/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* simple electric motor simulator class */ #include "SIM_Motor.h" #include <AP_Motors/AP_Motors.h> using namespace SITL; // calculate rotational accel and thrust for a motor void Motor::calculate_forces(const struct sitl_input &input, uint8_t motor_offset, Vector3f &torque, Vector3f &thrust, const Vector3f &velocity_air_bf, const Vector3f &gyro, float air_density, float voltage, bool use_drag) { const float pwm = input.servos[motor_offset+servo]; float command = pwm_to_command(pwm); float voltage_scale = voltage / voltage_max; if (voltage_scale < 0.1) { // battery is dead torque.zero(); thrust.zero(); current = 0; return; } // apply slew limiter to command uint64_t now_us = AP_HAL::micros64(); if (last_calc_us != 0 && slew_max > 0) { float dt = (now_us - last_calc_us)*1.0e-6; float slew_max_change = slew_max * dt; command = constrain_float(command, last_command-slew_max_change, last_command+slew_max_change); } last_calc_us = now_us; last_command = command; // velocity of motor through air Vector3f motor_vel = velocity_air_bf; // add velocity of motor about center due to vehicle rotation motor_vel += -(position % gyro); // calculate velocity into prop, clipping at zero float velocity_in = MAX(0, -motor_vel.projected(thrust_vector).z); // get thrust for untilted motor float motor_thrust = calc_thrust(command, air_density, velocity_in, voltage_scale); // the yaw torque of the motor const float yaw_scale = 0.05 * diagonal_size * motor_thrust; Vector3f rotor_torque = thrust_vector * yaw_factor * command * yaw_scale * -1.0; // thrust in bodyframe NED thrust = thrust_vector * motor_thrust; // work out roll and pitch of motor relative to it pointing straight up float roll = 0, pitch = 0; uint64_t now = AP_HAL::micros64(); // possibly roll and/or pitch the motor if (roll_servo >= 0) { uint16_t servoval = update_servo(input.servos[roll_servo+motor_offset], now, last_roll_value); if (roll_min < roll_max) { roll = constrain_float(roll_min + (servoval-1000)*0.001*(roll_max-roll_min), roll_min, roll_max); } else { roll = constrain_float(roll_max + (2000-servoval)*0.001*(roll_min-roll_max), roll_max, roll_min); } } if (pitch_servo >= 0) { uint16_t servoval = update_servo(input.servos[pitch_servo+motor_offset], now, last_pitch_value); if (pitch_min < pitch_max) { pitch = constrain_float(pitch_min + (servoval-1000)*0.001*(pitch_max-pitch_min), pitch_min, pitch_max); } else { pitch = constrain_float(pitch_max + (2000-servoval)*0.001*(pitch_min-pitch_max), pitch_max, pitch_min); } } last_change_usec = now; // calculate torque in newton-meters torque = (position % thrust) + rotor_torque; // possibly rotate the thrust vector and the rotor torque if (!is_zero(roll) || !is_zero(pitch)) { Matrix3f rotation; rotation.from_euler(radians(roll), radians(pitch), 0); thrust = rotation * thrust; torque = rotation * torque; } if (use_drag) { // calculate momentum drag per motor const float momentum_drag_factor = momentum_drag_coefficient * sqrtf(air_density * true_prop_area); Vector3f momentum_drag; momentum_drag.x = momentum_drag_factor * motor_vel.x * (sqrtf(fabsf(thrust.y)) + sqrtf(fabsf(thrust.z))); momentum_drag.y = momentum_drag_factor * motor_vel.y * (sqrtf(fabsf(thrust.x)) + sqrtf(fabsf(thrust.z))); // The application of momentum drag to the Z axis is a 'hack' to compensate for incorrect modelling // of the variation of thust with inflow velocity. If not applied, the vehicle will // climb at an unrealistic rate during operation in STABILIZE. TODO replace prop and motor model in // with one based on DC motor, momentum disc and blade element theory. momentum_drag.z = momentum_drag_factor * motor_vel.z * (sqrtf(fabsf(thrust.x)) + sqrtf(fabsf(thrust.y)) + sqrtf(fabsf(thrust.z))); thrust -= momentum_drag; } // calculate current float power = power_factor * fabsf(motor_thrust); current = power / MAX(voltage, 0.1); } /* update and return current value of a servo. Calculated as 1000..2000 */ uint16_t Motor::update_servo(uint16_t demand, uint64_t time_usec, float &last_value) const { if (servo_rate <= 0) { return demand; } if (servo_type == SERVO_RETRACT) { // handle retract servos if (demand > 1700) { demand = 2000; } else if (demand < 1300) { demand = 1000; } else { demand = last_value; } } demand = constrain_int16(demand, 1000, 2000); float dt = (time_usec - last_change_usec) * 1.0e-6f; // assume servo moves through 90 degrees over 1000 to 2000 float max_change = 1000 * (dt / servo_rate) * 60.0f / 90.0f; last_value = constrain_float(demand, last_value-max_change, last_value+max_change); return uint16_t(last_value+0.5); } // calculate current and voltage float Motor::get_current(void) const { return current; } // setup PWM ranges for this motor void Motor::setup_params(uint16_t _pwm_min, uint16_t _pwm_max, float _spin_min, float _spin_max, float _expo, float _slew_max, float _diagonal_size, float _power_factor, float _voltage_max, float _effective_prop_area, float _velocity_max, Vector3f _position, Vector3f _thrust_vector, float _yaw_factor, float _true_prop_area, float _momentum_drag_coefficient) { mot_pwm_min = _pwm_min; mot_pwm_max = _pwm_max; mot_spin_min = _spin_min; mot_spin_max = _spin_max; mot_expo = _expo; slew_max = _slew_max; power_factor = _power_factor; voltage_max = _voltage_max; effective_prop_area = _effective_prop_area; max_outflow_velocity = _velocity_max; true_prop_area = _true_prop_area; momentum_drag_coefficient = _momentum_drag_coefficient; diagonal_size = _diagonal_size; if (!_position.is_zero()) { position = _position; } else { position.x = cosf(radians(angle)) * _diagonal_size; position.y = sinf(radians(angle)) * _diagonal_size; position.z = 0; } if (!_thrust_vector.is_zero()) { thrust_vector = _thrust_vector; } if (!is_zero(_yaw_factor)) { yaw_factor = _yaw_factor; } } /* convert a PWM value to a command value from 0 to 1 */ float Motor::pwm_to_command(float pwm) const { const float pwm_thrust_max = mot_pwm_min + mot_spin_max * (mot_pwm_max - mot_pwm_min); const float pwm_thrust_min = mot_pwm_min + mot_spin_min * (mot_pwm_max - mot_pwm_min); const float pwm_thrust_range = pwm_thrust_max - pwm_thrust_min; return constrain_float((pwm-pwm_thrust_min)/pwm_thrust_range, 0, 1); } /* calculate thrust given a command value */ float Motor::calc_thrust(float command, float air_density, float velocity_in, float voltage_scale) const { float velocity_out = voltage_scale * max_outflow_velocity * sqrtf((1-mot_expo)*command + mot_expo*sq(command)); float ret = 0.5 * air_density * effective_prop_area * (sq(velocity_out) - sq(velocity_in)); #if 0 if (command > 0) { ::printf("air_density=%f effective_prop_area=%f velocity_in=%f velocity_max=%f\n", air_density, effective_prop_area, velocity_in, voltage_scale * max_outflow_velocity); ::printf("calc_thrust %.3f %.3f\n", command, ret); } #endif return ret; }