/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include "SplineCurve.h" #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include #endif extern const AP_HAL::HAL &hal; #define SPLINE_FACTOR 4.0f // defines shape of curves. larger numbers result in longer spline curves, lower numbers take a direct path #define TANGENTIAL_ACCEL_SCALER 0.5f // the proportion of the maximum accel that can be used for tangential acceleration (aka in the direction of travel along the track) #define LATERAL_ACCEL_SCALER 0.5f // the proportion of the maximum accel that can be used for lateral acceleration (aka crosstrack acceleration) // limit the maximum speed along the track to that which will achieve a cornering (aka lateral) acceleration of LATERAL_SPEED_SCALER * acceleration limit // set maximum speed and acceleration void SplineCurve::set_speed_accel(float speed_xy, float speed_up, float speed_down, float accel_xy, float accel_z) { _speed_xy = fabsf(speed_xy); _speed_up = fabsf(speed_up); _speed_down = fabsf(speed_down); _accel_xy = fabsf(accel_xy); _accel_z = fabsf(accel_z); } // set origin and destination using position vectors (offset from EKF origin) // origin_vel is vehicle velocity at origin (in NEU frame) // destination_vel is vehicle velocity at destination (in NEU frame) // time is reset to zero void SplineCurve::set_origin_and_destination(const Vector3f &origin, const Vector3f &destination, const Vector3f &origin_vel, const Vector3f &destination_vel) { // store origin and destination locations _origin = origin; _destination = destination; // handle zero length track _zero_length = is_zero((destination - origin).length_squared()); if (_zero_length) { _time = 1.0f; _origin_vel.zero(); _destination_vel.zero(); _reached_destination = true; _origin_speed_max = 0.0f; _destination_speed_max = 0.0f; return; } _origin_vel = origin_vel; _destination_vel = destination_vel; _reached_destination = false; // reset time // Note: _time could include left-over from previous waypoint _time = 0.0f; // code below ensures we don't get too much overshoot when the next segment is short const float vel_len = _origin_vel.length() + _destination_vel.length(); const float pos_len = (_destination - _origin).length() * SPLINE_FACTOR; if (vel_len > pos_len) { // if total start+stop velocity is more than four times the position difference // use a scaled down start and stop velocity const float vel_scaling = pos_len / vel_len; // update spline calculator update_solution(_origin, _destination, _origin_vel * vel_scaling, _destination_vel * vel_scaling); } else { // update spline calculator update_solution(_origin, _destination, _origin_vel, _destination_vel); } Vector3f target_pos; Vector3f spline_vel_unit; float spline_dt; float accel_max; calc_dt_speed_max(0.0f, 0.0f, spline_dt, target_pos, spline_vel_unit, _origin_speed_max, accel_max); if (_destination_vel.is_zero()) { _destination_speed_max = 0.0f; } else { calc_dt_speed_max(1.0f, 0.0f, spline_dt, target_pos, spline_vel_unit, _destination_speed_max, accel_max); } } // move target location along track from origin to destination // target_pos is updated with the target position from EKF origin in NEU frame // target_vel is updated with the target velocity in NEU frame void SplineCurve::advance_target_along_track(float dt, Vector3f &target_pos, Vector3f &target_vel) { // handle zero length track if (_zero_length) { target_pos = _destination; target_vel.zero(); return; } // calculate target position and velocity using spline calculator float speed_cms = target_vel.length(); const float distance_delta = speed_cms * dt; float spline_dt; Vector3f spline_vel_unit; float speed_max; float accel_max; calc_dt_speed_max(_time, distance_delta, spline_dt, target_pos, spline_vel_unit, speed_max, accel_max); speed_cms = constrain_float(speed_max, speed_cms - accel_max * dt, speed_cms + accel_max * dt); target_vel = spline_vel_unit * speed_cms; _time += spline_dt; // we will reach the destination in the next step so set reached_destination flag if (_time >= 1.0f) { _time = 1.0f; _reached_destination = true; } } // calculate the spline delta time for a given delta distance // returns the spline position and velocity and maximum speed and acceleration the vehicle can travel without exceeding acceleration limits void SplineCurve::calc_dt_speed_max(float time, float distance_delta, float &spline_dt, Vector3f &target_pos, Vector3f &spline_vel_unit, float &speed_max, float &accel_max) { // initialise outputs spline_dt = 0.0f; spline_vel_unit.zero(); speed_max = 0.0f; accel_max = 0.0f; // calculate target position and velocity using spline calculator Vector3f spline_vel; Vector3f spline_accel; Vector3f spline_jerk; calc_target_pos_vel(time, target_pos, spline_vel, spline_accel, spline_jerk); // vel, accel and jerk should never all be zero if (spline_vel.is_zero() && spline_accel.is_zero() && spline_jerk.is_zero()) { #if CONFIG_HAL_BOARD == HAL_BOARD_SITL ::printf("SplineCurve::calc_dt_speed_max vel, accel and jerk are all zero\n"); #endif INTERNAL_ERROR(AP_InternalError::error_t::invalid_arg_or_result); _reached_destination = true; return; } // aircraft velocity and acceleration along the spline will be defined based on the aircraft kinematic limits // aircraft velocity along the spline should be reduced to ensure normal accelerations do not exceed kinematic limits const float spline_vel_length = spline_vel.length(); if (is_zero(spline_vel_length)) { // if spline velocity is zero then direction must be defined by acceleration or jerk if (is_zero(spline_accel.length_squared())) { // if acceleration is zero then direction must be defined by jerk spline_vel_unit = spline_jerk.normalized(); spline_dt = powf(6.0f * distance_delta / spline_jerk.length(), 1.0f/3.0f); } else { // all spline acceleration is in the direction of travel spline_vel_unit = spline_accel.normalized(); spline_dt = safe_sqrt(2.0f * distance_delta / spline_accel.length()); } } else { spline_vel_unit = spline_vel.normalized(); spline_dt = distance_delta / spline_vel_length; } // calculate acceleration normal to the direction of travel const float spline_accel_tangent_length = spline_accel.dot(spline_vel_unit); Vector3f spline_accel_norm = spline_accel - (spline_vel_unit * spline_accel_tangent_length); const float spline_accel_norm_length = spline_accel_norm.length(); // limit the maximum speed along the track to that which will achieve a cornering (aka lateral) acceleration of LATERAL_SPEED_SCALER * acceleration limit const float tangential_speed_max = kinematic_limit(spline_vel_unit, _speed_xy, _speed_up, _speed_down); const float accel_norm_max = LATERAL_ACCEL_SCALER * kinematic_limit(spline_accel_norm, _accel_xy, _accel_z, _accel_z); // sanity check to avoid divide by zero if (is_zero(tangential_speed_max)) { #if CONFIG_HAL_BOARD == HAL_BOARD_SITL ::printf("SplineCurve::calc_dt_speed_max tangential_speed_max is zero\n"); #endif INTERNAL_ERROR(AP_InternalError::error_t::invalid_arg_or_result); _reached_destination = true; return; } if ((is_positive(accel_norm_max)) && is_positive(spline_accel_norm_length) && is_positive(spline_vel_length) && ((spline_accel_norm_length/accel_norm_max) > sq(spline_vel_length/tangential_speed_max))) { speed_max = spline_vel_length / safe_sqrt(spline_accel_norm_length/accel_norm_max); } else { speed_max = tangential_speed_max; } // calculate accel max and sanity check accel_max = TANGENTIAL_ACCEL_SCALER * kinematic_limit(spline_vel_unit, _accel_xy, _accel_z, _accel_z); if (is_zero(accel_max)) { #if CONFIG_HAL_BOARD == HAL_BOARD_SITL ::printf("SplineCurve::calc_dt_speed_max accel_max is zero\n"); #endif INTERNAL_ERROR(AP_InternalError::error_t::invalid_arg_or_result); _reached_destination = true; return; } const float dist = (_destination - target_pos).length(); speed_max = MIN(speed_max, safe_sqrt(2.0f * accel_max * (dist + sq(_destination_speed_max) / (2.0f*accel_max)))); } // recalculate hermite_solution grid // relies on _origin_vel, _destination_vel and _origin and _destination void SplineCurve::update_solution(const Vector3f &origin, const Vector3f &dest, const Vector3f &origin_vel, const Vector3f &dest_vel) { _hermite_solution[0] = origin; _hermite_solution[1] = origin_vel; _hermite_solution[2] = -origin*3.0f -origin_vel*2.0f + dest*3.0f - dest_vel; _hermite_solution[3] = origin*2.0f + origin_vel -dest*2.0f + dest_vel; } // calculate target position and velocity from given spline time // time is a value from 0 to 1 // position is updated with target position as an offset from EKF origin in NEU frame // velocity is updated with the unscaled velocity // relies on set_origin_and_destination having been called to update_solution void SplineCurve::calc_target_pos_vel(float time, Vector3f &position, Vector3f &velocity, Vector3f &acceleration, Vector3f &jerk) { const float time_sq = sq(time); const float time_cubed = time_sq * time; position = _hermite_solution[0] + \ _hermite_solution[1] * time + \ _hermite_solution[2] * time_sq + \ _hermite_solution[3] * time_cubed; velocity = _hermite_solution[1] + \ _hermite_solution[2] * 2.0f * time + \ _hermite_solution[3] * 3.0f * time_sq; acceleration = _hermite_solution[2] * 2.0f + \ _hermite_solution[3] * 6.0f * time; jerk = _hermite_solution[3] * 6.0f; }