#include "Sub.h" /* * control_althold.pde - init and run calls for althold, flight mode */ // althold_init - initialise althold controller bool Sub::althold_init() { if(!control_check_barometer()) { return false; } // initialize vertical speeds and leash lengths // sets the maximum speed up and down returned by position controller pos_control.set_max_speed_z(-get_pilot_speed_dn(), g.pilot_speed_up); pos_control.set_max_accel_z(g.pilot_accel_z); // initialise position and desired velocity pos_control.set_alt_target(inertial_nav.get_altitude()); pos_control.set_desired_velocity_z(inertial_nav.get_velocity_z()); last_roll = ahrs.roll_sensor; last_pitch = ahrs.pitch_sensor; last_yaw = ahrs.yaw_sensor; last_input_ms = AP_HAL::millis(); return true; } void Sub::handle_attitude() { uint32_t tnow = AP_HAL::millis(); float target_roll, target_pitch, target_yaw; // Check if set_attitude_target_no_gps is valid if (tnow - sub.set_attitude_target_no_gps.last_message_ms < 5000) { Quaternion( set_attitude_target_no_gps.packet.q ).to_euler( target_roll, target_pitch, target_yaw ); target_roll = 100 * degrees(target_roll); target_pitch = 100 * degrees(target_pitch); target_yaw = 100 * degrees(target_yaw); attitude_control.input_euler_angle_roll_pitch_yaw(target_roll, target_pitch, target_yaw, true); } else { // If we don't have a mavlink attitude target, we use the pilot's input instead get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, attitude_control.get_althold_lean_angle_max()); target_yaw = get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); if (abs(target_roll) > 50 || abs(target_pitch) > 50 || abs(target_yaw) > 50) { last_roll = ahrs.roll_sensor; last_pitch = ahrs.pitch_sensor; last_yaw = ahrs.yaw_sensor; last_input_ms = tnow; attitude_control.input_rate_bf_roll_pitch_yaw(target_roll, target_pitch, target_yaw); } else if (tnow < last_input_ms + 250) { // just brake for a few mooments so we don't bounce attitude_control.input_rate_bf_roll_pitch_yaw(0, 0, 0); } else { // Lock attitude attitude_control.input_euler_angle_roll_pitch_yaw(last_roll, last_pitch, last_yaw, true); } } } // althold_run - runs the althold controller // should be called at 100hz or more void Sub::althold_run() { // When unarmed, disable motors and stabilization if (!motors.armed()) { motors.set_desired_spool_state(AP_Motors::DESIRED_GROUND_IDLE); // Sub vehicles do not stabilize roll/pitch/yaw when not auto-armed (i.e. on the ground, pilot has never raised throttle) attitude_control.set_throttle_out(0,true,g.throttle_filt); attitude_control.relax_attitude_controllers(); pos_control.relax_alt_hold_controllers(motors.get_throttle_hover()); last_roll = ahrs.roll_sensor; last_pitch = ahrs.pitch_sensor; last_yaw = ahrs.yaw_sensor; return; } // Vehicle is armed, motors are free to run motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED); handle_attitude(); pos_control.update_z_controller(); // Read the output of the z controller and rotate it so it always points up Vector3f throttle_vehicle_frame = ahrs.get_rotation_body_to_ned().transposed() * Vector3f(0, 0, motors.get_throttle_in_bidirectional()); // Output the Z controller + pilot input to all motors. //TODO: scale throttle with the ammount of thrusters in the given direction motors.set_throttle(0.5+throttle_vehicle_frame.z + channel_throttle->norm_input()-0.5); motors.set_forward(-throttle_vehicle_frame.x + channel_forward->norm_input()); motors.set_lateral(-throttle_vehicle_frame.y + channel_lateral->norm_input()); // We rotate the RC inputs to the earth frame to check if the user is giving an input that would change the depth. Vector3f earth_frame_rc_inputs = ahrs.get_rotation_body_to_ned() * Vector3f(channel_forward->norm_input(), channel_lateral->norm_input(), (2.0f*(-0.5f+channel_throttle->norm_input()))); // Hold actual position until zero derivative is detected static bool engageStopZ = true; // Get last user velocity direction to check for zero derivative points static bool lastVelocityZWasNegative = false; if (fabsf(earth_frame_rc_inputs.z) > 0.05f) { // Throttle input above 5% // reset z targets to current values pos_control.relax_alt_hold_controllers(); engageStopZ = true; lastVelocityZWasNegative = is_negative(inertial_nav.get_velocity_z()); } else { // hold z if (ap.at_bottom) { pos_control.relax_alt_hold_controllers(); // clear velocity and position targets pos_control.set_alt_target(inertial_nav.get_altitude() + 10.0f); // set target to 10 cm above bottom } else if (rangefinder_alt_ok()) { // if rangefinder is ok, use surface tracking float target_climb_rate = get_surface_tracking_climb_rate(0, pos_control.get_alt_target(), G_Dt); pos_control.set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false); } // Detects a zero derivative // When detected, move the altitude set point to the actual position // This will avoid any problem related to joystick delays // or smaller input signals if(engageStopZ && (lastVelocityZWasNegative ^ is_negative(inertial_nav.get_velocity_z()))) { engageStopZ = false; pos_control.relax_alt_hold_controllers(); } } }