/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* Blimp simulator class */ #define ALLOW_DOUBLE_MATH_FUNCTIONS #include "SIM_Blimp.h" #include <stdio.h> using namespace SITL; extern const AP_HAL::HAL& hal; Blimp::Blimp(const char *frame_str) : Aircraft(frame_str) { mass = 0.07; radius = 0.25; moment_of_inertia = {0.004375, 0.004375, 0.004375}; //m*r^2 for hoop... k_tan = 5.52e-4; //Tangential (thrust) multiplier drag_constant = 0.05; drag_gyr_constant = 0.08; lock_step_scheduled = true; ::printf("Starting Blimp AirFish model...\n"); } // calculate rotational and linear accelerations void Blimp::calculate_forces(const struct sitl_input &input, Vector3f &rot_accel, Vector3f &body_accel) { if (!hal.scheduler->is_system_initialized()) { return; } //all fin setup for (uint8_t i=0; i<4; i++) { fin[i].last_angle = fin[i].angle; fin[i].angle = filtered_servo_angle(input, i)*radians(75.0f); //for servo range of -75 deg to +75 deg if (fin[i].angle < fin[i].last_angle) fin[i].dir = 0; //thus 0 = "angle is reducing" else fin[i].dir = 1; fin[i].vel = (fin[i].angle - fin[i].last_angle)/delta_time; //rad/s fin[i].vel = constrain_float(fin[i].vel, radians(-450), radians(450)); fin[i].T = pow(fin[i].vel,2) * k_tan; fin[i].Fx = 0; fin[i].Fy = 0; fin[i].Fz = 0; } //TODO: Add normal force calculations and include roll & pitch oscillation. //Back fin fin[0].Fx = fin[0].T*cos(fin[0].angle); //causes forward movement fin[0].Fz = fin[0].T*sin(fin[0].angle); //causes height change //Front fin fin[1].Fx = -fin[1].T*cos(fin[1].angle); //causes backward movement fin[1].Fz = fin[1].T*sin(fin[1].angle); //causes height change //Right fin fin[2].Fy = -fin[2].T*cos(fin[2].angle); //causes left movement fin[2].Fx = fin[2].T*sin(fin[2].angle); //causes yaw //Left fin fin[3].Fy = fin[3].T*cos(fin[3].angle); //causes right movement fin[3].Fx = -fin[3].T*sin(fin[3].angle); //causes yaw Vector3f force_bf{0,0,0}; for (uint8_t i=0; i<4; i++) { force_bf.x = force_bf.x + fin[i].Fx; force_bf.y = force_bf.y + fin[i].Fy; force_bf.z = force_bf.z + fin[i].Fz; } //mass in kg, thus accel in m/s/s body_accel.x = force_bf.x/mass; body_accel.y = force_bf.y/mass; body_accel.z = force_bf.z/mass; Vector3f rot_T{0,0,0}; rot_T.z = fin[2].Fx * radius + fin[3].Fx * radius;//in N*m (Torque = force * lever arm) //rot accel = torque / moment of inertia rot_accel.x = 0; rot_accel.y = 0; rot_accel.z = rot_T.z / moment_of_inertia.z; } /* update the blimp simulation by one time step */ void Blimp::update(const struct sitl_input &input) { delta_time = frame_time_us * 1.0e-6f; Vector3f rot_accel = Vector3f(0,0,0); calculate_forces(input, rot_accel, accel_body); if (hal.scheduler->is_system_initialized()) { float gyr_sq = gyro.length_squared(); if (is_positive(gyr_sq)) { Vector3f force_gyr = (gyro.normalized() * drag_gyr_constant * gyr_sq); Vector3f ef_drag_accel_gyr = -force_gyr / mass; Vector3f bf_drag_accel_gyr = dcm.transposed() * ef_drag_accel_gyr; rot_accel += bf_drag_accel_gyr; } } // update rotational rates in body frame gyro += rot_accel * delta_time; gyro.x = constrain_float(gyro.x, -radians(2000.0f), radians(2000.0f)); gyro.y = constrain_float(gyro.y, -radians(2000.0f), radians(2000.0f)); gyro.z = constrain_float(gyro.z, -radians(2000.0f), radians(2000.0f)); // update attitude dcm.rotate(gyro * delta_time); dcm.normalize(); if (hal.scheduler->is_system_initialized()) { float speed_sq = velocity_ef.length_squared(); if (is_positive(speed_sq)) { Vector3f force = (velocity_ef.normalized() * drag_constant * speed_sq); Vector3f ef_drag_accel = -force / mass; Vector3f bf_drag_accel = dcm.transposed() * ef_drag_accel; accel_body += bf_drag_accel; } // add lifting force exactly equal to gravity, for neutral buoyancy accel_body += dcm.transposed() * Vector3f(0,0,-GRAVITY_MSS); } Vector3f accel_earth = dcm * accel_body; accel_earth += Vector3f(0.0f, 0.0f, GRAVITY_MSS); //add gravity velocity_ef += accel_earth * delta_time; position += (velocity_ef * delta_time).todouble(); //update position vector update_position(); //updates the position from the Vector3f position time_advance(); update_mag_field_bf(); }