mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-18 06:38:29 -04:00
317 lines
14 KiB
C++
317 lines
14 KiB
C++
#include <AP_HAL/AP_HAL.h>
|
|
#include "AC_Loiter.h"
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
#define LOITER_SPEED_DEFAULT 1250.0f // default loiter speed in cm/s
|
|
#define LOITER_SPEED_MIN 20.0f // minimum loiter speed in cm/s
|
|
#define LOITER_ACCEL_MAX_DEFAULT 500.0f // default acceleration in loiter mode
|
|
#define LOITER_BRAKE_ACCEL_DEFAULT 250.0f // minimum acceleration in loiter mode
|
|
#define LOITER_BRAKE_JERK_DEFAULT 500.0f // maximum jerk in cm/s/s/s in loiter mode
|
|
#define LOITER_BRAKE_START_DELAY_DEFAULT 1.0f // delay (in seconds) before loiter braking begins after sticks are released
|
|
#define LOITER_VEL_CORRECTION_MAX 200.0f // max speed used to correct position errors in loiter
|
|
#define LOITER_POS_CORRECTION_MAX 200.0f // max position error in loiter
|
|
#define LOITER_ACTIVE_TIMEOUT_MS 200 // loiter controller is considered active if it has been called within the past 200ms (0.2 seconds)
|
|
|
|
const AP_Param::GroupInfo AC_Loiter::var_info[] = {
|
|
|
|
// @Param: ANG_MAX
|
|
// @DisplayName: Loiter Angle Max
|
|
// @Description: Loiter maximum lean angle. Set to zero for 2/3 of PSC_ANGLE_MAX or ANGLE_MAX
|
|
// @Units: deg
|
|
// @Range: 0 45
|
|
// @Increment: 1
|
|
// @User: Advanced
|
|
AP_GROUPINFO("ANG_MAX", 1, AC_Loiter, _angle_max, 0.0f),
|
|
|
|
// @Param: SPEED
|
|
// @DisplayName: Loiter Horizontal Maximum Speed
|
|
// @Description: Defines the maximum speed in cm/s which the aircraft will travel horizontally while in loiter mode
|
|
// @Units: cm/s
|
|
// @Range: 20 2000
|
|
// @Increment: 50
|
|
// @User: Standard
|
|
AP_GROUPINFO("SPEED", 2, AC_Loiter, _speed_cms, LOITER_SPEED_DEFAULT),
|
|
|
|
// @Param: ACC_MAX
|
|
// @DisplayName: Loiter maximum correction acceleration
|
|
// @Description: Loiter maximum correction acceleration in cm/s/s. Higher values cause the copter to correct position errors more aggressively.
|
|
// @Units: cm/s/s
|
|
// @Range: 100 981
|
|
// @Increment: 1
|
|
// @User: Advanced
|
|
AP_GROUPINFO("ACC_MAX", 3, AC_Loiter, _accel_cmss, LOITER_ACCEL_MAX_DEFAULT),
|
|
|
|
// @Param: BRK_ACCEL
|
|
// @DisplayName: Loiter braking acceleration
|
|
// @Description: Loiter braking acceleration in cm/s/s. Higher values stop the copter more quickly when the stick is centered.
|
|
// @Units: cm/s/s
|
|
// @Range: 25 250
|
|
// @Increment: 1
|
|
// @User: Advanced
|
|
AP_GROUPINFO("BRK_ACCEL", 4, AC_Loiter, _brake_accel_cmss, LOITER_BRAKE_ACCEL_DEFAULT),
|
|
|
|
// @Param: BRK_JERK
|
|
// @DisplayName: Loiter braking jerk
|
|
// @Description: Loiter braking jerk in cm/s/s/s. Higher values will remove braking faster if the pilot moves the sticks during a braking maneuver.
|
|
// @Units: cm/s/s/s
|
|
// @Range: 500 5000
|
|
// @Increment: 1
|
|
// @User: Advanced
|
|
AP_GROUPINFO("BRK_JERK", 5, AC_Loiter, _brake_jerk_max_cmsss, LOITER_BRAKE_JERK_DEFAULT),
|
|
|
|
// @Param: BRK_DELAY
|
|
// @DisplayName: Loiter brake start delay (in seconds)
|
|
// @Description: Loiter brake start delay (in seconds)
|
|
// @Units: s
|
|
// @Range: 0 2
|
|
// @Increment: 0.1
|
|
// @User: Advanced
|
|
AP_GROUPINFO("BRK_DELAY", 6, AC_Loiter, _brake_delay, LOITER_BRAKE_START_DELAY_DEFAULT),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
// Default constructor.
|
|
// Note that the Vector/Matrix constructors already implicitly zero
|
|
// their values.
|
|
//
|
|
AC_Loiter::AC_Loiter(const AP_InertialNav& inav, const AP_AHRS_View& ahrs, AC_PosControl& pos_control, const AC_AttitudeControl& attitude_control) :
|
|
_inav(inav),
|
|
_ahrs(ahrs),
|
|
_pos_control(pos_control),
|
|
_attitude_control(attitude_control)
|
|
{
|
|
AP_Param::setup_object_defaults(this, var_info);
|
|
}
|
|
|
|
/// init_target to a position in cm from ekf origin
|
|
void AC_Loiter::init_target(const Vector3f& position)
|
|
{
|
|
sanity_check_params();
|
|
|
|
// initialise pos controller speed, acceleration
|
|
_pos_control.set_max_speed_xy(LOITER_VEL_CORRECTION_MAX);
|
|
_pos_control.set_max_accel_xy(_accel_cmss);
|
|
|
|
// initialise desired acceleration and angles to zero to remain on station
|
|
_predicted_accel.zero();
|
|
_desired_accel = _predicted_accel;
|
|
_predicted_euler_angle.zero();
|
|
|
|
// set target position
|
|
_pos_control.set_xy_target(position.x, position.y);
|
|
|
|
// set vehicle velocity and acceleration to zero
|
|
_pos_control.set_desired_velocity_xy(0.0f,0.0f);
|
|
_pos_control.set_desired_accel_xy(0.0f,0.0f);
|
|
|
|
// initialise position controller if not already active
|
|
if (!_pos_control.is_active_xy()) {
|
|
_pos_control.init_xy_controller();
|
|
}
|
|
}
|
|
|
|
/// initialize's position and feed-forward velocity from current pos and velocity
|
|
void AC_Loiter::init_target()
|
|
{
|
|
const Vector3f& curr_pos = _inav.get_position();
|
|
const Vector3f& curr_vel = _inav.get_velocity();
|
|
|
|
sanity_check_params();
|
|
|
|
// initialise pos controller speed and acceleration
|
|
_pos_control.set_max_speed_xy(LOITER_VEL_CORRECTION_MAX);
|
|
_pos_control.set_max_accel_xy(_accel_cmss);
|
|
_pos_control.set_leash_length_xy(LOITER_POS_CORRECTION_MAX);
|
|
|
|
_predicted_accel = _desired_accel;
|
|
// update angle targets that will be passed to stabilize controller
|
|
float roll_cd, pitch_cd;
|
|
_pos_control.accel_to_lean_angles(_predicted_accel.x, _predicted_accel.y, roll_cd, pitch_cd);
|
|
_predicted_euler_angle.x = radians(roll_cd*0.01f);
|
|
_predicted_euler_angle.y = radians(pitch_cd*0.01f);
|
|
// set target position
|
|
_pos_control.set_xy_target(curr_pos.x, curr_pos.y);
|
|
|
|
// set vehicle velocity and acceleration to current state
|
|
_pos_control.set_desired_velocity_xy(curr_vel.x, curr_vel.y);
|
|
_pos_control.set_desired_accel_xy(_desired_accel.x, _desired_accel.y);
|
|
|
|
// initialise position controller
|
|
_pos_control.init_xy_controller();
|
|
}
|
|
|
|
/// reduce response for landing
|
|
void AC_Loiter::soften_for_landing()
|
|
{
|
|
const Vector3f& curr_pos = _inav.get_position();
|
|
|
|
// set target position to current position
|
|
_pos_control.set_xy_target(curr_pos.x, curr_pos.y);
|
|
|
|
// also prevent I term build up in xy velocity controller. Note
|
|
// that this flag is reset on each loop, in run_xy_controller()
|
|
_pos_control.set_limit_accel_xy();
|
|
}
|
|
|
|
/// set pilot desired acceleration in centi-degrees
|
|
// dt should be the time (in seconds) since the last call to this function
|
|
void AC_Loiter::set_pilot_desired_acceleration(float euler_roll_angle_cd, float euler_pitch_angle_cd, float dt)
|
|
{
|
|
// Convert from centidegrees on public interface to radians
|
|
const float euler_roll_angle = radians(euler_roll_angle_cd*0.01f);
|
|
const float euler_pitch_angle = radians(euler_pitch_angle_cd*0.01f);
|
|
|
|
// convert our desired attitude to an acceleration vector assuming we are hovering
|
|
const float pilot_cos_pitch_target = constrain_float(cosf(euler_pitch_angle), 0.5f, 1.0f);
|
|
const float pilot_accel_rgt_cms = GRAVITY_MSS*100.0f * tanf(euler_roll_angle)/pilot_cos_pitch_target;
|
|
const float pilot_accel_fwd_cms = -GRAVITY_MSS*100.0f * tanf(euler_pitch_angle);
|
|
|
|
// rotate acceleration vectors input to lat/lon frame
|
|
_desired_accel.x = (pilot_accel_fwd_cms*_ahrs.cos_yaw() - pilot_accel_rgt_cms*_ahrs.sin_yaw());
|
|
_desired_accel.y = (pilot_accel_fwd_cms*_ahrs.sin_yaw() + pilot_accel_rgt_cms*_ahrs.cos_yaw());
|
|
|
|
// difference between where we think we should be and where we want to be
|
|
Vector2f angle_error(wrap_PI(euler_roll_angle - _predicted_euler_angle.x), wrap_PI(euler_pitch_angle - _predicted_euler_angle.y));
|
|
|
|
// calculate the angular velocity that we would expect given our desired and predicted attitude
|
|
_attitude_control.input_shaping_rate_predictor(angle_error, _predicted_euler_rate, dt);
|
|
|
|
// update our predicted attitude based on our predicted angular velocity
|
|
_predicted_euler_angle += _predicted_euler_rate * dt;
|
|
|
|
// convert our predicted attitude to an acceleration vector assuming we are hovering
|
|
const float pilot_predicted_cos_pitch_target = cosf(_predicted_euler_angle.y);
|
|
const float pilot_predicted_accel_rgt_cms = GRAVITY_MSS*100.0f * tanf(_predicted_euler_angle.x)/pilot_predicted_cos_pitch_target;
|
|
const float pilot_predicted_accel_fwd_cms = -GRAVITY_MSS*100.0f * tanf(_predicted_euler_angle.y);
|
|
|
|
// rotate acceleration vectors input to lat/lon frame
|
|
_predicted_accel.x = (pilot_predicted_accel_fwd_cms*_ahrs.cos_yaw() - pilot_predicted_accel_rgt_cms*_ahrs.sin_yaw());
|
|
_predicted_accel.y = (pilot_predicted_accel_fwd_cms*_ahrs.sin_yaw() + pilot_predicted_accel_rgt_cms*_ahrs.cos_yaw());
|
|
}
|
|
|
|
/// get vector to stopping point based on a horizontal position and velocity
|
|
void AC_Loiter::get_stopping_point_xy(Vector3f& stopping_point) const
|
|
{
|
|
_pos_control.get_stopping_point_xy(stopping_point);
|
|
}
|
|
|
|
/// get maximum lean angle when using loiter
|
|
float AC_Loiter::get_angle_max_cd() const
|
|
{
|
|
if (is_zero(_angle_max)) {
|
|
return MIN(_attitude_control.lean_angle_max(), _pos_control.get_lean_angle_max_cd()) * (2.0f/3.0f);
|
|
}
|
|
return MIN(_angle_max*100.0f, _pos_control.get_lean_angle_max_cd());
|
|
}
|
|
|
|
/// run the loiter controller
|
|
void AC_Loiter::update()
|
|
{
|
|
// calculate dt
|
|
float dt = _pos_control.time_since_last_xy_update();
|
|
if (dt >= 0.2f) {
|
|
dt = 0.0f;
|
|
}
|
|
|
|
// initialise pos controller speed and acceleration
|
|
_pos_control.set_max_speed_xy(_speed_cms);
|
|
_pos_control.set_max_accel_xy(_accel_cmss);
|
|
|
|
calc_desired_velocity(dt);
|
|
_pos_control.update_xy_controller();
|
|
}
|
|
|
|
// sanity check parameters
|
|
void AC_Loiter::sanity_check_params()
|
|
{
|
|
_speed_cms = MAX(_speed_cms, LOITER_SPEED_MIN);
|
|
_accel_cmss = MIN(_accel_cmss, GRAVITY_MSS * 100.0f * tanf(ToRad(_attitude_control.lean_angle_max() * 0.01f)));
|
|
}
|
|
|
|
/// calc_desired_velocity - updates desired velocity (i.e. feed forward) with pilot requested acceleration and fake wind resistance
|
|
/// updated velocity sent directly to position controller
|
|
void AC_Loiter::calc_desired_velocity(float nav_dt)
|
|
{
|
|
float ekfGndSpdLimit, ekfNavVelGainScaler;
|
|
AP::ahrs_navekf().getEkfControlLimits(ekfGndSpdLimit, ekfNavVelGainScaler);
|
|
|
|
// calculate a loiter speed limit which is the minimum of the value set by the LOITER_SPEED
|
|
// parameter and the value set by the EKF to observe optical flow limits
|
|
float gnd_speed_limit_cms = MIN(_speed_cms, ekfGndSpdLimit*100.0f);
|
|
gnd_speed_limit_cms = MAX(gnd_speed_limit_cms, LOITER_SPEED_MIN);
|
|
|
|
float pilot_acceleration_max = GRAVITY_MSS*100.0f * tanf(radians(get_angle_max_cd()*0.01f));
|
|
|
|
// range check nav_dt
|
|
if (nav_dt < 0) {
|
|
return;
|
|
}
|
|
|
|
_pos_control.set_max_speed_xy(gnd_speed_limit_cms);
|
|
_pos_control.set_max_accel_xy(_accel_cmss);
|
|
_pos_control.set_leash_length_xy(LOITER_POS_CORRECTION_MAX);
|
|
|
|
// get loiters desired velocity from the position controller where it is being stored.
|
|
const Vector3f &desired_vel_3d = _pos_control.get_desired_velocity();
|
|
Vector2f desired_vel(desired_vel_3d.x,desired_vel_3d.y);
|
|
|
|
// update the desired velocity using our predicted acceleration
|
|
desired_vel.x += _predicted_accel.x * nav_dt;
|
|
desired_vel.y += _predicted_accel.y * nav_dt;
|
|
|
|
Vector2f loiter_accel_brake;
|
|
float desired_speed = desired_vel.length();
|
|
if (!is_zero(desired_speed)) {
|
|
Vector2f desired_vel_norm = desired_vel/desired_speed;
|
|
|
|
// TODO: consider using a velocity squared relationship like
|
|
// pilot_acceleration_max*(desired_speed/gnd_speed_limit_cms)^2;
|
|
// the drag characteristic of a multirotor should be examined to generate a curve
|
|
// we could add a expo function here to fine tune it
|
|
|
|
// calculate a drag acceleration based on the desired speed.
|
|
float drag_decel = pilot_acceleration_max*desired_speed/gnd_speed_limit_cms;
|
|
|
|
// calculate a braking acceleration if sticks are at zero
|
|
float loiter_brake_accel = 0.0f;
|
|
if (_desired_accel.is_zero()) {
|
|
if ((AP_HAL::millis()-_brake_timer) > _brake_delay * 1000.0f) {
|
|
float brake_gain = _pos_control.get_vel_xy_pid().kP() * 0.5f;
|
|
loiter_brake_accel = constrain_float(AC_AttitudeControl::sqrt_controller(desired_speed, brake_gain, _brake_jerk_max_cmsss, nav_dt), 0.0f, _brake_accel_cmss);
|
|
}
|
|
} else {
|
|
loiter_brake_accel = 0.0f;
|
|
_brake_timer = AP_HAL::millis();
|
|
}
|
|
_brake_accel += constrain_float(loiter_brake_accel-_brake_accel, -_brake_jerk_max_cmsss*nav_dt, _brake_jerk_max_cmsss*nav_dt);
|
|
loiter_accel_brake = desired_vel_norm*_brake_accel;
|
|
|
|
// update the desired velocity using the drag and braking accelerations
|
|
desired_speed = MAX(desired_speed-(drag_decel+_brake_accel)*nav_dt,0.0f);
|
|
desired_vel = desired_vel_norm*desired_speed;
|
|
}
|
|
|
|
// add braking to the desired acceleration
|
|
_desired_accel -= loiter_accel_brake;
|
|
|
|
// Apply EKF limit to desired velocity - this limit is calculated by the EKF and adjusted as required to ensure certain sensor limits are respected (eg optical flow sensing)
|
|
float horizSpdDem = desired_vel.length();
|
|
if (horizSpdDem > gnd_speed_limit_cms) {
|
|
desired_vel.x = desired_vel.x * gnd_speed_limit_cms / horizSpdDem;
|
|
desired_vel.y = desired_vel.y * gnd_speed_limit_cms / horizSpdDem;
|
|
}
|
|
|
|
// Limit the velocity to prevent fence violations
|
|
// TODO: We need to also limit the _desired_accel
|
|
AC_Avoid *_avoid = AP::ac_avoid();
|
|
if (_avoid != nullptr) {
|
|
_avoid->adjust_velocity(_pos_control.get_pos_xy_p().kP(), _accel_cmss, desired_vel, nav_dt);
|
|
}
|
|
|
|
// send adjusted feed forward acceleration and velocity back to the Position Controller
|
|
_pos_control.set_desired_accel_xy(_desired_accel.x, _desired_accel.y);
|
|
_pos_control.set_desired_velocity_xy(desired_vel.x, desired_vel.y);
|
|
}
|