ardupilot/libraries/AC_PID/AC_PID.h
Andrew Tridgell 29f978b8e5 AC_PID: suppress the derivative immediately after reset
use _last_derivative == NAN to flag that the derivative is invalid
2012-11-27 18:45:49 +11:00

143 lines
4.1 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
/// @file AC_PID.h
/// @brief Generic PID algorithm, with EEPROM-backed storage of constants.
#ifndef AC_PID_h
#define AC_PID_h
#include <AP_Common.h>
#include <math.h> // for fabs()
/// @class AC_PID
/// @brief Object managing one PID control
class AC_PID {
public:
/// Constructor for PID that saves its settings to EEPROM
///
/// @note PIDs must be named to avoid either multiple parameters with the
/// same name, or an overly complex constructor.
///
/// @param initial_p Initial value for the P term.
/// @param initial_i Initial value for the I term.
/// @param initial_d Initial value for the D term.
/// @param initial_imax Initial value for the imax term.4
///
AC_PID(
const float & initial_p = 0.0,
const float & initial_i = 0.0,
const float & initial_d = 0.0,
const int16_t & initial_imax = 0.0)
{
_kp = initial_p;
_ki = initial_i;
_kd = initial_d;
_imax = abs(initial_imax);
// derivative is invalid on startup
_last_derivative = NAN;
}
/// Iterate the PID, return the new control value
///
/// Positive error produces positive output.
///
/// @param error The measured error value
/// @param dt The time delta in milliseconds (note
/// that update interval cannot be more
/// than 65.535 seconds due to limited range
/// of the data type).
/// @param scaler An arbitrary scale factor
///
/// @returns The updated control output.
///
int32_t get_pid(int32_t error, float dt);
int32_t get_pi(int32_t error, float dt);
int32_t get_p(int32_t error);
int32_t get_i(int32_t error, float dt);
int32_t get_d(int32_t error, float dt);
int32_t get_leaky_i(int32_t error, float dt, float leak_rate);
/// Reset the PID integrator
///
void reset_I();
/// Load gain properties
///
void load_gains();
/// Save gain properties
///
void save_gains();
/// @name parameter accessors
//@{
/// Overload the function call operator to permit relatively easy initialisation
void operator () (const float p,
const float i,
const float d,
const int16_t imaxval) {
_kp = p; _ki = i; _kd = d; _imax = abs(imaxval);
}
float kP() const {
return _kp.get();
}
float kI() const {
return _ki.get();
}
float kD() const {
return _kd.get();
}
int16_t imax() const {
return _imax.get();
}
void kP(const float v) {
_kp.set(v);
}
void kI(const float v) {
_ki.set(v);
}
void kD(const float v) {
_kd.set(v);
}
void imax(const int16_t v) {
_imax.set(abs(v));
}
float get_integrator() const {
return _integrator;
}
void set_integrator(float i) {
_integrator = i;
}
static const struct AP_Param::GroupInfo var_info[];
private:
AP_Float _kp;
AP_Float _ki;
AP_Float _kd;
AP_Int16 _imax;
float _integrator; ///< integrator value
int32_t _last_input; ///< last input for derivative
float _last_derivative; ///< last derivative for low-pass filter
/// Low pass filter cut frequency for derivative calculation.
///
static const float _filter = 7.9577e-3; // Set to "1 / ( 2 * PI * f_cut )";
// Examples for _filter:
// f_cut = 10 Hz -> _filter = 15.9155e-3
// f_cut = 15 Hz -> _filter = 10.6103e-3
// f_cut = 20 Hz -> _filter = 7.9577e-3
// f_cut = 25 Hz -> _filter = 6.3662e-3
// f_cut = 30 Hz -> _filter = 5.3052e-3
};
#endif