#include <AP_HAL/AP_HAL.h> #include "AC_Circle.h" #include <AP_Math/AP_Math.h> extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AC_Circle::var_info[] = { // @Param: RADIUS // @DisplayName: Circle Radius // @Description: Defines the radius of the circle the vehicle will fly when in Circle flight mode // @Units: cm // @Range: 0 10000 // @Increment: 100 // @User: Standard AP_GROUPINFO("RADIUS", 0, AC_Circle, _radius, AC_CIRCLE_RADIUS_DEFAULT), // @Param: RATE // @DisplayName: Circle rate // @Description: Circle mode's turn rate in deg/sec. Positive to turn clockwise, negative for counter clockwise // @Units: deg/s // @Range: -90 90 // @Increment: 1 // @User: Standard AP_GROUPINFO("RATE", 1, AC_Circle, _rate, AC_CIRCLE_RATE_DEFAULT), AP_GROUPEND }; // Default constructor. // Note that the Vector/Matrix constructors already implicitly zero // their values. // AC_Circle::AC_Circle(const AP_InertialNav& inav, const AP_AHRS_View& ahrs, AC_PosControl& pos_control) : _inav(inav), _ahrs(ahrs), _pos_control(pos_control), _yaw(0.0f), _angle(0.0f), _angle_total(0.0f), _angular_vel(0.0f), _angular_vel_max(0.0f), _angular_accel(0.0f) { AP_Param::setup_object_defaults(this, var_info); // init flags _flags.panorama = false; } /// init - initialise circle controller setting center specifically /// caller should set the position controller's x,y and z speeds and accelerations before calling this void AC_Circle::init(const Vector3f& center) { _center = center; // initialise position controller (sets target roll angle, pitch angle and I terms based on vehicle current lean angles) _pos_control.set_desired_accel_xy(0.0f,0.0f); _pos_control.set_desired_velocity_xy(0.0f,0.0f); _pos_control.init_xy_controller(); // set initial position target to reasonable stopping point _pos_control.set_target_to_stopping_point_xy(); _pos_control.set_target_to_stopping_point_z(); // calculate velocities calc_velocities(true); // set start angle from position init_start_angle(false); } /// init - initialise circle controller setting center using stopping point and projecting out based on the copter's heading /// caller should set the position controller's x,y and z speeds and accelerations before calling this void AC_Circle::init() { // initialise position controller (sets target roll angle, pitch angle and I terms based on vehicle current lean angles) _pos_control.set_desired_accel_xy(0.0f,0.0f); _pos_control.set_desired_velocity_xy(0.0f,0.0f); _pos_control.init_xy_controller(); // set initial position target to reasonable stopping point _pos_control.set_target_to_stopping_point_xy(); _pos_control.set_target_to_stopping_point_z(); // get stopping point const Vector3f& stopping_point = _pos_control.get_pos_target(); // set circle center to circle_radius ahead of stopping point _center.x = stopping_point.x + _radius * _ahrs.cos_yaw(); _center.y = stopping_point.y + _radius * _ahrs.sin_yaw(); _center.z = stopping_point.z; // calculate velocities calc_velocities(true); // set starting angle from vehicle heading init_start_angle(true); } /// set_circle_rate - set circle rate in degrees per second void AC_Circle::set_rate(float deg_per_sec) { if (!is_equal(deg_per_sec, _rate.get())) { _rate = deg_per_sec; calc_velocities(false); } } /// update - update circle controller void AC_Circle::update() { // calculate dt float dt = _pos_control.time_since_last_xy_update(); if (dt >= 0.2f) { dt = 0.0f; } // ramp angular velocity to maximum if (_angular_vel < _angular_vel_max) { _angular_vel += fabsf(_angular_accel) * dt; _angular_vel = MIN(_angular_vel, _angular_vel_max); } if (_angular_vel > _angular_vel_max) { _angular_vel -= fabsf(_angular_accel) * dt; _angular_vel = MAX(_angular_vel, _angular_vel_max); } // update the target angle and total angle traveled float angle_change = _angular_vel * dt; _angle += angle_change; _angle = wrap_PI(_angle); _angle_total += angle_change; // if the circle_radius is zero we are doing panorama so no need to update loiter target if (!is_zero(_radius)) { // calculate target position Vector3f target; target.x = _center.x + _radius * cosf(-_angle); target.y = _center.y - _radius * sinf(-_angle); target.z = _pos_control.get_alt_target(); // update position controller target _pos_control.set_xy_target(target.x, target.y); // heading is from vehicle to center of circle _yaw = get_bearing_cd(_inav.get_position(), _center); } else { // set target position to center Vector3f target; target.x = _center.x; target.y = _center.y; target.z = _pos_control.get_alt_target(); // update position controller target _pos_control.set_xy_target(target.x, target.y); // heading is same as _angle but converted to centi-degrees _yaw = _angle * DEGX100; } // update position controller _pos_control.update_xy_controller(); } // get_closest_point_on_circle - returns closest point on the circle // circle's center should already have been set // closest point on the circle will be placed in result // result's altitude (i.e. z) will be set to the circle_center's altitude // if vehicle is at the center of the circle, the edge directly behind vehicle will be returned void AC_Circle::get_closest_point_on_circle(Vector3f &result) { // return center if radius is zero if (_radius <= 0) { result = _center; return; } // get current position Vector3f stopping_point; _pos_control.get_stopping_point_xy(stopping_point); // calc vector from stopping point to circle center Vector2f vec; // vector from circle center to current location vec.x = (stopping_point.x - _center.x); vec.y = (stopping_point.y - _center.y); float dist = norm(vec.x, vec.y); // if current location is exactly at the center of the circle return edge directly behind vehicle if (is_zero(dist)) { result.x = _center.x - _radius * _ahrs.cos_yaw(); result.y = _center.y - _radius * _ahrs.sin_yaw(); result.z = _center.z; return; } // calculate closest point on edge of circle result.x = _center.x + vec.x / dist * _radius; result.y = _center.y + vec.y / dist * _radius; result.z = _center.z; } // calc_velocities - calculate angular velocity max and acceleration based on radius and rate // this should be called whenever the radius or rate are changed // initialises the yaw and current position around the circle void AC_Circle::calc_velocities(bool init_velocity) { // if we are doing a panorama set the circle_angle to the current heading if (_radius <= 0) { _angular_vel_max = ToRad(_rate); _angular_accel = MAX(fabsf(_angular_vel_max),ToRad(AC_CIRCLE_ANGULAR_ACCEL_MIN)); // reach maximum yaw velocity in 1 second }else{ // calculate max velocity based on waypoint speed ensuring we do not use more than half our max acceleration for accelerating towards the center of the circle float velocity_max = MIN(_pos_control.get_max_speed_xy(), safe_sqrt(0.5f*_pos_control.get_max_accel_xy()*_radius)); // angular_velocity in radians per second _angular_vel_max = velocity_max/_radius; _angular_vel_max = constrain_float(ToRad(_rate),-_angular_vel_max,_angular_vel_max); // angular_velocity in radians per second _angular_accel = MAX(_pos_control.get_max_accel_xy()/_radius, ToRad(AC_CIRCLE_ANGULAR_ACCEL_MIN)); } // initialise angular velocity if (init_velocity) { _angular_vel = 0; } } // init_start_angle - sets the starting angle around the circle and initialises the angle_total // if use_heading is true the vehicle's heading will be used to init the angle causing minimum yaw movement // if use_heading is false the vehicle's position from the center will be used to initialise the angle void AC_Circle::init_start_angle(bool use_heading) { // initialise angle total _angle_total = 0; // if the radius is zero we are doing panorama so init angle to the current heading if (_radius <= 0) { _angle = _ahrs.yaw; return; } // if use_heading is true if (use_heading) { _angle = wrap_PI(_ahrs.yaw-M_PI); } else { // if we are exactly at the center of the circle, init angle to directly behind vehicle (so vehicle will backup but not change heading) const Vector3f &curr_pos = _inav.get_position(); if (is_equal(curr_pos.x,_center.x) && is_equal(curr_pos.y,_center.y)) { _angle = wrap_PI(_ahrs.yaw-M_PI); } else { // get bearing from circle center to vehicle in radians float bearing_rad = atan2f(curr_pos.y-_center.y,curr_pos.x-_center.x); _angle = wrap_PI(bearing_rad); } } }