;
requires_save_and_reboot = true;
return true;
} else {
cfg_step++;
}
}
return false;
}
bool AP_GPS_UAVCAN::handle_param_get_set_response_float(AP_UAVCAN* ap_uavcan, uint8_t node_id, const char* name, float &value)
{
Debug("AP_GPS_UAVCAN: param set/get response from %d %s %f\n", node_id, name, value);
return false;
}
void AP_GPS_UAVCAN::handle_param_save_response(AP_UAVCAN* ap_uavcan, const uint8_t node_id, bool success)
{
Debug("AP_GPS_UAVCAN: param save response from %d %s\n", node_id, success ? "success" : "failure");
if (cfg_step != STEP_SAVE_AND_REBOOT) {
return;
}
if (success) {
cfg_step++;
}
// Also send reboot command
// this is ok as we are sending from UAVCAN thread context
Debug("AP_GPS_UAVCAN: sending reboot command %d\n", node_id);
ap_uavcan->send_reboot_request(node_id);
}
#if AP_DRONECAN_SEND_GPS
bool AP_GPS_UAVCAN::instance_exists(const AP_UAVCAN* ap_uavcan)
{
for (uint8_t i=0; i<ARRAY_SIZE(_detected_modules); i++) {
if (ap_uavcan == _detected_modules[i].ap_uavcan) {
return true;
}
}
return false;
}
#endif // AP_DRONECAN_SEND_GPS
#endif // HAL_ENABLE_LIBUAVCAN_DRIVERS