ardupilot/APMrover2/radio.pde

140 lines
4.2 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
static void init_rc_in()
{
// set rc channel ranges
g.channel_steer.set_angle(SERVO_MAX);
g.channel_throttle.set_angle(100);
// set rc dead zones
g.channel_steer.set_dead_zone(60);
g.channel_throttle.set_dead_zone(6);
//set auxiliary ranges
update_aux_servo_function(&g.rc_2, &g.rc_4, &g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8);
}
static void init_rc_out()
{
hal.rcout->enable_ch(CH_1);
hal.rcout->enable_ch(CH_2);
hal.rcout->enable_ch(CH_3);
hal.rcout->enable_ch(CH_4);
hal.rcout->enable_ch(CH_5);
hal.rcout->enable_ch(CH_6);
hal.rcout->enable_ch(CH_7);
hal.rcout->enable_ch(CH_8);
#if HIL_MODE != HIL_MODE_ATTITUDE
hal.rcout->write(CH_1, g.channel_steer.radio_trim); // Initialization of servo outputs
hal.rcout->write(CH_3, g.channel_throttle.radio_trim);
hal.rcout->write(CH_2, g.rc_2.radio_trim);
hal.rcout->write(CH_4, g.rc_4.radio_trim);
hal.rcout->write(CH_5, g.rc_5.radio_trim);
hal.rcout->write(CH_6, g.rc_6.radio_trim);
hal.rcout->write(CH_7, g.rc_7.radio_trim);
hal.rcout->write(CH_8, g.rc_8.radio_trim);
#else
hal.rcout->write(CH_1, 1500); // Initialization of servo outputs
hal.rcout->write(CH_2, 1500);
hal.rcout->write(CH_3, 1000);
hal.rcout->write(CH_4, 1500);
hal.rcout->write(CH_5, 1500);
hal.rcout->write(CH_6, 1500);
hal.rcout->write(CH_7, 1500);
hal.rcout->write(CH_8, 2000);
#endif
}
static void read_radio()
{
g.channel_steer.set_pwm(hal.rcin->read(CH_STEER));
g.channel_throttle.set_pwm(hal.rcin->read(CH_3));
g.rc_2.set_pwm(hal.rcin->read(CH_2));
g.rc_4.set_pwm(hal.rcin->read(CH_4));
g.rc_5.set_pwm(hal.rcin->read(CH_5));
g.rc_6.set_pwm(hal.rcin->read(CH_6));
g.rc_7.set_pwm(hal.rcin->read(CH_7));
g.rc_8.set_pwm(hal.rcin->read(CH_8));
control_failsafe(g.channel_throttle.radio_in);
g.channel_throttle.servo_out = g.channel_throttle.control_in;
if (g.channel_throttle.servo_out > 50) {
throttle_nudge = (g.throttle_max - g.throttle_cruise) * ((g.channel_throttle.norm_input()-0.5) / 0.5);
} else {
throttle_nudge = 0;
}
if (g.skid_steer_in) {
// convert the two radio_in values from skid steering values
/*
mixing rule:
steering = motor1 - motor2
throttle = 0.5*(motor1 + motor2)
motor1 = throttle + 0.5*steering
motor2 = throttle - 0.5*steering
*/
float motor1 = g.channel_steer.norm_input();
float motor2 = g.channel_throttle.norm_input();
float steering_scaled = motor1 - motor2;
float throttle_scaled = 0.5f*(motor1 + motor2);
int16_t steer = g.channel_steer.radio_trim;
int16_t thr = g.channel_throttle.radio_trim;
if (steering_scaled > 0.0f) {
steer += steering_scaled*(g.channel_steer.radio_max-g.channel_steer.radio_trim);
} else {
steer += steering_scaled*(g.channel_steer.radio_trim-g.channel_steer.radio_min);
}
if (throttle_scaled > 0.0f) {
thr += throttle_scaled*(g.channel_throttle.radio_max-g.channel_throttle.radio_trim);
} else {
thr += throttle_scaled*(g.channel_throttle.radio_trim-g.channel_throttle.radio_min);
}
g.channel_steer.set_pwm(steer);
g.channel_throttle.set_pwm(thr);
}
}
static void control_failsafe(uint16_t pwm)
{
if (!g.fs_throttle_enabled) {
// no throttle failsafe
return;
}
// Check for failsafe condition based on loss of GCS control
if (rc_override_active) {
failsafe_trigger(FAILSAFE_EVENT_RC, (millis() - failsafe.rc_override_timer) > 1500);
} else if (g.fs_throttle_enabled) {
failsafe_trigger(FAILSAFE_EVENT_THROTTLE, pwm < (uint16_t)g.fs_throttle_value);
}
}
static void trim_control_surfaces()
{
read_radio();
// Store control surface trim values
// ---------------------------------
if (g.channel_steer.radio_in > 1400) {
g.channel_steer.radio_trim = g.channel_steer.radio_in;
// save to eeprom
g.channel_steer.save_eeprom();
}
}
static void trim_radio()
{
for (int y = 0; y < 30; y++) {
read_radio();
}
trim_control_surfaces();
}