#pragma once /// @file AC_PID_Basic.h /// @brief Generic PID algorithm, with EEPROM-backed storage of constants. #include <AP_Common/AP_Common.h> #include <AP_Param/AP_Param.h> #include <AP_Logger/AP_Logger.h> /// @class AC_PID_Basic /// @brief Copter PID control class class AC_PID_Basic { public: // Constructor for PID AC_PID_Basic(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_E_hz, float initial_filt_D_hz, float dt); // set time step in seconds void set_dt(float dt) { _dt = dt; } // set target and measured inputs to PID controller and calculate outputs // target and error are filtered // the derivative is then calculated and filtered // the integral is then updated based on the setting of the limit flag float update_all(float target, float measurement, bool limit = false) WARN_IF_UNUSED; float update_all(float target, float measurement, bool limit_neg, bool limit_pos) WARN_IF_UNUSED; // update the integral // if the limit flags are set the integral is only allowed to shrink void update_i(bool limit_neg, bool limit_pos); // get results from pid controller float get_p() const WARN_IF_UNUSED { return _error * _kp; } float get_i() const WARN_IF_UNUSED { return _integrator; } float get_d() const WARN_IF_UNUSED { return _derivative * _kd; } float get_ff() const WARN_IF_UNUSED { return _target * _kff; } float get_error() const WARN_IF_UNUSED { return _error; } // reset the integrator void reset_I() { _integrator = 0.0f; } // input and D term filter will be reset to the next value provided to set_input() void reset_filter() { _reset_filter = true; } // save gain to eeprom void save_gains(); // get accessors AP_Float &kP() WARN_IF_UNUSED { return _kp; } AP_Float &kI() WARN_IF_UNUSED { return _ki; } AP_Float &kD() WARN_IF_UNUSED { return _kd; } AP_Float &ff() WARN_IF_UNUSED { return _kff;} AP_Float &filt_E_hz() WARN_IF_UNUSED { return _filt_E_hz; } AP_Float &filt_D_hz() WARN_IF_UNUSED { return _filt_D_hz; } float imax() const WARN_IF_UNUSED { return _kimax.get(); } float get_filt_E_alpha() const WARN_IF_UNUSED; float get_filt_D_alpha() const WARN_IF_UNUSED; // set accessors void kP(float v) { _kp.set(v); } void kI(float v) { _ki.set(v); } void kD(float v) { _kd.set(v); } void ff(float v) { _kff.set(v); } void imax(float v) { _kimax.set(fabsf(v)); } void filt_E_hz(float hz) { _filt_E_hz.set(fabsf(hz)); } void filt_D_hz(float hz) { _filt_D_hz.set(fabsf(hz)); } // integrator setting functions void set_integrator(float target, float measurement, float i); void set_integrator(float error, float i); void set_integrator(float i); const AP_Logger::PID_Info& get_pid_info(void) const WARN_IF_UNUSED { return _pid_info; } // parameter var table static const struct AP_Param::GroupInfo var_info[]; protected: // parameters AP_Float _kp; AP_Float _ki; AP_Float _kd; AP_Float _kff; AP_Float _kimax; AP_Float _filt_E_hz; // PID error filter frequency in Hz AP_Float _filt_D_hz; // PID derivative filter frequency in Hz // internal variables float _dt; // timestep in seconds float _target; // target value to enable filtering float _error; // error value to enable filtering float _derivative; // last derivative for low-pass filter float _integrator; // integrator value bool _reset_filter; // true when input filter should be reset during next call to set_input AP_Logger::PID_Info _pid_info; };