ardupilot/ArduPlane/Log.cpp

596 lines
17 KiB
C++

#include "Plane.h"
#include "version.h"
#if LOGGING_ENABLED == ENABLED
#if CLI_ENABLED == ENABLED
// Code to Write and Read packets from DataFlash.log memory
// Code to interact with the user to dump or erase logs
// Creates a constant array of structs representing menu options
// and stores them in Flash memory, not RAM.
// User enters the string in the console to call the functions on the right.
// See class Menu in AP_Coommon for implementation details
static const struct Menu::command log_menu_commands[] = {
{"dump", MENU_FUNC(dump_log)},
{"erase", MENU_FUNC(erase_logs)},
{"enable", MENU_FUNC(select_logs)},
{"disable", MENU_FUNC(select_logs)}
};
// A Macro to create the Menu
MENU2(log_menu, "Log", log_menu_commands, FUNCTOR_BIND(&plane, &Plane::print_log_menu, bool));
bool Plane::print_log_menu(void)
{
cliSerial->println("logs enabled: ");
if (0 == g.log_bitmask) {
cliSerial->println("none");
}else{
// Macro to make the following code a bit easier on the eye.
// Pass it the capitalised name of the log option, as defined
// in defines.h but without the LOG_ prefix. It will check for
// the bit being set and print the name of the log option to suit.
#define PLOG(_s) if (g.log_bitmask & MASK_LOG_ ## _s) cliSerial->printf(" %s", # _s)
PLOG(ATTITUDE_FAST);
PLOG(ATTITUDE_MED);
PLOG(GPS);
PLOG(PM);
PLOG(CTUN);
PLOG(NTUN);
PLOG(MODE);
PLOG(IMU);
PLOG(CMD);
PLOG(CURRENT);
PLOG(COMPASS);
PLOG(TECS);
PLOG(CAMERA);
PLOG(RC);
PLOG(SONAR);
#undef PLOG
}
cliSerial->println();
DataFlash.ListAvailableLogs(cliSerial);
return(true);
}
int8_t Plane::dump_log(uint8_t argc, const Menu::arg *argv)
{
int16_t dump_log_num;
uint16_t dump_log_start;
uint16_t dump_log_end;
// check that the requested log number can be read
dump_log_num = argv[1].i;
if (dump_log_num == -2) {
DataFlash.DumpPageInfo(cliSerial);
return(-1);
} else if (dump_log_num <= 0) {
cliSerial->printf("dumping all\n");
Log_Read(0, 1, 0);
return(-1);
} else if ((argc != 2) || ((uint16_t)dump_log_num > DataFlash.get_num_logs())) {
cliSerial->printf("bad log number\n");
return(-1);
}
DataFlash.get_log_boundaries(dump_log_num, dump_log_start, dump_log_end);
Log_Read((uint16_t)dump_log_num, dump_log_start, dump_log_end);
return 0;
}
int8_t Plane::erase_logs(uint8_t argc, const Menu::arg *argv)
{
in_mavlink_delay = true;
do_erase_logs();
in_mavlink_delay = false;
return 0;
}
int8_t Plane::select_logs(uint8_t argc, const Menu::arg *argv)
{
uint32_t bits;
if (argc != 2) {
cliSerial->printf("missing log type\n");
return(-1);
}
bits = 0;
// Macro to make the following code a bit easier on the eye.
// Pass it the capitalised name of the log option, as defined
// in defines.h but without the LOG_ prefix. It will check for
// that name as the argument to the command, and set the bit in
// bits accordingly.
//
if (!strcasecmp(argv[1].str, "all")) {
bits = 0xFFFFFFFFUL;
} else {
#define TARG(_s) if (!strcasecmp(argv[1].str, # _s)) bits |= MASK_LOG_ ## _s
TARG(ATTITUDE_FAST);
TARG(ATTITUDE_MED);
TARG(GPS);
TARG(PM);
TARG(CTUN);
TARG(NTUN);
TARG(MODE);
TARG(IMU);
TARG(CMD);
TARG(CURRENT);
TARG(COMPASS);
TARG(TECS);
TARG(CAMERA);
TARG(RC);
TARG(SONAR);
#undef TARG
}
if (!strcasecmp(argv[0].str, "enable")) {
g.log_bitmask.set_and_save(g.log_bitmask | bits);
}else{
g.log_bitmask.set_and_save(g.log_bitmask & ~bits);
}
return(0);
}
int8_t Plane::process_logs(uint8_t argc, const Menu::arg *argv)
{
log_menu.run();
return 0;
}
#endif // CLI_ENABLED == ENABLED
void Plane::do_erase_logs(void)
{
gcs_send_text(MAV_SEVERITY_INFO, "Erasing logs");
DataFlash.EraseAll();
gcs_send_text(MAV_SEVERITY_INFO, "Log erase complete");
}
// Write an attitude packet
void Plane::Log_Write_Attitude(void)
{
Vector3f targets; // Package up the targets into a vector for commonality with Copter usage of Log_Wrote_Attitude
targets.x = nav_roll_cd;
targets.y = nav_pitch_cd;
targets.z = 0; //Plane does not have the concept of navyaw. This is a placeholder.
DataFlash.Log_Write_Attitude(ahrs, targets);
if (quadplane.in_vtol_mode()) {
DataFlash.Log_Write_PID(LOG_PIDR_MSG, quadplane.attitude_control->get_rate_roll_pid().get_pid_info());
DataFlash.Log_Write_PID(LOG_PIDP_MSG, quadplane.attitude_control->get_rate_pitch_pid().get_pid_info());
DataFlash.Log_Write_PID(LOG_PIDY_MSG, quadplane.attitude_control->get_rate_yaw_pid().get_pid_info());
DataFlash.Log_Write_PID(LOG_PIDA_MSG, quadplane.pid_accel_z.get_pid_info() );
} else {
DataFlash.Log_Write_PID(LOG_PIDR_MSG, rollController.get_pid_info());
DataFlash.Log_Write_PID(LOG_PIDP_MSG, pitchController.get_pid_info());
DataFlash.Log_Write_PID(LOG_PIDY_MSG, yawController.get_pid_info());
DataFlash.Log_Write_PID(LOG_PIDS_MSG, steerController.get_pid_info());
}
#if AP_AHRS_NAVEKF_AVAILABLE
#if OPTFLOW == ENABLED
DataFlash.Log_Write_EKF(ahrs,optflow.enabled());
#else
DataFlash.Log_Write_EKF(ahrs,false);
#endif
DataFlash.Log_Write_AHRS2(ahrs);
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
sitl.Log_Write_SIMSTATE(&DataFlash);
#endif
DataFlash.Log_Write_POS(ahrs);
}
// do logging at loop rate
void Plane::Log_Write_Fast(void)
{
if (should_log(MASK_LOG_ATTITUDE_FAST)) {
Log_Write_Attitude();
}
}
struct PACKED log_Performance {
LOG_PACKET_HEADER;
uint64_t time_us;
uint16_t num_long;
uint16_t main_loop_count;
uint32_t g_dt_max;
uint32_t g_dt_min;
uint32_t log_dropped;
};
// Write a performance monitoring packet. Total length : 19 bytes
void Plane::Log_Write_Performance()
{
struct log_Performance pkt = {
LOG_PACKET_HEADER_INIT(LOG_PERFORMANCE_MSG),
time_us : AP_HAL::micros64(),
num_long : perf.num_long,
main_loop_count : perf.mainLoop_count,
g_dt_max : perf.G_Dt_max,
g_dt_min : perf.G_Dt_min,
log_dropped : DataFlash.num_dropped() - perf.last_log_dropped
};
DataFlash.WriteCriticalBlock(&pkt, sizeof(pkt));
}
struct PACKED log_Startup {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t startup_type;
uint16_t command_total;
};
void Plane::Log_Write_Startup(uint8_t type)
{
struct log_Startup pkt = {
LOG_PACKET_HEADER_INIT(LOG_STARTUP_MSG),
time_us : AP_HAL::micros64(),
startup_type : type,
command_total : mission.num_commands()
};
DataFlash.WriteCriticalBlock(&pkt, sizeof(pkt));
}
struct PACKED log_Control_Tuning {
LOG_PACKET_HEADER;
uint64_t time_us;
int16_t nav_roll_cd;
int16_t roll;
int16_t nav_pitch_cd;
int16_t pitch;
int16_t throttle_out;
int16_t rudder_out;
int16_t throttle_dem;
};
// Write a control tuning packet. Total length : 22 bytes
void Plane::Log_Write_Control_Tuning()
{
struct log_Control_Tuning pkt = {
LOG_PACKET_HEADER_INIT(LOG_CTUN_MSG),
time_us : AP_HAL::micros64(),
nav_roll_cd : (int16_t)nav_roll_cd,
roll : (int16_t)ahrs.roll_sensor,
nav_pitch_cd : (int16_t)nav_pitch_cd,
pitch : (int16_t)ahrs.pitch_sensor,
throttle_out : (int16_t)channel_throttle->get_servo_out(),
rudder_out : (int16_t)channel_rudder->get_servo_out(),
throttle_dem : (int16_t)SpdHgt_Controller->get_throttle_demand()
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
struct PACKED log_Nav_Tuning {
LOG_PACKET_HEADER;
uint64_t time_us;
float wp_distance;
int16_t target_bearing_cd;
int16_t nav_bearing_cd;
int16_t altitude_error_cm;
float xtrack_error;
float xtrack_error_i;
float airspeed_error;
};
// Write a navigation tuning packet
void Plane::Log_Write_Nav_Tuning()
{
struct log_Nav_Tuning pkt = {
LOG_PACKET_HEADER_INIT(LOG_NTUN_MSG),
time_us : AP_HAL::micros64(),
wp_distance : auto_state.wp_distance,
target_bearing_cd : (int16_t)nav_controller->target_bearing_cd(),
nav_bearing_cd : (int16_t)nav_controller->nav_bearing_cd(),
altitude_error_cm : (int16_t)altitude_error_cm,
xtrack_error : nav_controller->crosstrack_error(),
xtrack_error_i : nav_controller->crosstrack_error_integrator(),
airspeed_error : airspeed_error
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
struct PACKED log_Status {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t is_flying;
float is_flying_probability;
uint8_t armed;
uint8_t safety;
bool is_crashed;
bool is_still;
uint8_t stage;
bool impact;
};
void Plane::Log_Write_Status()
{
struct log_Status pkt = {
LOG_PACKET_HEADER_INIT(LOG_STATUS_MSG)
,time_us : AP_HAL::micros64()
,is_flying : is_flying()
,is_flying_probability : isFlyingProbability
,armed : hal.util->get_soft_armed()
,safety : static_cast<uint8_t>(hal.util->safety_switch_state())
,is_crashed : crash_state.is_crashed
,is_still : plane.ins.is_still()
,stage : static_cast<uint8_t>(flight_stage)
,impact : crash_state.impact_detected
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
struct PACKED log_Sonar {
LOG_PACKET_HEADER;
uint64_t time_us;
float distance;
float voltage;
uint8_t count;
float correction;
};
// Write a sonar packet
void Plane::Log_Write_Sonar()
{
#if RANGEFINDER_ENABLED == ENABLED
uint16_t distance = 0;
if (rangefinder.status() == RangeFinder::RangeFinder_Good) {
distance = rangefinder.distance_cm();
}
struct log_Sonar pkt = {
LOG_PACKET_HEADER_INIT(LOG_SONAR_MSG),
time_us : AP_HAL::micros64(),
distance : (float)distance*0.01f,
voltage : rangefinder.voltage_mv()*0.001f,
count : rangefinder_state.in_range_count,
correction : rangefinder_state.correction
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
DataFlash.Log_Write_RFND(rangefinder);
#endif
}
struct PACKED log_Optflow {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t surface_quality;
float flow_x;
float flow_y;
float body_x;
float body_y;
};
#if OPTFLOW == ENABLED
// Write an optical flow packet
void Plane::Log_Write_Optflow()
{
// exit immediately if not enabled
if (!optflow.enabled()) {
return;
}
const Vector2f &flowRate = optflow.flowRate();
const Vector2f &bodyRate = optflow.bodyRate();
struct log_Optflow pkt = {
LOG_PACKET_HEADER_INIT(LOG_OPTFLOW_MSG),
time_us : AP_HAL::micros64(),
surface_quality : optflow.quality(),
flow_x : flowRate.x,
flow_y : flowRate.y,
body_x : bodyRate.x,
body_y : bodyRate.y
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
#endif
struct PACKED log_Arm_Disarm {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t arm_state;
uint16_t arm_checks;
};
void Plane::Log_Write_Current()
{
DataFlash.Log_Write_Current(battery);
// also write power status
DataFlash.Log_Write_Power();
}
void Plane::Log_Arm_Disarm() {
struct log_Arm_Disarm pkt = {
LOG_PACKET_HEADER_INIT(LOG_ARM_DISARM_MSG),
time_us : AP_HAL::micros64(),
arm_state : arming.is_armed(),
arm_checks : arming.get_enabled_checks()
};
DataFlash.WriteCriticalBlock(&pkt, sizeof(pkt));
}
void Plane::Log_Write_GPS(uint8_t instance)
{
if (!ahrs.have_ekf_logging()) {
DataFlash.Log_Write_GPS(gps, instance);
}
}
void Plane::Log_Write_IMU()
{
DataFlash.Log_Write_IMU(ins);
}
void Plane::Log_Write_RC(void)
{
DataFlash.Log_Write_RCIN();
DataFlash.Log_Write_RCOUT();
if (rssi.enabled()) {
DataFlash.Log_Write_RSSI(rssi);
}
}
void Plane::Log_Write_Baro(void)
{
if (!ahrs.have_ekf_logging()) {
DataFlash.Log_Write_Baro(barometer);
}
}
// Write a AIRSPEED packet
void Plane::Log_Write_Airspeed(void)
{
DataFlash.Log_Write_Airspeed(airspeed);
}
// log ahrs home and EKF origin to dataflash
void Plane::Log_Write_Home_And_Origin()
{
#if AP_AHRS_NAVEKF_AVAILABLE
// log ekf origin if set
Location ekf_orig;
if (ahrs.get_origin(ekf_orig)) {
DataFlash.Log_Write_Origin(LogOriginType::ekf_origin, ekf_orig);
}
#endif
// log ahrs home if set
if (home_is_set != HOME_UNSET) {
DataFlash.Log_Write_Origin(LogOriginType::ahrs_home, ahrs.get_home());
}
}
const struct LogStructure Plane::log_structure[] = {
LOG_COMMON_STRUCTURES,
{ LOG_PERFORMANCE_MSG, sizeof(log_Performance),
"PM", "QHHIII", "TimeUS,NLon,NLoop,MaxT,MinT,LogDrop" },
{ LOG_STARTUP_MSG, sizeof(log_Startup),
"STRT", "QBH", "TimeUS,SType,CTot" },
{ LOG_CTUN_MSG, sizeof(log_Control_Tuning),
"CTUN", "Qcccchhh", "TimeUS,NavRoll,Roll,NavPitch,Pitch,ThrOut,RdrOut,ThrDem" },
{ LOG_NTUN_MSG, sizeof(log_Nav_Tuning),
"NTUN", "Qfcccfff", "TimeUS,WpDist,TargBrg,NavBrg,AltErr,XT,XTi,ArspdErr" },
{ LOG_SONAR_MSG, sizeof(log_Sonar),
"SONR", "QffBf", "TimeUS,Dist,Volt,Cnt,Corr" },
{ LOG_ARM_DISARM_MSG, sizeof(log_Arm_Disarm),
"ARM", "QBH", "TimeUS,ArmState,ArmChecks" },
{ LOG_ATRP_MSG, sizeof(AP_AutoTune::log_ATRP),
"ATRP", "QBBcfff", "TimeUS,Type,State,Servo,Demanded,Achieved,P" },
{ LOG_STATUS_MSG, sizeof(log_Status),
"STAT", "QBfBBBBBB", "TimeUS,isFlying,isFlyProb,Armed,Safety,Crash,Still,Stage,Hit" },
{ LOG_QTUN_MSG, sizeof(QuadPlane::log_QControl_Tuning),
"QTUN", "Qffffehhffff", "TimeUS,AngBst,ThrOut,DAlt,Alt,BarAlt,DCRt,CRt,DVx,DVy,DAx,DAy" },
#if OPTFLOW == ENABLED
{ LOG_OPTFLOW_MSG, sizeof(log_Optflow),
"OF", "QBffff", "TimeUS,Qual,flowX,flowY,bodyX,bodyY" },
#endif
};
#if CLI_ENABLED == ENABLED
// Read the DataFlash.log memory : Packet Parser
void Plane::Log_Read(uint16_t list_entry, int16_t start_page, int16_t end_page)
{
cliSerial->printf("\n" FIRMWARE_STRING
"\nFree RAM: %u\n",
(unsigned)hal.util->available_memory());
cliSerial->println(HAL_BOARD_NAME);
DataFlash.LogReadProcess(list_entry, start_page, end_page,
FUNCTOR_BIND_MEMBER(&Plane::print_flight_mode, void, AP_HAL::BetterStream *, uint8_t),
cliSerial);
}
#endif // CLI_ENABLED
void Plane::Log_Write_Vehicle_Startup_Messages()
{
// only 200(?) bytes are guaranteed by DataFlash
Log_Write_Startup(TYPE_GROUNDSTART_MSG);
DataFlash.Log_Write_Mode(control_mode);
DataFlash.Log_Write_Rally(rally);
}
// start a new log
void Plane::start_logging()
{
DataFlash.set_mission(&mission);
DataFlash.setVehicle_Startup_Log_Writer(
FUNCTOR_BIND(&plane, &Plane::Log_Write_Vehicle_Startup_Messages, void)
);
DataFlash.StartNewLog();
}
/*
initialise logging subsystem
*/
void Plane::log_init(void)
{
DataFlash.Init(log_structure, ARRAY_SIZE(log_structure));
if (!DataFlash.CardInserted()) {
gcs_send_text(MAV_SEVERITY_WARNING, "No dataflash card inserted");
g.log_bitmask.set(0);
} else if (DataFlash.NeedPrep()) {
gcs_send_text(MAV_SEVERITY_INFO, "Preparing log system");
DataFlash.Prep();
gcs_send_text(MAV_SEVERITY_INFO, "Prepared log system");
for (uint8_t i=0; i<num_gcs; i++) {
gcs[i].reset_cli_timeout();
}
}
arming.set_logging_available(DataFlash.CardInserted());
}
#else // LOGGING_ENABLED
#if CLI_ENABLED == ENABLED
bool Plane::print_log_menu(void) { return true; }
int8_t Plane::dump_log(uint8_t argc, const Menu::arg *argv) { return 0; }
int8_t Plane::erase_logs(uint8_t argc, const Menu::arg *argv) { return 0; }
int8_t Plane::select_logs(uint8_t argc, const Menu::arg *argv) { return 0; }
int8_t Plane::process_logs(uint8_t argc, const Menu::arg *argv) { return 0; }
#endif // CLI_ENABLED == ENABLED
void Plane::do_erase_logs(void) {}
void Plane::Log_Write_Attitude(void) {}
void Plane::Log_Write_Performance() {}
void Plane::Log_Write_Startup(uint8_t type) {}
void Plane::Log_Write_Control_Tuning() {}
void Plane::Log_Write_Nav_Tuning() {}
void Plane::Log_Write_Status() {}
void Plane::Log_Write_Sonar() {}
#if OPTFLOW == ENABLED
void Plane::Log_Write_Optflow() {}
#endif
void Plane::Log_Write_Current() {}
void Plane::Log_Arm_Disarm() {}
void Plane::Log_Write_GPS(uint8_t instance) {}
void Plane::Log_Write_IMU() {}
void Plane::Log_Write_RC(void) {}
void Plane::Log_Write_Baro(void) {}
void Plane::Log_Write_Airspeed(void) {}
void Plane::Log_Write_Home_And_Origin() {}
#if CLI_ENABLED == ENABLED
void Plane::Log_Read(uint16_t log_num, int16_t start_page, int16_t end_page) {}
#endif // CLI_ENABLED
void Plane::start_logging() {}
void Plane::log_init(void) {}
#endif // LOGGING_ENABLED