function [... nextQuat, ... % quaternion state vector after fusion of measurements nextStates, ... % state vector after fusion of measurements nextP, ... % state covariance matrix after fusion of corrections innovation, ... % Declination innovation - rad varInnov] ... % = FuseMagnetometer( ... quat, ... % predicted quaternion states states, ... % predicted states P, ... % predicted covariance magData, ... % body frame magnetic flux measurements measDec, ... % magnetic field declination - azimuth angle measured from true north (rad) Tbn) % Estimated coordinate transformation matrix from body to NED frame q0 = quat(1); q1 = quat(2); q2 = quat(3); q3 = quat(4); magX = magData(1); magY = magData(2); magZ = magData(3); R_MAG = 0.1745^2; H = calcH_MAG(magX,magY,magZ,q0,q1,q2,q3); varInnov = (H*P*transpose(H) + R_MAG); Kfusion = (P*transpose(H))/varInnov; % Calculate the predicted magnetic declination magMeasNED = Tbn*[magX;magY;magZ]; predDec = atan2(magMeasNED(2),magMeasNED(1)); % Calculate the measurement innovation innovation = predDec - measDec; if (innovation > pi) innovation = innovation - 2*pi; elseif (innovation < -pi) innovation = innovation + 2*pi; end if (innovation > 0.5) innovation = 0.5; elseif (innovation < -0.5) innovation = -0.5; end % correct the state vector states(1:3) = 0; states = states - Kfusion * innovation; % the first 3 states represent the angular misalignment vector. % This is used to correct the estimate quaternion % Convert the error rotation vector to its equivalent quaternion % error = truth - estimate rotationMag = sqrt(states(1)^2 + states(2)^2 + states(3)^2); if rotationMag<1e-6 deltaQuat = single([1;0;0;0]); else deltaQuat = [cos(0.5*rotationMag); [states(1);states(2);states(3)]/rotationMag*sin(0.5*rotationMag)]; end % Update the quaternion states by rotating from the previous attitude through % the delta angle rotation quaternion nextQuat = [quat(1)*deltaQuat(1)-transpose(quat(2:4))*deltaQuat(2:4); quat(1)*deltaQuat(2:4) + deltaQuat(1)*quat(2:4) + cross(quat(2:4),deltaQuat(2:4))]; % normalise the updated quaternion states quatMag = sqrt(nextQuat(1)^2 + nextQuat(2)^2 + nextQuat(3)^2 + nextQuat(4)^2); if (quatMag > 1e-6) nextQuat = nextQuat / quatMag; end % correct the covariance P = P - K*H*P P = P - Kfusion*H*P; % Force symmetry on the covariance matrix to prevent ill-conditioning % of the matrix which would cause the filter to blow-up P = 0.5*(P + transpose(P)); % ensure diagonals are positive for i=1:9 if P(i,i) < 0 P(i,i) = 0; end end % Set default output for states and covariance nextP = P; nextStates = states; end