ardupilot/APMrover2/control_modes.pde
Robert Lefebvre a03642df52 Changed software ID from 0 to 20 for ArduRover V2 Divergence.
Also changed definition of flight mode 2 from Stabilize to Learning.
2012-05-14 15:21:29 -04:00

156 lines
5.7 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
static void read_control_switch()
{
byte switchPosition = readSwitch();
// If switchPosition = 255 this indicates that the mode control channel input was out of range
// If we get this value we do not want to change modes.
if(switchPosition == 255) return;
// we look for changes in the switch position. If the
// RST_SWITCH_CH parameter is set, then it is a switch that can be
// used to force re-reading of the control switch. This is useful
// when returning to the previous mode after a failsafe or fence
// breach. This channel is best used on a momentary switch (such
// as a spring loaded trainer switch).
if (oldSwitchPosition != switchPosition ||
(g.reset_switch_chan != 0 &&
APM_RC.InputCh(g.reset_switch_chan-1) > RESET_SWITCH_CHAN_PWM)) {
set_mode(flight_modes[switchPosition]);
oldSwitchPosition = switchPosition;
prev_WP = current_loc;
// reset navigation integrators
// -------------------------
reset_I();
}
}
static byte readSwitch(void){
uint16_t pulsewidth = APM_RC.InputCh(g.flight_mode_channel - 1);
if (pulsewidth <= 910 || pulsewidth >= 2090) return 255; // This is an error condition
if (pulsewidth > 1230 && pulsewidth <= 1360) return 1;
if (pulsewidth > 1360 && pulsewidth <= 1490) return 2;
if (pulsewidth > 1490 && pulsewidth <= 1620) return 3;
if (pulsewidth > 1620 && pulsewidth <= 1749) return 4; // Software Manual
if (pulsewidth >= 1750) return 5; // Hardware Manual
return 0;
}
static void reset_control_switch()
{
oldSwitchPosition = 0;
read_control_switch();
}
#define CH_7_PWM_TRIGGER 1800
// read at 10 hz
// set this to your trainer switch
static void read_trim_switch()
{
if (g.ch7_option == CH7_SAVE_WP){ // set to 1
if (g.rc_7.radio_in > CH_7_PWM_TRIGGER){ // switch is engaged
trim_flag = true;
}else{ // switch is disengaged
if(trim_flag){
trim_flag = false;
if(control_mode == MANUAL){ // if SW7 is ON in MANUAL = Erase the Flight Plan
// reset the mission
CH7_wp_index = 0;
g.command_total.set_and_save(CH7_wp_index);
g.command_total = 0;
g.command_index =0;
nav_command_index = 0;
if(g.channel_roll.control_in > 3000) // if roll is full right store the current location as home
ground_start_count = 5;
#if X_PLANE == ENABLED
Serial.printf_P(PSTR("*** RESET the FPL\n"));
#endif
CH7_wp_index = 1;
return;
} else if (control_mode == LEARNING) { // if SW7 is ON in LEARNING = record the Wp
// set the next_WP (home is stored at 0)
// max out at 100 since I think we need to stay under the EEPROM limit
CH7_wp_index = constrain(CH7_wp_index, 1, 100);
current_loc.id = MAV_CMD_NAV_WAYPOINT;
// store the index
g.command_total.set_and_save(CH7_wp_index);
g.command_total = CH7_wp_index;
g.command_index = CH7_wp_index;
nav_command_index = 0;
// save command
set_cmd_with_index(current_loc, CH7_wp_index);
#if X_PLANE == ENABLED
Serial.printf_P(PSTR("*** Store WP #%d\n"),CH7_wp_index);
#endif
// increment index
CH7_wp_index++;
} else if (control_mode == AUTO) { // if SW7 is ON in AUTO = set to RTL
set_mode(RTL);
}
}
}
}
else if (g.ch7_option == CH7_RTL){ // set to 6
if (g.rc_7.radio_in > CH_7_PWM_TRIGGER){ // switch is engaged
trim_flag = true;
}else{ // switch is disengaged
if(trim_flag){
trim_flag = false;
if (control_mode == LEARNING) {
set_mode(RTL);
}
}
}
}
}
static void update_servo_switches()
{
#if CONFIG_APM_HARDWARE != APM_HARDWARE_APM2
#if HIL_MODE != HIL_MODE_ATTITUDE // JLN update
if (!g.switch_enable) {
// switches are disabled in EEPROM (see SWITCH_ENABLE option)
// this means the EEPROM control of all channel reversal is enabled
return;
}
// up is reverse
// up is elevon
g.mix_mode = (PINL & 128) ? 1 : 0; // 1 for elevon mode
if (g.mix_mode == 0) {
g.channel_roll.set_reverse((PINE & 128) ? true : false);
g.channel_pitch.set_reverse((PINE & 64) ? true : false);
g.channel_rudder.set_reverse((PINL & 64) ? true : false);
} else {
g.reverse_elevons = (PINE & 128) ? true : false;
g.reverse_ch1_elevon = (PINE & 64) ? true : false;
g.reverse_ch2_elevon = (PINL & 64) ? true : false;
}
#else
g.mix_mode = 0; // 1 for elevon mode // setup for the the Predator MQ9 of AeroSim - JLN update
g.channel_roll.set_reverse(false); // roll reversed
g.channel_pitch.set_reverse(false); // pitch normal
g.channel_rudder.set_reverse(false); // yaw normal
#endif
#endif
}