/* ADS7844 register emulation Code by Andrew Tridgell November 2011 */ #ifndef _SITL_ADC_H #define _SITL_ADC_H #include #include static float noise_scale[8] = { 240, 400, 500, 200, 400, 400, 2000, 200 }; // generate a random float between -1 and 1 static double rand_float(void) { float ret = ((unsigned)random()) % 2000000; return (ret - 1.0e6) / 1.0e6; } static inline float noise_generator(uint8_t chan) { extern float sitl_motor_speed[4]; extern long unsigned int micros(void); uint8_t i; float noise = 0; uint8_t noise_count=0; double t = micros() / 1.0e6; for (i=0; i<4; i++) { if (sitl_motor_speed[i] > 0.0) { float n = rand_float() * noise_scale[chan]; noise += sin(fmod(t * sitl_motor_speed[i] * 2 * 3.14 + i, 2*3.14)) * n; noise_count++; } } if (noise_count == 0) { return 0; } return noise/noise_count; } // this implements the UDR2 register struct ADC_UDR2 { uint16_t value, next_value; uint8_t idx; float channels[8]; ADC_UDR2() { // constructor for (uint8_t i=0; i<8; i++) { channels[i] = 0xFFFF; } value = next_value = 0; idx = 0; } /* assignment of UDR2 selects which ADC channel to output next */ ADC_UDR2& operator=(uint8_t cmd) { float next_analog; uint8_t chan; switch (cmd) { case 0x87: chan = 0; break; case 0xC7: chan = 1; break; case 0x97: chan = 2; break; case 0xD7: chan = 3; break; case 0xA7: chan = 4; break; case 0xE7: chan = 5; break; case 0xB7: chan = 6; break; case 0xF7: chan = 7; break; case 0: default: return *this; } next_analog = channels[chan]; idx = 1; next_value = (unsigned)(next_analog + noise_generator(chan) + 0.5); if (next_value >= 0x1000) { next_value = 0xFFF; } next_value = (next_value << 3); return *this; } /* read from UDR2 fetches a byte from the channel */ operator int() { uint8_t ret; if (idx & 1) { ret = (value&0xFF); value = next_value; } else { ret = (value>>8); } idx ^= 1; return ret; } /* interface to set a channel value from SITL */ void set(uint8_t i, float v) { channels[i] = v; } }; #endif // _SITL_ADC_H