/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
Simulator Connector for AirSim
*/
#include "SIM_AirSim.h"
#include
#include
#include
#include
#include
#include
extern const AP_HAL::HAL& hal;
using namespace SITL;
AirSim::AirSim(const char *frame_str) :
Aircraft(frame_str),
sock(true)
{
printf("Starting SITL Airsim\n");
}
/*
Create & set in/out socket
*/
void AirSim::set_interface_ports(const char* address, const int port_in, const int port_out)
{
if (!sock.bind("0.0.0.0", port_in)) {
printf("Unable to bind Airsim sensor_in socket at port %u - Error: %s\n",
port_in, strerror(errno));
return;
}
printf("Bind SITL sensor input at %s:%u\n", "127.0.0.1", port_in);
sock.set_blocking(false);
sock.reuseaddress();
airsim_ip = address;
airsim_control_port = port_out;
airsim_sensor_port = port_in;
printf("AirSim control interface set to %s:%u\n", airsim_ip, airsim_control_port);
}
/*
Decode and send servos
*/
void AirSim::send_servos(const struct sitl_input &input)
{
servo_packet pkt{0};
for (uint8_t i=0; ix, &v->y, &v->z) != 3) {
printf("Failed to parse Vector3f for %s/%s\n", key.section, key.key);
return false;
}
break;
}
case DATA_VECTOR3F_ARRAY: {
// - array of floats that represent [x,y,z] coordinate for each point hit within the range
// x0, y0, z0, x1, y1, z1, ..., xn, yn, zn
// example: [23.1,0.677024,1.4784,-8.97607135772705,-8.976069450378418,-8.642673492431641e-07,]
if (*p++ != '[') {
return false;
}
uint16_t n = 0;
struct vector3f_array *v = (struct vector3f_array *)key.ptr;
while (true) {
if (n >= v->length) {
Vector3f *d = (Vector3f *)realloc(v->data, sizeof(Vector3f)*(n+1));
if (d == nullptr) {
return false;
}
v->data = d;
v->length = n+1;
}
if (sscanf(p, "%f,%f,%f,", &v->data[n].x, &v->data[n].y, &v->data[n].z) != 3) {
printf("Failed to parse Vector3f for %s/%s[%u]\n", key.section, key.key, n);
return false;
}
n++;
// Goto 3rd occurence of ,
p = strchr(p,',');
if (!p) {
return false;
}
p++;
p = strchr(p,',');
if (!p) {
return false;
}
p++;
p = strchr(p,',');
if (!p) {
return false;
}
p++;
// Reached end of point cloud
if (p[0] == ']') {
break;
}
}
v->length = n;
break;
}
case DATA_FLOAT_ARRAY: {
// example: [18.0, 12.694079399108887]
if (*p++ != '[') {
return false;
}
uint16_t n = 0;
struct float_array *v = (struct float_array *)key.ptr;
while (true) {
if (n >= v->length) {
float *d = (float *)realloc(v->data, sizeof(float)*(n+1));
if (d == nullptr) {
return false;
}
v->data = d;
v->length = n+1;
}
v->data[n] = atof(p);
n++;
p = strchr(p,',');
if (!p) {
break;
}
p++;
}
v->length = n;
break;
}
}
}
return true;
}
/*
Receive new sensor data from simulator
This is a blocking function
*/
void AirSim::recv_fdm()
{
// Receive sensor packet
ssize_t ret = sock.recv(&sensor_buffer[sensor_buffer_len], sizeof(sensor_buffer)-sensor_buffer_len, 100);
while (ret <= 0) {
printf("No sensor message received - %s\n", strerror(errno));
ret = sock.recv(&sensor_buffer[sensor_buffer_len], sizeof(sensor_buffer)-sensor_buffer_len, 100);
}
// convert '\n' into nul
while (uint8_t *p = (uint8_t *)memchr(&sensor_buffer[sensor_buffer_len], '\n', ret)) {
*p = 0;
}
sensor_buffer_len += ret;
const uint8_t *p2 = (const uint8_t *)memrchr(sensor_buffer, 0, sensor_buffer_len);
if (p2 == nullptr || p2 == sensor_buffer) {
return;
}
const uint8_t *p1 = (const uint8_t *)memrchr(sensor_buffer, 0, p2 - sensor_buffer);
if (p1 == nullptr) {
return;
}
parse_sensors((const char *)(p1+1));
memmove(sensor_buffer, p2, sensor_buffer_len - (p2 - sensor_buffer));
sensor_buffer_len = sensor_buffer_len - (p2 - sensor_buffer);
accel_body = Vector3f(state.imu.linear_acceleration[0],
state.imu.linear_acceleration[1],
state.imu.linear_acceleration[2]);
gyro = Vector3f(state.imu.angular_velocity[0],
state.imu.angular_velocity[1],
state.imu.angular_velocity[2]);
velocity_ef = Vector3f(state.velocity.world_linear_velocity[0],
state.velocity.world_linear_velocity[1],
state.velocity.world_linear_velocity[0]);
location.lat = state.gps.lat * 1.0e7;
location.lng = state.gps.lon * 1.0e7;
location.alt = state.gps.alt * 100.0f;
dcm.from_euler(state.pose.roll, state.pose.pitch, state.pose.yaw);
if (last_state.timestamp) {
double deltat = state.timestamp - last_state.timestamp;
time_now_us += deltat;
if (deltat > 0 && deltat < 100000) {
if (average_frame_time < 1) {
average_frame_time = deltat;
}
average_frame_time = average_frame_time * 0.98 + deltat * 0.02;
}
}
scanner.points = state.lidar.points;
rcin_chan_count = state.rc.rc_channels.length < 8 ? state.rc.rc_channels.length : 8;
for (uint8_t i=0; i < rcin_chan_count; i++) {
rcin[i] = state.rc.rc_channels.data[i];
}
#if 0
AP::logger().Write("ASM1", "TimeUS,TUS,R,P,Y,GX,GY,GZ",
"QQffffff",
AP_HAL::micros64(),
state.timestamp,
degrees(state.pose.roll),
degrees(state.pose.pitch),
degrees(state.pose.yaw),
degrees(gyro.x),
degrees(gyro.y),
degrees(gyro.z));
Vector3f velocity_bf = dcm.transposed() * velocity_ef;
position = home.get_distance_NED(location);
AP::logger().Write("ASM2", "TimeUS,AX,AY,AZ,VX,VY,VZ,PX,PY,PZ,Alt,SD",
"Qfffffffffff",
AP_HAL::micros64(),
accel_body.x,
accel_body.y,
accel_body.z,
velocity_bf.x,
velocity_bf.y,
velocity_bf.z,
position.x,
position.y,
position.z,
state.gps.alt,
velocity_ef.z);
#endif
last_state = state;
}
/*
update the AirSim simulation by one time step
*/
void AirSim::update(const struct sitl_input &input)
{
send_servos(input);
recv_fdm();
// Airsim takes approximately 3ms between each message (or 333 Hz)
adjust_frame_time(1.0e6/3000);
time_advance();
// update magnetic field
update_mag_field_bf();
report_FPS();
}
/*
report frame rates
*/
void AirSim::report_FPS(void)
{
if (frame_counter++ % 1000 == 0) {
if (last_frame_count != 0) {
printf("FPS avg=%.2f\n", 1.0e6/average_frame_time);
}
last_frame_count = state.timestamp;
}
}