mirror of https://github.com/ArduPilot/ardupilot
705 lines
24 KiB
C++
705 lines
24 KiB
C++
#include "Plane.h"
|
|
|
|
/*
|
|
get a speed scaling number for control surfaces. This is applied to
|
|
PIDs to change the scaling of the PID with speed. At high speed we
|
|
move the surfaces less, and at low speeds we move them more.
|
|
*/
|
|
float Plane::get_speed_scaler(void)
|
|
{
|
|
float aspeed, speed_scaler;
|
|
if (ahrs.airspeed_estimate(&aspeed)) {
|
|
if (aspeed > auto_state.highest_airspeed) {
|
|
auto_state.highest_airspeed = aspeed;
|
|
}
|
|
if (aspeed > 0.0001f) {
|
|
speed_scaler = g.scaling_speed / aspeed;
|
|
} else {
|
|
speed_scaler = 2.0;
|
|
}
|
|
speed_scaler = constrain_float(speed_scaler, 0.5f, 2.0f);
|
|
} else {
|
|
if (channel_throttle->get_servo_out() > 0) {
|
|
speed_scaler = 0.5f + ((float)THROTTLE_CRUISE / channel_throttle->get_servo_out() / 2.0f); // First order taylor expansion of square root
|
|
// Should maybe be to the 2/7 power, but we aren't going to implement that...
|
|
}else{
|
|
speed_scaler = 1.67f;
|
|
}
|
|
// This case is constrained tighter as we don't have real speed info
|
|
speed_scaler = constrain_float(speed_scaler, 0.6f, 1.67f);
|
|
}
|
|
return speed_scaler;
|
|
}
|
|
|
|
/*
|
|
return true if the current settings and mode should allow for stick mixing
|
|
*/
|
|
bool Plane::stick_mixing_enabled(void)
|
|
{
|
|
if (auto_throttle_mode && auto_navigation_mode) {
|
|
// we're in an auto mode. Check the stick mixing flag
|
|
if (g.stick_mixing != STICK_MIXING_DISABLED &&
|
|
geofence_stickmixing() &&
|
|
failsafe.state == FAILSAFE_NONE &&
|
|
!rc_failsafe_active()) {
|
|
// we're in an auto mode, and haven't triggered failsafe
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (failsafe.ch3_failsafe && g.short_fs_action == 2) {
|
|
// don't do stick mixing in FBWA glide mode
|
|
return false;
|
|
}
|
|
|
|
// non-auto mode. Always do stick mixing
|
|
return true;
|
|
}
|
|
|
|
|
|
/*
|
|
this is the main roll stabilization function. It takes the
|
|
previously set nav_roll calculates roll servo_out to try to
|
|
stabilize the plane at the given roll
|
|
*/
|
|
void Plane::stabilize_roll(float speed_scaler)
|
|
{
|
|
if (fly_inverted()) {
|
|
// we want to fly upside down. We need to cope with wrap of
|
|
// the roll_sensor interfering with wrap of nav_roll, which
|
|
// would really confuse the PID code. The easiest way to
|
|
// handle this is to ensure both go in the same direction from
|
|
// zero
|
|
nav_roll_cd += 18000;
|
|
if (ahrs.roll_sensor < 0) nav_roll_cd -= 36000;
|
|
}
|
|
|
|
bool disable_integrator = false;
|
|
if (control_mode == STABILIZE && channel_roll->get_control_in() != 0) {
|
|
disable_integrator = true;
|
|
}
|
|
channel_roll->set_servo_out(rollController.get_servo_out(nav_roll_cd - ahrs.roll_sensor,
|
|
speed_scaler,
|
|
disable_integrator));
|
|
}
|
|
|
|
/*
|
|
this is the main pitch stabilization function. It takes the
|
|
previously set nav_pitch and calculates servo_out values to try to
|
|
stabilize the plane at the given attitude.
|
|
*/
|
|
void Plane::stabilize_pitch(float speed_scaler)
|
|
{
|
|
int8_t force_elevator = takeoff_tail_hold();
|
|
if (force_elevator != 0) {
|
|
// we are holding the tail down during takeoff. Just convert
|
|
// from a percentage to a -4500..4500 centidegree angle
|
|
channel_pitch->set_servo_out(45*force_elevator);
|
|
return;
|
|
}
|
|
int32_t demanded_pitch = nav_pitch_cd + g.pitch_trim_cd + channel_throttle->get_servo_out() * g.kff_throttle_to_pitch;
|
|
bool disable_integrator = false;
|
|
if (control_mode == STABILIZE && channel_pitch->get_control_in() != 0) {
|
|
disable_integrator = true;
|
|
}
|
|
channel_pitch->set_servo_out(pitchController.get_servo_out(demanded_pitch - ahrs.pitch_sensor,
|
|
speed_scaler,
|
|
disable_integrator));
|
|
}
|
|
|
|
/*
|
|
perform stick mixing on one channel
|
|
This type of stick mixing reduces the influence of the auto
|
|
controller as it increases the influence of the users stick input,
|
|
allowing the user full deflection if needed
|
|
*/
|
|
void Plane::stick_mix_channel(RC_Channel *channel, int16_t &servo_out)
|
|
{
|
|
float ch_inf;
|
|
|
|
ch_inf = (float)channel->get_radio_in() - (float)channel->get_radio_trim();
|
|
ch_inf = fabsf(ch_inf);
|
|
ch_inf = MIN(ch_inf, 400.0f);
|
|
ch_inf = ((400.0f - ch_inf) / 400.0f);
|
|
servo_out *= ch_inf;
|
|
servo_out += channel->pwm_to_angle();
|
|
}
|
|
|
|
/*
|
|
One argument version for when the servo out in the rc channel
|
|
is the target
|
|
*/
|
|
void Plane::stick_mix_channel(RC_Channel * channel)
|
|
{
|
|
int16_t servo_out = channel->get_servo_out();
|
|
stick_mix_channel(channel,servo_out);
|
|
channel->set_servo_out(servo_out);
|
|
}
|
|
|
|
/*
|
|
this gives the user control of the aircraft in stabilization modes
|
|
*/
|
|
void Plane::stabilize_stick_mixing_direct()
|
|
{
|
|
if (!stick_mixing_enabled() ||
|
|
control_mode == ACRO ||
|
|
control_mode == FLY_BY_WIRE_A ||
|
|
control_mode == AUTOTUNE ||
|
|
control_mode == FLY_BY_WIRE_B ||
|
|
control_mode == CRUISE ||
|
|
control_mode == QSTABILIZE ||
|
|
control_mode == QHOVER ||
|
|
control_mode == QLOITER ||
|
|
control_mode == QLAND ||
|
|
control_mode == QRTL ||
|
|
control_mode == TRAINING) {
|
|
return;
|
|
}
|
|
stick_mix_channel(channel_roll);
|
|
stick_mix_channel(channel_pitch);
|
|
}
|
|
|
|
/*
|
|
this gives the user control of the aircraft in stabilization modes
|
|
using FBW style controls
|
|
*/
|
|
void Plane::stabilize_stick_mixing_fbw()
|
|
{
|
|
if (!stick_mixing_enabled() ||
|
|
control_mode == ACRO ||
|
|
control_mode == FLY_BY_WIRE_A ||
|
|
control_mode == AUTOTUNE ||
|
|
control_mode == FLY_BY_WIRE_B ||
|
|
control_mode == CRUISE ||
|
|
control_mode == QSTABILIZE ||
|
|
control_mode == QHOVER ||
|
|
control_mode == QLOITER ||
|
|
control_mode == QLAND ||
|
|
control_mode == QRTL ||
|
|
control_mode == TRAINING ||
|
|
(control_mode == AUTO && g.auto_fbw_steer == 42)) {
|
|
return;
|
|
}
|
|
// do FBW style stick mixing. We don't treat it linearly
|
|
// however. For inputs up to half the maximum, we use linear
|
|
// addition to the nav_roll and nav_pitch. Above that it goes
|
|
// non-linear and ends up as 2x the maximum, to ensure that
|
|
// the user can direct the plane in any direction with stick
|
|
// mixing.
|
|
float roll_input = channel_roll->norm_input();
|
|
if (roll_input > 0.5f) {
|
|
roll_input = (3*roll_input - 1);
|
|
} else if (roll_input < -0.5f) {
|
|
roll_input = (3*roll_input + 1);
|
|
}
|
|
nav_roll_cd += roll_input * roll_limit_cd;
|
|
nav_roll_cd = constrain_int32(nav_roll_cd, -roll_limit_cd, roll_limit_cd);
|
|
|
|
float pitch_input = channel_pitch->norm_input();
|
|
if (pitch_input > 0.5f) {
|
|
pitch_input = (3*pitch_input - 1);
|
|
} else if (pitch_input < -0.5f) {
|
|
pitch_input = (3*pitch_input + 1);
|
|
}
|
|
if (fly_inverted()) {
|
|
pitch_input = -pitch_input;
|
|
}
|
|
if (pitch_input > 0) {
|
|
nav_pitch_cd += pitch_input * aparm.pitch_limit_max_cd;
|
|
} else {
|
|
nav_pitch_cd += -(pitch_input * pitch_limit_min_cd);
|
|
}
|
|
nav_pitch_cd = constrain_int32(nav_pitch_cd, pitch_limit_min_cd, aparm.pitch_limit_max_cd.get());
|
|
}
|
|
|
|
|
|
/*
|
|
stabilize the yaw axis. There are 3 modes of operation:
|
|
|
|
- hold a specific heading with ground steering
|
|
- rate controlled with ground steering
|
|
- yaw control for coordinated flight
|
|
*/
|
|
void Plane::stabilize_yaw(float speed_scaler)
|
|
{
|
|
if (control_mode == AUTO && flight_stage == AP_SpdHgtControl::FLIGHT_LAND_FINAL) {
|
|
// in land final setup for ground steering
|
|
steering_control.ground_steering = true;
|
|
} else {
|
|
// otherwise use ground steering when no input control and we
|
|
// are below the GROUND_STEER_ALT
|
|
steering_control.ground_steering = (channel_roll->get_control_in() == 0 &&
|
|
fabsf(relative_altitude()) < g.ground_steer_alt);
|
|
if (control_mode == AUTO &&
|
|
(flight_stage == AP_SpdHgtControl::FLIGHT_LAND_APPROACH ||
|
|
flight_stage == AP_SpdHgtControl::FLIGHT_LAND_PREFLARE)) {
|
|
// don't use ground steering on landing approach
|
|
steering_control.ground_steering = false;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
first calculate steering_control.steering for a nose or tail
|
|
wheel.
|
|
We use "course hold" mode for the rudder when either in the
|
|
final stage of landing (when the wings are help level) or when
|
|
in course hold in FBWA mode (when we are below GROUND_STEER_ALT)
|
|
*/
|
|
if ((control_mode == AUTO && flight_stage == AP_SpdHgtControl::FLIGHT_LAND_FINAL) ||
|
|
(steer_state.hold_course_cd != -1 && steering_control.ground_steering)) {
|
|
calc_nav_yaw_course();
|
|
} else if (steering_control.ground_steering) {
|
|
calc_nav_yaw_ground();
|
|
}
|
|
|
|
/*
|
|
now calculate steering_control.rudder for the rudder
|
|
*/
|
|
calc_nav_yaw_coordinated(speed_scaler);
|
|
}
|
|
|
|
|
|
/*
|
|
a special stabilization function for training mode
|
|
*/
|
|
void Plane::stabilize_training(float speed_scaler)
|
|
{
|
|
if (training_manual_roll) {
|
|
channel_roll->set_servo_out(channel_roll->get_control_in());
|
|
} else {
|
|
// calculate what is needed to hold
|
|
stabilize_roll(speed_scaler);
|
|
if ((nav_roll_cd > 0 && channel_roll->get_control_in() < channel_roll->get_servo_out()) ||
|
|
(nav_roll_cd < 0 && channel_roll->get_control_in() > channel_roll->get_servo_out())) {
|
|
// allow user to get out of the roll
|
|
channel_roll->set_servo_out(channel_roll->get_control_in());
|
|
}
|
|
}
|
|
|
|
if (training_manual_pitch) {
|
|
channel_pitch->set_servo_out(channel_pitch->get_control_in());
|
|
} else {
|
|
stabilize_pitch(speed_scaler);
|
|
if ((nav_pitch_cd > 0 && channel_pitch->get_control_in() < channel_pitch->get_servo_out()) ||
|
|
(nav_pitch_cd < 0 && channel_pitch->get_control_in() > channel_pitch->get_servo_out())) {
|
|
// allow user to get back to level
|
|
channel_pitch->set_servo_out(channel_pitch->get_control_in());
|
|
}
|
|
}
|
|
|
|
stabilize_yaw(speed_scaler);
|
|
}
|
|
|
|
|
|
/*
|
|
this is the ACRO mode stabilization function. It does rate
|
|
stabilization on roll and pitch axes
|
|
*/
|
|
void Plane::stabilize_acro(float speed_scaler)
|
|
{
|
|
float roll_rate = (channel_roll->get_control_in()/4500.0f) * g.acro_roll_rate;
|
|
float pitch_rate = (channel_pitch->get_control_in()/4500.0f) * g.acro_pitch_rate;
|
|
|
|
/*
|
|
check for special roll handling near the pitch poles
|
|
*/
|
|
if (g.acro_locking && is_zero(roll_rate)) {
|
|
/*
|
|
we have no roll stick input, so we will enter "roll locked"
|
|
mode, and hold the roll we had when the stick was released
|
|
*/
|
|
if (!acro_state.locked_roll) {
|
|
acro_state.locked_roll = true;
|
|
acro_state.locked_roll_err = 0;
|
|
} else {
|
|
acro_state.locked_roll_err += ahrs.get_gyro().x * G_Dt;
|
|
}
|
|
int32_t roll_error_cd = -ToDeg(acro_state.locked_roll_err)*100;
|
|
nav_roll_cd = ahrs.roll_sensor + roll_error_cd;
|
|
// try to reduce the integrated angular error to zero. We set
|
|
// 'stabilze' to true, which disables the roll integrator
|
|
channel_roll->set_servo_out(rollController.get_servo_out(roll_error_cd,
|
|
speed_scaler,
|
|
true));
|
|
} else {
|
|
/*
|
|
aileron stick is non-zero, use pure rate control until the
|
|
user releases the stick
|
|
*/
|
|
acro_state.locked_roll = false;
|
|
channel_roll->set_servo_out(rollController.get_rate_out(roll_rate, speed_scaler));
|
|
}
|
|
|
|
if (g.acro_locking && is_zero(pitch_rate)) {
|
|
/*
|
|
user has zero pitch stick input, so we lock pitch at the
|
|
point they release the stick
|
|
*/
|
|
if (!acro_state.locked_pitch) {
|
|
acro_state.locked_pitch = true;
|
|
acro_state.locked_pitch_cd = ahrs.pitch_sensor;
|
|
}
|
|
// try to hold the locked pitch. Note that we have the pitch
|
|
// integrator enabled, which helps with inverted flight
|
|
nav_pitch_cd = acro_state.locked_pitch_cd;
|
|
channel_pitch->set_servo_out(pitchController.get_servo_out(nav_pitch_cd - ahrs.pitch_sensor,
|
|
speed_scaler,
|
|
false));
|
|
} else {
|
|
/*
|
|
user has non-zero pitch input, use a pure rate controller
|
|
*/
|
|
acro_state.locked_pitch = false;
|
|
channel_pitch->set_servo_out( pitchController.get_rate_out(pitch_rate, speed_scaler));
|
|
}
|
|
|
|
/*
|
|
manual rudder for now
|
|
*/
|
|
steering_control.steering = steering_control.rudder = rudder_input;
|
|
}
|
|
|
|
/*
|
|
main stabilization function for all 3 axes
|
|
*/
|
|
void Plane::stabilize()
|
|
{
|
|
if (control_mode == MANUAL) {
|
|
// nothing to do
|
|
return;
|
|
}
|
|
float speed_scaler = get_speed_scaler();
|
|
|
|
if (control_mode == TRAINING) {
|
|
stabilize_training(speed_scaler);
|
|
} else if (control_mode == ACRO) {
|
|
stabilize_acro(speed_scaler);
|
|
} else if (control_mode == QSTABILIZE ||
|
|
control_mode == QHOVER ||
|
|
control_mode == QLOITER ||
|
|
control_mode == QLAND ||
|
|
control_mode == QRTL) {
|
|
quadplane.control_run();
|
|
} else {
|
|
if (g.stick_mixing == STICK_MIXING_FBW && control_mode != STABILIZE) {
|
|
stabilize_stick_mixing_fbw();
|
|
}
|
|
stabilize_roll(speed_scaler);
|
|
stabilize_pitch(speed_scaler);
|
|
if (g.stick_mixing == STICK_MIXING_DIRECT || control_mode == STABILIZE) {
|
|
stabilize_stick_mixing_direct();
|
|
}
|
|
stabilize_yaw(speed_scaler);
|
|
}
|
|
|
|
/*
|
|
see if we should zero the attitude controller integrators.
|
|
*/
|
|
if (channel_throttle->get_control_in() == 0 &&
|
|
relative_altitude_abs_cm() < 500 &&
|
|
fabsf(barometer.get_climb_rate()) < 0.5f &&
|
|
gps.ground_speed() < 3) {
|
|
// we are low, with no climb rate, and zero throttle, and very
|
|
// low ground speed. Zero the attitude controller
|
|
// integrators. This prevents integrator buildup pre-takeoff.
|
|
rollController.reset_I();
|
|
pitchController.reset_I();
|
|
yawController.reset_I();
|
|
|
|
// if moving very slowly also zero the steering integrator
|
|
if (gps.ground_speed() < 1) {
|
|
steerController.reset_I();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Plane::calc_throttle()
|
|
{
|
|
if (aparm.throttle_cruise <= 1) {
|
|
// user has asked for zero throttle - this may be done by a
|
|
// mission which wants to turn off the engine for a parachute
|
|
// landing
|
|
channel_throttle->set_servo_out(0);
|
|
return;
|
|
}
|
|
|
|
int32_t commanded_throttle = SpdHgt_Controller->get_throttle_demand();
|
|
|
|
// Received an external msg that guides throttle in the last 3 seconds?
|
|
if ((control_mode == GUIDED || control_mode == AVOID_ADSB) &&
|
|
plane.guided_state.last_forced_throttle_ms > 0 &&
|
|
millis() - plane.guided_state.last_forced_throttle_ms < 3000) {
|
|
commanded_throttle = plane.guided_state.forced_throttle;
|
|
}
|
|
|
|
channel_throttle->set_servo_out(commanded_throttle);
|
|
}
|
|
|
|
/*****************************************
|
|
* Calculate desired roll/pitch/yaw angles (in medium freq loop)
|
|
*****************************************/
|
|
|
|
/*
|
|
calculate yaw control for coordinated flight
|
|
*/
|
|
void Plane::calc_nav_yaw_coordinated(float speed_scaler)
|
|
{
|
|
bool disable_integrator = false;
|
|
if (control_mode == STABILIZE && rudder_input != 0) {
|
|
disable_integrator = true;
|
|
}
|
|
|
|
int16_t commanded_rudder;
|
|
|
|
// Received an external msg that guides yaw in the last 3 seconds?
|
|
if ((control_mode == GUIDED || control_mode == AVOID_ADSB) &&
|
|
plane.guided_state.last_forced_rpy_ms.z > 0 &&
|
|
millis() - plane.guided_state.last_forced_rpy_ms.z < 3000) {
|
|
commanded_rudder = plane.guided_state.forced_rpy_cd.z;
|
|
} else {
|
|
commanded_rudder = yawController.get_servo_out(speed_scaler, disable_integrator);
|
|
|
|
// add in rudder mixing from roll
|
|
commanded_rudder += channel_roll->get_servo_out() * g.kff_rudder_mix;
|
|
commanded_rudder += rudder_input;
|
|
}
|
|
|
|
steering_control.rudder = constrain_int16(commanded_rudder, -4500, 4500);
|
|
}
|
|
|
|
/*
|
|
calculate yaw control for ground steering with specific course
|
|
*/
|
|
void Plane::calc_nav_yaw_course(void)
|
|
{
|
|
// holding a specific navigation course on the ground. Used in
|
|
// auto-takeoff and landing
|
|
int32_t bearing_error_cd = nav_controller->bearing_error_cd();
|
|
steering_control.steering = steerController.get_steering_out_angle_error(bearing_error_cd);
|
|
if (stick_mixing_enabled()) {
|
|
stick_mix_channel(channel_rudder, steering_control.steering);
|
|
}
|
|
steering_control.steering = constrain_int16(steering_control.steering, -4500, 4500);
|
|
}
|
|
|
|
/*
|
|
calculate yaw control for ground steering
|
|
*/
|
|
void Plane::calc_nav_yaw_ground(void)
|
|
{
|
|
if (gps.ground_speed() < 1 &&
|
|
channel_throttle->get_control_in() == 0 &&
|
|
flight_stage != AP_SpdHgtControl::FLIGHT_TAKEOFF &&
|
|
flight_stage != AP_SpdHgtControl::FLIGHT_LAND_ABORT) {
|
|
// manual rudder control while still
|
|
steer_state.locked_course = false;
|
|
steer_state.locked_course_err = 0;
|
|
steering_control.steering = rudder_input;
|
|
return;
|
|
}
|
|
|
|
float steer_rate = (rudder_input/4500.0f) * g.ground_steer_dps;
|
|
if (flight_stage == AP_SpdHgtControl::FLIGHT_TAKEOFF ||
|
|
flight_stage == AP_SpdHgtControl::FLIGHT_LAND_ABORT) {
|
|
steer_rate = 0;
|
|
}
|
|
if (!is_zero(steer_rate)) {
|
|
// pilot is giving rudder input
|
|
steer_state.locked_course = false;
|
|
} else if (!steer_state.locked_course) {
|
|
// pilot has released the rudder stick or we are still - lock the course
|
|
steer_state.locked_course = true;
|
|
if (flight_stage != AP_SpdHgtControl::FLIGHT_TAKEOFF &&
|
|
flight_stage != AP_SpdHgtControl::FLIGHT_LAND_ABORT) {
|
|
steer_state.locked_course_err = 0;
|
|
}
|
|
}
|
|
if (!steer_state.locked_course) {
|
|
// use a rate controller at the pilot specified rate
|
|
steering_control.steering = steerController.get_steering_out_rate(steer_rate);
|
|
} else {
|
|
// use a error controller on the summed error
|
|
int32_t yaw_error_cd = -ToDeg(steer_state.locked_course_err)*100;
|
|
steering_control.steering = steerController.get_steering_out_angle_error(yaw_error_cd);
|
|
}
|
|
steering_control.steering = constrain_int16(steering_control.steering, -4500, 4500);
|
|
}
|
|
|
|
|
|
/*
|
|
calculate a new nav_pitch_cd from the speed height controller
|
|
*/
|
|
void Plane::calc_nav_pitch()
|
|
{
|
|
// Calculate the Pitch of the plane
|
|
// --------------------------------
|
|
int32_t commanded_pitch = SpdHgt_Controller->get_pitch_demand();
|
|
|
|
// Received an external msg that guides roll in the last 3 seconds?
|
|
if ((control_mode == GUIDED || control_mode == AVOID_ADSB) &&
|
|
plane.guided_state.last_forced_rpy_ms.y > 0 &&
|
|
millis() - plane.guided_state.last_forced_rpy_ms.y < 3000) {
|
|
commanded_pitch = plane.guided_state.forced_rpy_cd.y;
|
|
}
|
|
|
|
nav_pitch_cd = constrain_int32(commanded_pitch, pitch_limit_min_cd, aparm.pitch_limit_max_cd.get());
|
|
}
|
|
|
|
|
|
/*
|
|
calculate a new nav_roll_cd from the navigation controller
|
|
*/
|
|
void Plane::calc_nav_roll()
|
|
{
|
|
int32_t commanded_roll = nav_controller->nav_roll_cd();
|
|
|
|
// Received an external msg that guides roll in the last 3 seconds?
|
|
if ((control_mode == GUIDED || control_mode == AVOID_ADSB) &&
|
|
plane.guided_state.last_forced_rpy_ms.x > 0 &&
|
|
millis() - plane.guided_state.last_forced_rpy_ms.x < 3000) {
|
|
commanded_roll = plane.guided_state.forced_rpy_cd.x;
|
|
}
|
|
|
|
nav_roll_cd = constrain_int32(commanded_roll, -roll_limit_cd, roll_limit_cd);
|
|
update_load_factor();
|
|
}
|
|
|
|
|
|
bool Plane::allow_reverse_thrust(void)
|
|
{
|
|
// check if we should allow reverse thrust
|
|
bool allow = false;
|
|
|
|
if (g.use_reverse_thrust == USE_REVERSE_THRUST_NEVER) {
|
|
return false;
|
|
}
|
|
|
|
switch (control_mode) {
|
|
case AUTO:
|
|
{
|
|
uint16_t nav_cmd = mission.get_current_nav_cmd().id;
|
|
|
|
// never allow reverse thrust during takeoff
|
|
if (nav_cmd == MAV_CMD_NAV_TAKEOFF) {
|
|
return false;
|
|
}
|
|
|
|
// always allow regardless of mission item
|
|
allow |= (g.use_reverse_thrust & USE_REVERSE_THRUST_AUTO_ALWAYS);
|
|
|
|
// landing
|
|
allow |= (g.use_reverse_thrust & USE_REVERSE_THRUST_AUTO_LAND_APPROACH) &&
|
|
(nav_cmd == MAV_CMD_NAV_LAND);
|
|
|
|
// LOITER_TO_ALT
|
|
allow |= (g.use_reverse_thrust & USE_REVERSE_THRUST_AUTO_LOITER_TO_ALT) &&
|
|
(nav_cmd == MAV_CMD_NAV_LOITER_TO_ALT);
|
|
|
|
// any Loiter (including LOITER_TO_ALT)
|
|
allow |= (g.use_reverse_thrust & USE_REVERSE_THRUST_AUTO_LOITER_ALL) &&
|
|
(nav_cmd == MAV_CMD_NAV_LOITER_TIME ||
|
|
nav_cmd == MAV_CMD_NAV_LOITER_TO_ALT ||
|
|
nav_cmd == MAV_CMD_NAV_LOITER_TURNS ||
|
|
nav_cmd == MAV_CMD_NAV_LOITER_UNLIM);
|
|
|
|
// waypoints
|
|
allow |= (g.use_reverse_thrust & USE_REVERSE_THRUST_AUTO_WAYPOINT) &&
|
|
(nav_cmd == MAV_CMD_NAV_WAYPOINT ||
|
|
nav_cmd == MAV_CMD_NAV_SPLINE_WAYPOINT);
|
|
}
|
|
break;
|
|
|
|
case LOITER:
|
|
allow |= (g.use_reverse_thrust & USE_REVERSE_THRUST_LOITER);
|
|
break;
|
|
case RTL:
|
|
allow |= (g.use_reverse_thrust & USE_REVERSE_THRUST_RTL);
|
|
break;
|
|
case CIRCLE:
|
|
allow |= (g.use_reverse_thrust & USE_REVERSE_THRUST_CIRCLE);
|
|
break;
|
|
case CRUISE:
|
|
allow |= (g.use_reverse_thrust & USE_REVERSE_THRUST_CRUISE);
|
|
break;
|
|
case FLY_BY_WIRE_B:
|
|
allow |= (g.use_reverse_thrust & USE_REVERSE_THRUST_FBWB);
|
|
break;
|
|
case AVOID_ADSB:
|
|
case GUIDED:
|
|
allow |= (g.use_reverse_thrust & USE_REVERSE_THRUST_GUIDED);
|
|
break;
|
|
default:
|
|
// all other control_modes are auto_throttle_mode=false.
|
|
// If we are not controlling throttle, don't limit it.
|
|
allow = true;
|
|
break;
|
|
}
|
|
|
|
return allow;
|
|
}
|
|
|
|
/*
|
|
adjust nav_pitch_cd for STAB_PITCH_DOWN_CD. This is used to make
|
|
keeping up good airspeed in FBWA mode easier, as the plane will
|
|
automatically pitch down a little when at low throttle. It makes
|
|
FBWA landings without stalling much easier.
|
|
*/
|
|
void Plane::adjust_nav_pitch_throttle(void)
|
|
{
|
|
int8_t throttle = throttle_percentage();
|
|
if (throttle >= 0 && throttle < aparm.throttle_cruise && flight_stage != AP_SpdHgtControl::FLIGHT_VTOL) {
|
|
float p = (aparm.throttle_cruise - throttle) / (float)aparm.throttle_cruise;
|
|
nav_pitch_cd -= g.stab_pitch_down * 100.0f * p;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
calculate a new aerodynamic_load_factor and limit nav_roll_cd to
|
|
ensure that the load factor does not take us below the sustainable
|
|
airspeed
|
|
*/
|
|
void Plane::update_load_factor(void)
|
|
{
|
|
float demanded_roll = fabsf(nav_roll_cd*0.01f);
|
|
if (demanded_roll > 85) {
|
|
// limit to 85 degrees to prevent numerical errors
|
|
demanded_roll = 85;
|
|
}
|
|
aerodynamic_load_factor = 1.0f / safe_sqrt(cosf(radians(demanded_roll)));
|
|
|
|
if (!aparm.stall_prevention) {
|
|
// stall prevention is disabled
|
|
return;
|
|
}
|
|
if (fly_inverted()) {
|
|
// no roll limits when inverted
|
|
return;
|
|
}
|
|
|
|
float max_load_factor = smoothed_airspeed / aparm.airspeed_min;
|
|
if (max_load_factor <= 1) {
|
|
// our airspeed is below the minimum airspeed. Limit roll to
|
|
// 25 degrees
|
|
nav_roll_cd = constrain_int32(nav_roll_cd, -2500, 2500);
|
|
roll_limit_cd = constrain_int32(roll_limit_cd, -2500, 2500);
|
|
} else if (max_load_factor < aerodynamic_load_factor) {
|
|
// the demanded nav_roll would take us past the aerodymamic
|
|
// load limit. Limit our roll to a bank angle that will keep
|
|
// the load within what the airframe can handle. We always
|
|
// allow at least 25 degrees of roll however, to ensure the
|
|
// aircraft can be maneuvered with a bad airspeed estimate. At
|
|
// 25 degrees the load factor is 1.1 (10%)
|
|
int32_t roll_limit = degrees(acosf(sq(1.0f / max_load_factor)))*100;
|
|
if (roll_limit < 2500) {
|
|
roll_limit = 2500;
|
|
}
|
|
nav_roll_cd = constrain_int32(nav_roll_cd, -roll_limit, roll_limit);
|
|
roll_limit_cd = constrain_int32(roll_limit_cd, -roll_limit, roll_limit);
|
|
}
|
|
}
|