5
0
mirror of https://github.com/ArduPilot/ardupilot synced 2025-01-09 17:38:32 -04:00
ardupilot/libraries/AP_Math/tests/test_vector3.cpp
Andrew Tridgell e97f5d8012 AP_Math: mark test_math_double.cpp as double precision source
fixed test_math_double
the wrap check needs to be wrap_PI() as otherwise rounding of 2*PI if
just over 6.28 will give a large error
ensure double tests are double
test_vector2
2023-08-02 16:22:59 +01:00

363 lines
13 KiB
C++

#include <AP_gtest.h>
#include <AP_Math/AP_Math.h>
const AP_HAL::HAL& hal = AP_HAL::get_HAL();
TEST(Vector3Test, Operator)
{
Vector3f v_float0{1.0f, 1.0f,1.0f};
EXPECT_FALSE(v_float0.is_zero());
v_float0 = Vector3f();
EXPECT_TRUE(v_float0.is_zero());
v_float0[1] = 1.0f;
EXPECT_FALSE(v_float0.is_zero());
const float testf1 = v_float0[1];
EXPECT_TRUE(is_equal(testf1, 1.0f));
v_float0.zero();
EXPECT_TRUE(v_float0.is_zero());
Vector3i v_inti1{1, 1, 1};
EXPECT_FALSE(v_inti1.is_zero());
v_inti1 = Vector3i();
EXPECT_TRUE(v_inti1.is_zero());
v_inti1[0] = 1;
EXPECT_FALSE(v_inti1.is_zero());
const int16_t testi1 = v_inti1[0];
EXPECT_TRUE(1 == testi1);
v_inti1.zero();
EXPECT_TRUE(v_inti1.is_zero());
Vector3ui v_uinti1{1u, 1u, 1u};
EXPECT_FALSE(v_uinti1.is_zero());
v_uinti1 = Vector3ui();
EXPECT_TRUE(v_uinti1.is_zero());
v_uinti1[0] = 1u;
EXPECT_FALSE(v_uinti1.is_zero());
const uint16_t testui1 = v_uinti1[0];
EXPECT_TRUE(1u == testui1);
v_uinti1.zero();
EXPECT_TRUE(v_uinti1.is_zero());
Vector3l v_intl1{1, 1, 1};
EXPECT_FALSE(v_intl1.is_zero());
v_intl1 = Vector3l();
EXPECT_TRUE(v_intl1.is_zero());
v_intl1[0] = 1;
EXPECT_FALSE(v_intl1.is_zero());
const int32_t testl1 = v_intl1[0];
EXPECT_TRUE(1 == testl1);
v_intl1.zero();
EXPECT_TRUE(v_intl1.is_zero());
Vector3ul v_uint1l{1, 1, 1};
EXPECT_FALSE(v_uint1l.is_zero());
v_uint1l = Vector3ul();
EXPECT_TRUE(v_uint1l.is_zero());
v_uint1l[0] = 1;
EXPECT_FALSE(v_uint1l.is_zero());
const uint32_t testul1 = v_uint1l[0];
EXPECT_TRUE(1 == testul1);
v_uint1l.zero();
EXPECT_TRUE(v_uint1l.is_zero());
Vector3f v_float1(1.0f, 1.0f, 1.0f);
Vector3f v_float2(1.0f, 1.0f, 0.0f);
EXPECT_FLOAT_EQ(2.0f, v_float1 * v_float2);
EXPECT_TRUE(Vector3f(-1.0f, 1.0f, 0.0f) == v_float1 % v_float2);
v_float1 *= 2.0f;
EXPECT_TRUE(Vector3f(2.0f, 2.0f, 2.0f) == v_float1);
v_float1 /= 2.0f;
EXPECT_TRUE(Vector3f(1.0f, 1.0f, 1.0f) == v_float1);
v_float1 -= v_float2;
EXPECT_TRUE(Vector3f(0.0f, 0.0f, 1.0f) == v_float1);
v_float1 += v_float2;
EXPECT_TRUE(Vector3f(1.0f, 1.0f, 1.0f) == v_float1);
EXPECT_TRUE(Vector3f(nanf("0x4152"), 1.0f, 1.0f).is_nan());
EXPECT_TRUE(Vector3f(1.0f / 0.0f, 1.0f, 1.0f).is_inf());
EXPECT_TRUE(Vector3f(2.0f, 2.0f, 2.0f) / 2.0f == v_float1);
EXPECT_TRUE(Vector3f(2.0f, 2.0f, 2.0f) == v_float1 * 2.0f);
EXPECT_TRUE(Vector3f(2.0f, 2.0f, 2.0f) - v_float1 == v_float1);
EXPECT_TRUE(Vector3f(2.0f, 2.0f, 2.0f) == v_float1 + v_float1);
EXPECT_TRUE(Vector3f(-1.0f, -1.0f, -1.0f) == -v_float1);
v_float1.zero();
EXPECT_TRUE(v_float1.is_zero());
}
TEST(Vector3Test, OperatorDouble)
{
Vector3d v_double0{1.0, 1.0,1.0};
EXPECT_FALSE(v_double0.is_zero());
v_double0 = Vector3d();
EXPECT_TRUE(v_double0.is_zero());
v_double0[1] = 1.0;
EXPECT_FALSE(v_double0.is_zero());
const double testf1 = v_double0[1];
EXPECT_TRUE(is_equal(testf1, 1.0));
v_double0.zero();
EXPECT_TRUE(v_double0.is_zero());
Vector3d v_double1(1.0, 1.0, 1.0);
Vector3d v_double2(1.0, 1.0, 0.0);
EXPECT_FLOAT_EQ(2.0, v_double1 * v_double2);
EXPECT_TRUE(Vector3d(-1.0, 1.0, 0.0) == v_double1 % v_double2);
v_double1 *= 2.0;
EXPECT_TRUE(Vector3d(2.0, 2.0, 2.0) == v_double1);
v_double1 /= 2.0;
EXPECT_TRUE(Vector3d(1.0, 1.0, 1.0) == v_double1);
v_double1 -= v_double2;
EXPECT_TRUE(Vector3d(0.0, 0.0, 1.0) == v_double1);
v_double1 += v_double2;
EXPECT_TRUE(Vector3d(1.0, 1.0, 1.0) == v_double1);
EXPECT_TRUE(Vector3d(nan("0x4152"), 1.0, 1.0).is_nan());
EXPECT_TRUE(Vector3d(1.0 / 0.0, 1.0, 1.0).is_inf());
EXPECT_TRUE(Vector3d(2.0, 2.0, 2.0) / 2.0 == v_double1);
EXPECT_TRUE(Vector3d(2.0, 2.0, 2.0) == v_double1 * 2.0);
EXPECT_TRUE(Vector3d(2.0, 2.0, 2.0) - v_double1 == v_double1);
EXPECT_TRUE(Vector3d(2.0, 2.0, 2.0) == v_double1 + v_double1);
EXPECT_TRUE(Vector3d(-1.0, -1.0, -1.0) == -v_double1);
v_double1.zero();
EXPECT_TRUE(v_double1.is_zero());
}
TEST(Vector3Test, IsEqual)
{
Vector3f v_float1(1.0f, 1.0f, 1.0f);
Vector3f v_float2(1.0f, 1.0f, 0.0f);
EXPECT_FALSE(v_float1 == v_float2);
EXPECT_TRUE(v_float1 == v_float1);
EXPECT_TRUE(v_float1 != v_float2);
EXPECT_FALSE(v_float1 != v_float1);
Vector3d v_double1(1.0, 1.0, 1.0);
Vector3d v_double2(1.0, 1.0, 0.0);
EXPECT_FALSE(v_double1 == v_double2);
EXPECT_TRUE(v_double1 == v_double1);
EXPECT_TRUE(v_double1 != v_double2);
EXPECT_FALSE(v_double1 != v_double1);
}
/*
TEST(Vector3Test, angle)
{
EXPECT_FLOAT_EQ(M_PI/2, Vector3f(0.0f, 1.0f).angle(Vector3f(1.0f, 0.0f)));
EXPECT_FLOAT_EQ(0.0f, Vector3f(0.5f, 0.5f).angle(Vector3f(0.5f, 0.5f)));
EXPECT_FLOAT_EQ(M_PI, Vector3f(0.5f, -0.5f).angle(Vector3f(-0.5f, 0.5f)));
EXPECT_FLOAT_EQ(0.0f, Vector3f(-0.0f, 0).angle(Vector3f(0.0f, 1.0f)));
}
*/
TEST(Vector3Test, length)
{
EXPECT_FLOAT_EQ(12, Vector3f(2, 2, 2).length_squared());
EXPECT_FLOAT_EQ(sqrtf(12), Vector3f(2, 2, 2).length());
Vector3f v_float1(1.0f, 1.0f, 1.0f);
EXPECT_TRUE(v_float1.limit_length_xy(1.0f));
EXPECT_FALSE(Vector3f(-0.0f, -0.0f, -0.0f).limit_length_xy(1.0f));
EXPECT_DOUBLE_EQ(12, Vector3d(2, 2, 2).length_squared());
EXPECT_FLOAT_EQ(sqrt(12), Vector3d(2, 2, 2).length());
Vector3d v_double1(1.0, 1.0, 1.0);
EXPECT_TRUE(v_double1.limit_length_xy(1.0));
EXPECT_FALSE(Vector3d(-0.0, -0.0, -0.0).limit_length_xy(1.0));
}
TEST(Vector3Test, normalized)
{
Vector3f v_float1(3.0f, 3.0f, 3.0f);
v_float1.normalize();
EXPECT_EQ(Vector3f(3.0f, 3.0f, 3.0f).normalized(), v_float1);
EXPECT_EQ(Vector3f(1 / sqrtf(3), 1 / sqrtf(3), 1 / sqrtf(3)), Vector3f(2, 2, 2).normalized());
EXPECT_EQ(Vector3f(3, 3, 3).normalized(), Vector3f(5, 5, 5).normalized());
EXPECT_EQ(Vector3f(-3, 3, 3).normalized(), Vector3f(-5, 5, 5).normalized());
EXPECT_NE(Vector3f(-3, 3, 3).normalized(), Vector3f(5, 5, 5).normalized());
}
/*
TEST(Vector3Test, Project)
{
Vector3f v_float1(1.0f, 1.0f, 1.0f);
Vector3f v_float2(2.0f, 2.0f, 1.0f);
v_float1.project(v_float2);
EXPECT_EQ(Vector3f(1.0f, 1.0f, 1.0f).projected(v_float2), v_float1);
}
TEST(Vector3Test, reflect)
{
Vector3f reflected1 = Vector3f(3, 3, 8);
reflected1.reflect(Vector3f(0, 0, 1));
EXPECT_EQ(reflected1, Vector3f(-3, -3, 8));
// colinear vectors
Vector3f reflected2 = Vector3f(3, 3, 3);
reflected2.reflect(Vector3f(1, 1, 1));
EXPECT_EQ(reflected2, Vector3f(3, 3, 3));
// orthogonal vectors
Vector3f reflected3 = Vector3f(3, 3, 3);
reflected3.reflect(Vector3f(1, 1, -1));
EXPECT_EQ(reflected3, Vector3f(-3, -3, -3));
// rotation
Vector3f base = Vector3f(2, 2, 1);
base.rotate(radians(90));
EXPECT_FLOAT_EQ(base.x, -1);
EXPECT_FLOAT_EQ(base.y, 2);
EXPECT_FLOAT_EQ(base.z, 2);
}
TEST(Vector3Test, Offset_bearing)
{
Vector3f v_float1(1.0f, 0.0f);
v_float1.offset_bearing(0.0f, 1.0f);
EXPECT_EQ(Vector3f(2.0f, 0.0f), v_float1);
}
TEST(Vector3Test, Perpendicular)
{
Vector3f v_float1(1.0f, 1.0f);
EXPECT_EQ(Vector3f(0.0f, 2.0f), v_float1.perpendicular(v_float1, Vector3f(2.0f, 0.0f)));
EXPECT_EQ(Vector3f(2.0f, 0.0f), v_float1.perpendicular(v_float1, Vector3f(0.0f, 2.0f)));
}
TEST(Vector3Test, closest_point)
{
// closest_point is (p, v,w)
// the silly case:
EXPECT_EQ((Vector3f{0, 0}),
(Vector3f::closest_point(Vector3f{0, 0}, Vector3f{0, 0}, Vector3f{0, 0})));
// on line:
EXPECT_EQ((Vector3f{0, 0}),
(Vector3f::closest_point(Vector3f{0, 0}, Vector3f{0, 0}, Vector3f{1, 1})));
EXPECT_EQ((Vector3f{5, 5}),
(Vector3f::closest_point(Vector3f{5, 5}, Vector3f{0, 0}, Vector3f{5, 5})));
// on line but not segment:
EXPECT_EQ((Vector3f{5, 5}),
(Vector3f::closest_point(Vector3f{6, 6}, Vector3f{0, 0}, Vector3f{5, 5})));
EXPECT_EQ((Vector3f{0.5, 0.5}),
(Vector3f::closest_point(Vector3f{1,0}, Vector3f{0, 0}, Vector3f{5, 5})));
EXPECT_EQ((Vector3f{0, 1}),
(Vector3f::closest_point(Vector3f{0,0}, Vector3f{-1, 1}, Vector3f{1, 1})));
// to (0,w)
// the silly case:
EXPECT_EQ((Vector3f{0, 0}),
(Vector3f::closest_point(Vector3f{0, 0}, Vector3f{0, 0})));
// on line:
EXPECT_EQ((Vector3f{0, 0}),
(Vector3f::closest_point(Vector3f{0, 0}, Vector3f{1, 1})));
EXPECT_EQ((Vector3f{5, 5}),
(Vector3f::closest_point(Vector3f{5, 5}, Vector3f{5, 5})));
// on line but not segment:
EXPECT_EQ((Vector3f{5, 5}),
(Vector3f::closest_point(Vector3f{6, 6}, Vector3f{5, 5})));
EXPECT_EQ((Vector3f{0.5, 0.5}),
(Vector3f::closest_point(Vector3f{1,0}, Vector3f{5, 5})));
EXPECT_EQ((Vector3f{0, 0}),
(Vector3f::closest_point(Vector3f{0,0}, Vector3f{1, 1})));
}
TEST(Vector3Test, closest_distance)
{
EXPECT_FLOAT_EQ(1.0f, Vector3f::closest_distance_between_line_and_point_squared(Vector3f{0,0}, Vector3f{1, 0}, Vector3f{0, 1}));
EXPECT_FLOAT_EQ(1.0f, Vector3f::closest_distance_between_line_and_point(Vector3f{0,0}, Vector3f{1, 0}, Vector3f{0, 1}));
EXPECT_FLOAT_EQ(1.0f, Vector3f::closest_distance_between_lines_squared(Vector3f{0,0}, Vector3f{1, 0}, Vector3f{0, 1}, Vector3f{1, 1}));
EXPECT_FLOAT_EQ(1.0f, Vector3f::closest_distance_between_radial_and_point_squared(Vector3f{0, 1}, Vector3f{1, 1}));
EXPECT_FLOAT_EQ(1.0f, Vector3f::closest_distance_between_radial_and_point(Vector3f{0, 1}, Vector3f{1, 1}));
}
TEST(Vector3Test, segment_intersectionx)
{
Vector3f intersection;
EXPECT_EQ(Vector3f::segment_intersection(
Vector3f{-1.0f, 0.0f}, // seg start
Vector3f{1.0f, 0.0f}, // seg end
Vector3f{0.0f, -1.0f}, // seg start
Vector3f{0.0f, 1.0f}, // seg end
intersection // return value for intersection point
), true);
EXPECT_EQ(intersection, Vector3f(0.0f, 0.0f));
EXPECT_EQ(Vector3f::segment_intersection(
Vector3f{1.0f, 0.0f}, // seg start
Vector3f{2.0f, 0.0f}, // seg end
Vector3f{0.0f, -1.0f}, // seg start
Vector3f{0.0f, 1.0f}, // seg end
intersection // return value for intersection point
), false);
EXPECT_EQ(Vector3f::segment_intersection(
Vector3f{1.0f, 0.0f}, // seg start
Vector3f{2.0f, 0.0f}, // seg end
Vector3f{1.0f, 1.0f}, // seg start
Vector3f{2.0f, 1.0f}, // seg end
intersection // return value for intersection point
), false);
}
TEST(Vector3Test, circle_segment_intersectionx)
{
Vector3f intersection;
EXPECT_EQ(Vector3f::circle_segment_intersection(
Vector3f{0,0}, // seg start
Vector3f{1,1}, // seg end
Vector3f{0,0}, // circle center
0.5, // circle radius
intersection // return value for intersection point
), true);
EXPECT_EQ(intersection, Vector3f(sqrtf(0.5)/2,sqrtf(0.5)/2));
EXPECT_EQ(Vector3f::circle_segment_intersection(
Vector3f{std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::quiet_NaN()}, // seg start
Vector3f{1,1}, // seg end
Vector3f{0,0}, // circle center
0.5, // circle radius
intersection // return value for intersection point
), false);
}
TEST(Vector3Test, point_on_segmentx)
{
EXPECT_EQ(Vector3f::point_on_segment(
Vector3f{0.0f, 1.0f}, // point
Vector3f{0.0f, 0.0f}, // seg start
Vector3f{0.0f, 2.0f} // seg end
), true);
EXPECT_EQ(Vector3f::point_on_segment(
Vector3f{1.0f, 1.0f}, // point
Vector3f{0.0f, 0.0f}, // seg start
Vector3f{0.0f, 2.0f} // seg end
), false);
EXPECT_EQ(Vector3f::point_on_segment(
Vector3f{1.0f, 1.0f}, // point
Vector3f{0.0f, 0.0f}, // seg start
Vector3f{3.0f, 1.0f} // seg end
), false);
printf("4\n");
EXPECT_EQ(Vector3f::point_on_segment(
Vector3f{1.0f, 0.0f}, // point
Vector3f{2.0f, 1.0f}, // seg start
Vector3f{3.0f, 2.0f} // seg end
), false);
EXPECT_EQ(Vector3f::point_on_segment(
Vector3f{5.0f, 0.0f}, // point
Vector3f{4.0f, 1.0f}, // seg start
Vector3f{3.0f, 2.0f} // seg end
), false);
EXPECT_EQ(Vector3f::point_on_segment(
Vector3f{3.0f, 0.0f}, // point
Vector3f{3.0f, 1.0f}, // seg start
Vector3f{3.0f, 2.0f} // seg end
), false);
EXPECT_EQ(Vector3f::point_on_segment(
Vector3f{3.0f, 0.0f}, // point
Vector3f{3.0f, 2.0f}, // seg start
Vector3f{3.0f, 1.0f} // seg end
), false);
}
*/
AP_GTEST_MAIN()