ardupilot/libraries/AP_Common/AP_Param.cpp
2013-01-11 16:02:21 +11:00

1071 lines
36 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
//
// This is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License as published by the
// Free Software Foundation; either version 2.1 of the License, or (at
// your option) any later version.
//
// total up and check overflow
// check size of group var_info
/// @file AP_Param.cpp
/// @brief The AP variable store.
#include <FastSerial.h>
#include <AP_Common.h>
#include <AP_Math.h>
#include <math.h>
#include <string.h>
// #define ENABLE_FASTSERIAL_DEBUG
#ifdef ENABLE_FASTSERIAL_DEBUG
# define serialDebug(fmt, args ...) if (FastSerial::getInitialized(0)) do {Serial.printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args); delay(0); } while(0)
#else
# define serialDebug(fmt, args ...)
#endif
// some useful progmem macros
#define PGM_UINT8(addr) pgm_read_byte((const prog_char *)addr)
#define PGM_UINT16(addr) pgm_read_word((const uint16_t *)addr)
#define PGM_FLOAT(addr) pgm_read_float((const float *)addr)
#define PGM_POINTER(addr) pgm_read_pointer((const void *)addr)
// the 'GROUP_ID' of a element of a group is the 18 bit identifier
// used to distinguish between this element of the group and other
// elements of the same group. It is calculated using a bit shift per
// level of nesting, so the first level of nesting gets 6 bits the 2nd
// level gets the next 6 bits, and the 3rd level gets the last 6
// bits. This limits groups to having at most 64 elements.
#define GROUP_ID(grpinfo, base, i, shift) ((base)+(((uint16_t)PGM_UINT8(&grpinfo[i].idx))<<(shift)))
// Note about AP_Vector3f handling.
// The code has special cases for AP_Vector3f to allow it to be viewed
// as both a single 3 element vector and as a set of 3 AP_Float
// variables. This is done to make it possible for MAVLink to see
// vectors as parameters, which allows users to save their compass
// offsets in MAVLink parameter files. The code involves quite a few
// special cases which could be generalised to any vector/matrix type
// if we end up needing this behaviour for other than AP_Vector3f
// static member variables for AP_Param.
//
// max EEPROM write size. This is usually less than the physical
// size as only part of the EEPROM is reserved for parameters
uint16_t AP_Param::_eeprom_size;
// number of rows in the _var_info[] table
uint8_t AP_Param::_num_vars;
// storage and naming information about all types that can be saved
const AP_Param::Info *AP_Param::_var_info;
// write to EEPROM, checking each byte to avoid writing
// bytes that are already correct
void AP_Param::eeprom_write_check(const void *ptr, uint16_t ofs, uint8_t size)
{
const uint8_t *b = (const uint8_t *)ptr;
while (size--) {
uint8_t v = eeprom_read_byte((const uint8_t *)(uintptr_t)ofs);
if (v != *b) {
eeprom_write_byte((uint8_t *)(uintptr_t)ofs, *b);
}
b++;
ofs++;
}
}
// write a sentinal value at the given offset
void AP_Param::write_sentinal(uint16_t ofs)
{
struct Param_header phdr;
phdr.type = _sentinal_type;
phdr.key = _sentinal_key;
phdr.group_element = _sentinal_group;
eeprom_write_check(&phdr, ofs, sizeof(phdr));
}
// erase all EEPROM variables by re-writing the header and adding
// a sentinal
void AP_Param::erase_all(void)
{
struct EEPROM_header hdr;
serialDebug("erase_all");
// write the header
hdr.magic[0] = k_EEPROM_magic0;
hdr.magic[1] = k_EEPROM_magic1;
hdr.revision = k_EEPROM_revision;
hdr.spare = 0;
eeprom_write_check(&hdr, 0, sizeof(hdr));
// add a sentinal directly after the header
write_sentinal(sizeof(struct EEPROM_header));
}
// validate a group info table
bool AP_Param::check_group_info(const struct AP_Param::GroupInfo * group_info,
uint16_t * total_size,
uint8_t group_shift)
{
uint8_t type;
int8_t max_idx = -1;
for (uint8_t i=0;
(type=PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE;
i++) {
#ifdef AP_NESTED_GROUPS_ENABLED
if (type == AP_PARAM_GROUP) {
// a nested group
const struct GroupInfo *ginfo = (const struct GroupInfo *)PGM_POINTER(&group_info[i].group_info);
if (group_shift + _group_level_shift >= _group_bits) {
// double nesting of groups is not allowed
return false;
}
if (ginfo == NULL ||
!check_group_info(ginfo, total_size, group_shift + _group_level_shift)) {
return false;
}
continue;
}
#endif // AP_NESTED_GROUPS_ENABLED
uint8_t idx = PGM_UINT8(&group_info[i].idx);
if (idx >= (1<<_group_level_shift)) {
// passed limit on table size
return false;
}
if ((int8_t)idx <= max_idx) {
// the indexes must be in increasing order
return false;
}
max_idx = (int8_t)idx;
uint8_t size = type_size((enum ap_var_type)type);
if (size == 0) {
// not a valid type
return false;
}
(*total_size) += size + sizeof(struct Param_header);
}
return true;
}
// check for duplicate key values
bool AP_Param::duplicate_key(uint8_t vindex, uint8_t key)
{
for (uint8_t i=vindex+1; i<_num_vars; i++) {
uint8_t key2 = PGM_UINT8(&_var_info[i].key);
if (key2 == key) {
// no duplicate keys allowed
return true;
}
}
return false;
}
// validate the _var_info[] table
bool AP_Param::check_var_info(void)
{
uint16_t total_size = sizeof(struct EEPROM_header);
for (uint8_t i=0; i<_num_vars; i++) {
uint8_t type = PGM_UINT8(&_var_info[i].type);
uint8_t key = PGM_UINT8(&_var_info[i].key);
if (type == AP_PARAM_GROUP) {
if (i == 0) {
// first element can't be a group, for first() call
return false;
}
const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info);
if (group_info == NULL ||
!check_group_info(group_info, &total_size, 0)) {
return false;
}
} else {
uint8_t size = type_size((enum ap_var_type)type);
if (size == 0) {
// not a valid type - the top level list can't contain
// AP_PARAM_NONE
return false;
}
total_size += size + sizeof(struct Param_header);
}
if (duplicate_key(i, key)) {
return false;
}
}
// we no longer check if total_size is larger than _eeprom_size,
// as we allow for more variables than could fit, relying on not
// saving default values
return true;
}
// setup the _var_info[] table
bool AP_Param::setup(const struct AP_Param::Info *info, uint16_t eeprom_size)
{
struct EEPROM_header hdr;
uint8_t i;
_eeprom_size = eeprom_size;
_var_info = info;
for (i=0; PGM_UINT8(&info[i].type) != AP_PARAM_NONE; i++) ;
_num_vars = i;
if (!check_var_info()) {
return false;
}
serialDebug("setup %u vars", (unsigned)_num_vars);
// check the header
eeprom_read_block(&hdr, 0, sizeof(hdr));
if (hdr.magic[0] != k_EEPROM_magic0 ||
hdr.magic[1] != k_EEPROM_magic1 ||
hdr.revision != k_EEPROM_revision) {
// header doesn't match. We can't recover any variables. Wipe
// the header and setup the sentinal directly after the header
serialDebug("bad header in setup - erasing");
erase_all();
}
return true;
}
// check if AP_Param has been initialised
bool AP_Param::initialised(void)
{
return _var_info != NULL;
}
// find the info structure given a header and a group_info table
// return the Info structure and a pointer to the variables storage
const struct AP_Param::Info *AP_Param::find_by_header_group(struct Param_header phdr, void **ptr,
uint8_t vindex,
const struct GroupInfo *group_info,
uint8_t group_base,
uint8_t group_shift)
{
uint8_t type;
for (uint8_t i=0;
(type=PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE;
i++) {
#ifdef AP_NESTED_GROUPS_ENABLED
if (type == AP_PARAM_GROUP) {
// a nested group
if (group_shift + _group_level_shift >= _group_bits) {
// too deeply nested - this should have been caught by
// setup() !
return NULL;
}
const struct GroupInfo *ginfo = (const struct GroupInfo *)PGM_POINTER(&group_info[i].group_info);
const struct AP_Param::Info *ret = find_by_header_group(phdr, ptr, vindex, ginfo,
GROUP_ID(group_info, group_base, i, group_shift),
group_shift + _group_level_shift);
if (ret != NULL) {
return ret;
}
continue;
}
#endif // AP_NESTED_GROUPS_ENABLED
if (GROUP_ID(group_info, group_base, i, group_shift) == phdr.group_element) {
// found a group element
*ptr = (void*)(PGM_POINTER(&_var_info[vindex].ptr) + PGM_UINT16(&group_info[i].offset));
return &_var_info[vindex];
}
}
return NULL;
}
// find the info structure given a header
// return the Info structure and a pointer to the variables storage
const struct AP_Param::Info *AP_Param::find_by_header(struct Param_header phdr, void **ptr)
{
// loop over all named variables
for (uint8_t i=0; i<_num_vars; i++) {
uint8_t type = PGM_UINT8(&_var_info[i].type);
uint8_t key = PGM_UINT8(&_var_info[i].key);
if (key != phdr.key) {
// not the right key
continue;
}
if (type != AP_PARAM_GROUP) {
// if its not a group then we are done
*ptr = (void*)PGM_POINTER(&_var_info[i].ptr);
return &_var_info[i];
}
const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info);
return find_by_header_group(phdr, ptr, i, group_info, 0, 0);
}
return NULL;
}
// find the info structure for a variable in a group
const struct AP_Param::Info *AP_Param::find_var_info_group(const struct GroupInfo * group_info,
uint8_t vindex,
uint8_t group_base,
uint8_t group_shift,
uint32_t * group_element,
const struct GroupInfo **group_ret,
uint8_t * idx)
{
uintptr_t base = PGM_POINTER(&_var_info[vindex].ptr);
uint8_t type;
for (uint8_t i=0;
(type=PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE;
i++) {
uintptr_t ofs = PGM_POINTER(&group_info[i].offset);
#ifdef AP_NESTED_GROUPS_ENABLED
if (type == AP_PARAM_GROUP) {
const struct GroupInfo *ginfo = (const struct GroupInfo *)PGM_POINTER(&group_info[i].group_info);
// a nested group
if (group_shift + _group_level_shift >= _group_bits) {
// too deeply nested - this should have been caught by
// setup() !
return NULL;
}
const struct AP_Param::Info *info;
info = find_var_info_group(ginfo, vindex,
GROUP_ID(group_info, group_base, i, group_shift),
group_shift + _group_level_shift,
group_element,
group_ret,
idx);
if (info != NULL) {
return info;
}
} else // Forgive the poor formatting - if continues below.
#endif // AP_NESTED_GROUPS_ENABLED
if ((uintptr_t) this == base + ofs) {
*group_element = GROUP_ID(group_info, group_base, i, group_shift);
*group_ret = &group_info[i];
*idx = 0;
return &_var_info[vindex];
} else if (type == AP_PARAM_VECTOR3F &&
(base+ofs+sizeof(float) == (uintptr_t) this ||
base+ofs+2*sizeof(float) == (uintptr_t) this)) {
// we are inside a Vector3f. We need to work out which
// element of the vector the current object refers to.
*idx = (((uintptr_t) this) - (base+ofs))/sizeof(float);
*group_element = GROUP_ID(group_info, group_base, i, group_shift);
*group_ret = &group_info[i];
return &_var_info[vindex];
}
}
return NULL;
}
// find the info structure for a variable
const struct AP_Param::Info *AP_Param::find_var_info(uint32_t * group_element,
const struct GroupInfo ** group_ret,
uint8_t * idx)
{
for (uint8_t i=0; i<_num_vars; i++) {
uint8_t type = PGM_UINT8(&_var_info[i].type);
uintptr_t base = PGM_POINTER(&_var_info[i].ptr);
if (type == AP_PARAM_GROUP) {
const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info);
const struct AP_Param::Info *info;
info = find_var_info_group(group_info, i, 0, 0, group_element, group_ret, idx);
if (info != NULL) {
return info;
}
} else if (base == (uintptr_t) this) {
*group_element = 0;
*group_ret = NULL;
*idx = 0;
return &_var_info[i];
} else if (type == AP_PARAM_VECTOR3F &&
(base+sizeof(float) == (uintptr_t) this ||
base+2*sizeof(float) == (uintptr_t) this)) {
// we are inside a Vector3f. Work out which element we are
// referring to.
*idx = (((uintptr_t) this) - base)/sizeof(float);
*group_element = 0;
*group_ret = NULL;
return &_var_info[i];
}
}
return NULL;
}
// find the info structure for a variable
const struct AP_Param::Info *AP_Param::find_var_info_token(const ParamToken *token,
uint32_t * group_element,
const struct GroupInfo ** group_ret,
uint8_t * idx)
{
uint8_t i = token->key;
uint8_t type = PGM_UINT8(&_var_info[i].type);
uintptr_t base = PGM_POINTER(&_var_info[i].ptr);
if (type == AP_PARAM_GROUP) {
const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info);
const struct AP_Param::Info *info;
info = find_var_info_group(group_info, i, 0, 0, group_element, group_ret, idx);
if (info != NULL) {
return info;
}
} else if (base == (uintptr_t) this) {
*group_element = 0;
*group_ret = NULL;
*idx = 0;
return &_var_info[i];
} else if (type == AP_PARAM_VECTOR3F &&
(base+sizeof(float) == (uintptr_t) this ||
base+2*sizeof(float) == (uintptr_t) this)) {
// we are inside a Vector3f. Work out which element we are
// referring to.
*idx = (((uintptr_t) this) - base)/sizeof(float);
*group_element = 0;
*group_ret = NULL;
return &_var_info[i];
}
return NULL;
}
// return the storage size for a AP_PARAM_* type
const uint8_t AP_Param::type_size(enum ap_var_type type)
{
switch (type) {
case AP_PARAM_NONE:
case AP_PARAM_GROUP:
return 0;
case AP_PARAM_INT8:
return 1;
case AP_PARAM_INT16:
return 2;
case AP_PARAM_INT32:
return 4;
case AP_PARAM_FLOAT:
return 4;
case AP_PARAM_VECTOR3F:
return 3*4;
case AP_PARAM_VECTOR6F:
return 6*4;
case AP_PARAM_MATRIX3F:
return 3*3*4;
}
serialDebug("unknown type %u\n", type);
return 0;
}
// scan the EEPROM looking for a given variable by header content
// return true if found, along with the offset in the EEPROM where
// the variable is stored
// if not found return the offset of the sentinal, or
bool AP_Param::scan(const AP_Param::Param_header *target, uint16_t *pofs)
{
struct Param_header phdr;
uint16_t ofs = sizeof(AP_Param::EEPROM_header);
while (ofs < _eeprom_size) {
eeprom_read_block(&phdr, (void *)(uintptr_t)ofs, sizeof(phdr));
if (phdr.type == target->type &&
phdr.key == target->key &&
phdr.group_element == target->group_element) {
// found it
*pofs = ofs;
return true;
}
// note that this is an ||, not an &&, as this makes us more
// robust to power off while adding a variable to EEPROM
if (phdr.type == _sentinal_type ||
phdr.key == _sentinal_key ||
phdr.group_element == _sentinal_group) {
// we've reached the sentinal
*pofs = ofs;
return false;
}
ofs += type_size((enum ap_var_type)phdr.type) + sizeof(phdr);
}
*pofs = ~0;
serialDebug("scan past end of eeprom");
return false;
}
// add a X,Y,Z suffix to the name of a Vector3f element
void AP_Param::add_vector3f_suffix(char *buffer, size_t buffer_size, uint8_t idx)
{
uint8_t len = strnlen(buffer, buffer_size);
if ((size_t)(len+2) > buffer_size) {
// the suffix doesn't fit
return;
}
buffer[len] = '_';
if (idx == 0) {
buffer[len+1] = 'X';
} else if (idx == 1) {
buffer[len+1] = 'Y';
} else if (idx == 2) {
buffer[len+1] = 'Z';
}
if ((size_t)(len+2) < buffer_size) {
buffer[len+2] = 0;
}
}
// Copy the variable's whole name to the supplied buffer.
//
// If the variable is a group member, prepend the group name.
//
void AP_Param::copy_name(char *buffer, size_t buffer_size, bool force_scalar)
{
uint32_t group_element;
const struct GroupInfo *ginfo;
uint8_t idx;
const struct AP_Param::Info *info = find_var_info(&group_element, &ginfo, &idx);
if (info == NULL) {
*buffer = 0;
serialDebug("no info found");
return;
}
strncpy_P(buffer, info->name, buffer_size);
if (ginfo != NULL) {
uint8_t len = strnlen(buffer, buffer_size);
if (len < buffer_size) {
strncpy_P(&buffer[len], ginfo->name, buffer_size-len);
}
if ((force_scalar || idx != 0) && AP_PARAM_VECTOR3F == PGM_UINT8(&ginfo->type)) {
// the caller wants a specific element in a Vector3f
add_vector3f_suffix(buffer, buffer_size, idx);
}
} else if ((force_scalar || idx != 0) && AP_PARAM_VECTOR3F == PGM_UINT8(&info->type)) {
add_vector3f_suffix(buffer, buffer_size, idx);
}
}
// Copy the variable's whole name to the supplied buffer.
//
// If the variable is a group member, prepend the group name.
//
void AP_Param::copy_name_token(const ParamToken *token, char *buffer, size_t buffer_size, bool force_scalar)
{
uint32_t group_element;
const struct GroupInfo *ginfo;
uint8_t idx;
const struct AP_Param::Info *info = find_var_info_token(token, &group_element, &ginfo, &idx);
if (info == NULL) {
*buffer = 0;
serialDebug("no info found");
return;
}
strncpy_P(buffer, info->name, buffer_size);
if (ginfo != NULL) {
uint8_t len = strnlen(buffer, buffer_size);
if (len < buffer_size) {
strncpy_P(&buffer[len], ginfo->name, buffer_size-len);
}
if ((force_scalar || idx != 0) && AP_PARAM_VECTOR3F == PGM_UINT8(&ginfo->type)) {
// the caller wants a specific element in a Vector3f
add_vector3f_suffix(buffer, buffer_size, idx);
}
} else if ((force_scalar || idx != 0) && AP_PARAM_VECTOR3F == PGM_UINT8(&info->type)) {
add_vector3f_suffix(buffer, buffer_size, idx);
}
}
// Find a variable by name in a group
AP_Param *
AP_Param::find_group(const char *name, uint8_t vindex, const struct GroupInfo *group_info, enum ap_var_type *ptype)
{
uint8_t type;
for (uint8_t i=0;
(type=PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE;
i++) {
#ifdef AP_NESTED_GROUPS_ENABLED
if (type == AP_PARAM_GROUP) {
const struct GroupInfo *ginfo = (const struct GroupInfo *)PGM_POINTER(&group_info[i].group_info);
AP_Param *ap = find_group(name, vindex, ginfo, ptype);
if (ap != NULL) {
return ap;
}
} else
#endif // AP_NESTED_GROUPS_ENABLED
if (strcasecmp_P(name, group_info[i].name) == 0) {
uintptr_t p = PGM_POINTER(&_var_info[vindex].ptr);
*ptype = (enum ap_var_type)type;
return (AP_Param *)(p + PGM_POINTER(&group_info[i].offset));
} else if (type == AP_PARAM_VECTOR3F) {
// special case for finding Vector3f elements
uint8_t suffix_len = strnlen_P(group_info[i].name, AP_MAX_NAME_SIZE);
if (strncmp_P(name, group_info[i].name, suffix_len) == 0 &&
name[suffix_len] == '_' &&
(name[suffix_len+1] == 'X' ||
name[suffix_len+1] == 'Y' ||
name[suffix_len+1] == 'Z')) {
uintptr_t p = PGM_POINTER(&_var_info[vindex].ptr);
AP_Float *v = (AP_Float *)(p + PGM_POINTER(&group_info[i].offset));
*ptype = AP_PARAM_FLOAT;
switch (name[suffix_len+1]) {
case 'X':
return (AP_Float *)&v[0];
case 'Y':
return (AP_Float *)&v[1];
case 'Z':
return (AP_Float *)&v[2];
}
}
}
}
return NULL;
}
// Find a variable by name.
//
AP_Param *
AP_Param::find(const char *name, enum ap_var_type *ptype)
{
for (uint8_t i=0; i<_num_vars; i++) {
uint8_t type = PGM_UINT8(&_var_info[i].type);
if (type == AP_PARAM_GROUP) {
uint8_t len = strnlen_P(_var_info[i].name, AP_MAX_NAME_SIZE);
if (strncmp_P(name, _var_info[i].name, len) != 0) {
continue;
}
const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info);
AP_Param *ap = find_group(name + len, i, group_info, ptype);
if (ap != NULL) {
return ap;
}
// we continue looking as we want to allow top level
// parameter to have the same prefix name as group
// parameters, for example CAM_P_G
} else if (strcasecmp_P(name, _var_info[i].name) == 0) {
*ptype = (enum ap_var_type)type;
return (AP_Param *)PGM_POINTER(&_var_info[i].ptr);
}
}
return NULL;
}
// Find a variable by index. Note that this is quite slow.
//
AP_Param *
AP_Param::find_by_index(uint16_t idx, enum ap_var_type *ptype)
{
ParamToken token;
AP_Param *ap;
uint16_t count=0;
for (ap=AP_Param::first(&token, ptype);
ap && count < idx;
ap=AP_Param::next_scalar(&token, ptype)) {
count++;
}
return ap;
}
// Save the variable to EEPROM, if supported
//
bool AP_Param::save(void)
{
uint32_t group_element = 0;
const struct GroupInfo *ginfo;
uint8_t idx;
const struct AP_Param::Info *info = find_var_info(&group_element, &ginfo, &idx);
const AP_Param *ap;
if (info == NULL) {
// we don't have any info on how to store it
return false;
}
struct Param_header phdr;
// create the header we will use to store the variable
if (ginfo != NULL) {
phdr.type = PGM_UINT8(&ginfo->type);
} else {
phdr.type = PGM_UINT8(&info->type);
}
phdr.key = PGM_UINT8(&info->key);
phdr.group_element = group_element;
ap = this;
if (phdr.type != AP_PARAM_VECTOR3F && idx != 0) {
// only vector3f can have non-zero idx for now
return false;
}
if (idx != 0) {
ap = (const AP_Param *)((uintptr_t)ap) - (idx*sizeof(float));
}
// scan EEPROM to find the right location
uint16_t ofs;
if (scan(&phdr, &ofs)) {
// found an existing copy of the variable
eeprom_write_check(ap, ofs+sizeof(phdr), type_size((enum ap_var_type)phdr.type));
return true;
}
if (ofs == (uint16_t) ~0) {
return false;
}
// if the value is the default value then don't save
if (phdr.type <= AP_PARAM_FLOAT) {
float v1 = cast_to_float((enum ap_var_type)phdr.type);
float v2;
if (ginfo != NULL) {
v2 = PGM_FLOAT(&ginfo->def_value);
} else {
v2 = PGM_FLOAT(&info->def_value);
}
if (v1 == v2) {
return true;
}
if (phdr.type != AP_PARAM_INT32 &&
(fabs(v1-v2) < 0.0001*fabs(v1))) {
// for other than 32 bit integers, we accept values within
// 0.01 percent of the current value as being the same
return true;
}
}
if (ofs+type_size((enum ap_var_type)phdr.type)+2*sizeof(phdr) >= _eeprom_size) {
// we are out of room for saving variables
return false;
}
// write a new sentinal, then the data, then the header
write_sentinal(ofs + sizeof(phdr) + type_size((enum ap_var_type)phdr.type));
eeprom_write_check(ap, ofs+sizeof(phdr), type_size((enum ap_var_type)phdr.type));
eeprom_write_check(&phdr, ofs, sizeof(phdr));
return true;
}
// Load the variable from EEPROM, if supported
//
bool AP_Param::load(void)
{
uint32_t group_element = 0;
const struct GroupInfo *ginfo;
uint8_t idx;
const struct AP_Param::Info *info = find_var_info(&group_element, &ginfo, &idx);
if (info == NULL) {
// we don't have any info on how to load it
return false;
}
struct Param_header phdr;
// create the header we will use to match the variable
if (ginfo != NULL) {
phdr.type = PGM_UINT8(&ginfo->type);
} else {
phdr.type = PGM_UINT8(&info->type);
}
phdr.key = PGM_UINT8(&info->key);
phdr.group_element = group_element;
// scan EEPROM to find the right location
uint16_t ofs;
if (!scan(&phdr, &ofs)) {
// if the value isn't stored in EEPROM then set the default value
if (ginfo != NULL) {
uintptr_t base = PGM_POINTER(&info->ptr);
set_value((enum ap_var_type)phdr.type, (void*)(base + PGM_UINT16(&ginfo->offset)),
PGM_FLOAT(&ginfo->def_value));
} else {
set_value((enum ap_var_type)phdr.type, (void*)PGM_POINTER(&info->ptr), PGM_FLOAT(&info->def_value));
}
return false;
}
if (phdr.type != AP_PARAM_VECTOR3F && idx != 0) {
// only vector3f can have non-zero idx for now
return false;
}
AP_Param *ap;
ap = this;
if (idx != 0) {
ap = (AP_Param *)((uintptr_t)ap) - (idx*sizeof(float));
}
// found it
eeprom_read_block(ap, (void*)(ofs+sizeof(phdr)), type_size((enum ap_var_type)phdr.type));
return true;
}
// set a AP_Param variable to a specified value
void AP_Param::set_value(enum ap_var_type type, void *ptr, float def_value)
{
switch (type) {
case AP_PARAM_INT8:
((AP_Int8 *)ptr)->set(def_value);
break;
case AP_PARAM_INT16:
((AP_Int16 *)ptr)->set(def_value);
break;
case AP_PARAM_INT32:
((AP_Int32 *)ptr)->set(def_value);
break;
case AP_PARAM_FLOAT:
((AP_Float *)ptr)->set(def_value);
break;
default:
break;
}
}
// load default values for scalars in a group
void AP_Param::load_defaults_group(const struct GroupInfo *group_info, uintptr_t base)
{
uint8_t type;
for (uint8_t i=0;
(type=PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE;
i++) {
if (type == AP_PARAM_GROUP) {
const struct GroupInfo *ginfo = (const struct GroupInfo *)PGM_POINTER(&group_info[i].group_info);
load_defaults_group(ginfo, base);
} else if (type <= AP_PARAM_FLOAT) {
void *ptr = (void *)(base + PGM_UINT16(&group_info[i].offset));
set_value((enum ap_var_type)type, ptr, PGM_FLOAT(&group_info[i].def_value));
}
}
}
// load default values for all scalars
void AP_Param::load_defaults(void)
{
for (uint8_t i=0; i<_num_vars; i++) {
uint8_t type = PGM_UINT8(&_var_info[i].type);
if (type == AP_PARAM_GROUP) {
const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info);
uintptr_t base = PGM_POINTER(&_var_info[i].ptr);
load_defaults_group(group_info, base);
} else if (type <= AP_PARAM_FLOAT) {
void *ptr = (void*)PGM_POINTER(&_var_info[i].ptr);
set_value((enum ap_var_type)type, ptr, PGM_FLOAT(&_var_info[i].def_value));
}
}
}
// Load all variables from EEPROM
//
bool AP_Param::load_all(void)
{
struct Param_header phdr;
uint16_t ofs = sizeof(AP_Param::EEPROM_header);
while (ofs < _eeprom_size) {
eeprom_read_block(&phdr, (void *)(uintptr_t)ofs, sizeof(phdr));
// note that this is an || not an && for robustness
// against power off while adding a variable
if (phdr.type == _sentinal_type ||
phdr.key == _sentinal_key ||
phdr.group_element == _sentinal_group) {
// we've reached the sentinal
return true;
}
const struct AP_Param::Info *info;
void *ptr;
info = find_by_header(phdr, &ptr);
if (info != NULL) {
eeprom_read_block(ptr, (void*)(ofs+sizeof(phdr)), type_size((enum ap_var_type)phdr.type));
}
ofs += type_size((enum ap_var_type)phdr.type) + sizeof(phdr);
}
// we didn't find the sentinal
serialDebug("no sentinal in load_all");
return false;
}
// return the first variable in _var_info
AP_Param *AP_Param::first(ParamToken *token, enum ap_var_type *ptype)
{
token->key = 0;
token->group_element = 0;
token->idx = 0;
if (_num_vars == 0) {
return NULL;
}
if (ptype != NULL) {
*ptype = (enum ap_var_type)PGM_UINT8(&_var_info[0].type);
}
return (AP_Param *)(PGM_POINTER(&_var_info[0].ptr));
}
/// Returns the next variable in a group, recursing into groups
/// as needed
AP_Param *AP_Param::next_group(uint8_t vindex, const struct GroupInfo *group_info,
bool *found_current,
uint8_t group_base,
uint8_t group_shift,
ParamToken *token,
enum ap_var_type *ptype)
{
enum ap_var_type type;
for (uint8_t i=0;
(type=(enum ap_var_type)PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE;
i++) {
#ifdef AP_NESTED_GROUPS_ENABLED
if (type == AP_PARAM_GROUP) {
// a nested group
const struct GroupInfo *ginfo = (const struct GroupInfo *)PGM_POINTER(&group_info[i].group_info);
AP_Param *ap;
ap = next_group(vindex, ginfo, found_current, GROUP_ID(group_info, group_base, i, group_shift),
group_shift + _group_level_shift, token, ptype);
if (ap != NULL) {
return ap;
}
} else
#endif // AP_NESTED_GROUPS_ENABLED
{
if (*found_current) {
// got a new one
token->key = vindex;
token->group_element = GROUP_ID(group_info, group_base, i, group_shift);
token->idx = 0;
if (ptype != NULL) {
*ptype = type;
}
return (AP_Param*)(PGM_POINTER(&_var_info[vindex].ptr) + PGM_UINT16(&group_info[i].offset));
}
if (GROUP_ID(group_info, group_base, i, group_shift) == token->group_element) {
*found_current = true;
if (type == AP_PARAM_VECTOR3F && token->idx < 3) {
// return the next element of the vector as a
// float
token->idx++;
if (ptype != NULL) {
*ptype = AP_PARAM_FLOAT;
}
uintptr_t ofs = (uintptr_t)PGM_POINTER(&_var_info[vindex].ptr) + PGM_UINT16(&group_info[i].offset);
ofs += sizeof(float)*(token->idx-1);
return (AP_Param *)ofs;
}
}
}
}
return NULL;
}
/// Returns the next variable in _var_info, recursing into groups
/// as needed
AP_Param *AP_Param::next(ParamToken *token, enum ap_var_type *ptype)
{
uint8_t i = token->key;
bool found_current = false;
if (i >= _num_vars) {
// illegal token
return NULL;
}
enum ap_var_type type = (enum ap_var_type)PGM_UINT8(&_var_info[i].type);
// allow Vector3f to be seen as 3 variables. First as a vector,
// then as 3 separate floats
if (type == AP_PARAM_VECTOR3F && token->idx < 3) {
token->idx++;
if (ptype != NULL) {
*ptype = AP_PARAM_FLOAT;
}
return (AP_Param *)(((token->idx-1)*sizeof(float))+(uintptr_t)PGM_POINTER(&_var_info[i].ptr));
}
if (type != AP_PARAM_GROUP) {
i++;
found_current = true;
}
for (; i<_num_vars; i++) {
type = (enum ap_var_type)PGM_UINT8(&_var_info[i].type);
if (type == AP_PARAM_GROUP) {
const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info);
AP_Param *ap = next_group(i, group_info, &found_current, 0, 0, token, ptype);
if (ap != NULL) {
return ap;
}
} else {
// found the next one
token->key = i;
token->group_element = 0;
token->idx = 0;
if (ptype != NULL) {
*ptype = type;
}
return (AP_Param *)(PGM_POINTER(&_var_info[i].ptr));
}
}
return NULL;
}
/// Returns the next scalar in _var_info, recursing into groups
/// as needed
AP_Param *AP_Param::next_scalar(ParamToken *token, enum ap_var_type *ptype)
{
AP_Param *ap;
enum ap_var_type type;
while ((ap = next(token, &type)) != NULL && type > AP_PARAM_FLOAT) ;
if (ap != NULL && ptype != NULL) {
*ptype = type;
}
return ap;
}
/// cast a variable to a float given its type
float AP_Param::cast_to_float(enum ap_var_type type)
{
switch (type) {
case AP_PARAM_INT8:
return ((AP_Int8 *)this)->cast_to_float();
case AP_PARAM_INT16:
return ((AP_Int16 *)this)->cast_to_float();
case AP_PARAM_INT32:
return ((AP_Int32 *)this)->cast_to_float();
case AP_PARAM_FLOAT:
return ((AP_Float *)this)->cast_to_float();
default:
return NAN;
}
}
// print the value of all variables
void AP_Param::show_all(void)
{
ParamToken token;
AP_Param *ap;
enum ap_var_type type;
for (ap=AP_Param::first(&token, &type);
ap;
ap=AP_Param::next_scalar(&token, &type)) {
char s[AP_MAX_NAME_SIZE+1];
ap->copy_name(s, sizeof(s), true);
s[AP_MAX_NAME_SIZE] = 0;
switch (type) {
case AP_PARAM_INT8:
Serial.printf_P(PSTR("%s: %d\n"), s, (int)((AP_Int8 *)ap)->get());
break;
case AP_PARAM_INT16:
Serial.printf_P(PSTR("%s: %d\n"), s, (int)((AP_Int16 *)ap)->get());
break;
case AP_PARAM_INT32:
Serial.printf_P(PSTR("%s: %ld\n"), s, (long)((AP_Int32 *)ap)->get());
break;
case AP_PARAM_FLOAT:
Serial.printf_P(PSTR("%s: %f\n"), s, ((AP_Float *)ap)->get());
break;
default:
break;
}
}
}