/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <AP_HAL/AP_HAL.h> #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include "AP_Proximity_MorseSITL.h" #include <stdio.h> extern const AP_HAL::HAL& hal; #define PROXIMITY_MAX_RANGE 200.0f #define PROXIMITY_ACCURACY 0.1f /* The constructor also initialises the proximity sensor. */ AP_Proximity_MorseSITL::AP_Proximity_MorseSITL(AP_Proximity &_frontend, AP_Proximity::Proximity_State &_state): AP_Proximity_Backend(_frontend, _state), sitl(AP::sitl()) { } // update the state of the sensor void AP_Proximity_MorseSITL::update(void) { SITL::vector3f_array &points = sitl->state.scanner.points; SITL::float_array &ranges = sitl->state.scanner.ranges; if (points.length != ranges.length || points.length == 0) { set_status(AP_Proximity::Proximity_NoData); return; } set_status(AP_Proximity::Proximity_Good); memset(_distance_valid, 0, sizeof(_distance_valid)); memset(_angle, 0, sizeof(_angle)); memset(_distance, 0, sizeof(_distance)); // only use 8 sectors to match RPLidar const uint8_t nsectors = MIN(8, PROXIMITY_SECTORS_MAX); const uint16_t degrees_per_sector = 360 / nsectors; for (uint16_t i=0; i<points.length; i++) { Vector3f &point = points.data[i]; float &range = ranges.data[i]; distance_maximum = MAX(distance_maximum, range); if (point.is_zero()) { continue; } float angle_deg = wrap_360(degrees(atan2f(-point.y, point.x))); uint16_t angle_rounded = uint16_t(angle_deg+0.5); uint8_t sector = wrap_360(angle_rounded + 22.5f) / degrees_per_sector; if (!_distance_valid[sector] || range < _distance[sector]) { _distance_valid[sector] = true; _distance[sector] = range; _angle[sector] = angle_deg; update_boundary_for_sector(sector, true); } } #if 0 printf("npoints=%u\n", points.length); for (uint16_t i=0; i<nsectors; i++) { printf("sector[%u] ang=%.1f dist=%.1f\n", i, _angle[i], _distance[i]); } #endif } // get maximum and minimum distances (in meters) of primary sensor float AP_Proximity_MorseSITL::distance_max() const { // we don't have a data field from Morse for max range, so we use the max // we've ever seen return distance_maximum; } float AP_Proximity_MorseSITL::distance_min() const { return 0.0f; } // get distance upwards in meters. returns true on success bool AP_Proximity_MorseSITL::get_upward_distance(float &distance) const { // we don't have an upward facing laser return false; } #endif // CONFIG_HAL_BOARD