#include "PosVelEKF.h" #include <math.h> #include <string.h> // Initialize the covariance and state matrix // This is called when the landing target is located for the first time or it was lost, then relocated void PosVelEKF::init(float pos, float posVar, float vel, float velVar) { _state[0] = pos; _state[1] = vel; _cov[0] = posVar; _cov[1] = 0.0f; _cov[2] = velVar; } // This functions runs the Prediction Step of the EKF // This is called at 400 hz void PosVelEKF::predict(float dt, float dVel, float dVelNoise) { // Newly predicted state and covariance matrix at next time step float newState[2]; float newCov[3]; // We assume the following state model for this problem newState[0] = dt*_state[1] + _state[0]; newState[1] = dVel + _state[1]; /* The above state model is broken down into the needed EKF form: newState = A*OldState + B*u Taking jacobian with respect to state, we derive the A (or F) matrix. A = F = |1 dt| |0 1| B = |0| |1| u = dVel Covariance Matrix is ALWAYS symmetric, therefore the following matrix is assumed: P = Covariance Matrix = |cov[0] cov[1]| |cov[1] cov[2]| newCov = F * P * F.transpose + Q Q = |0 0 | |0 dVelNoise^2| Post algebraic operations, and converting it to a upper triangular matrix (because of symmetry) The Updated covariance matrix is of the following form: */ newCov[0] = dt*_cov[1] + dt*(dt*_cov[2] + _cov[1]) + _cov[0]; newCov[1] = dt*_cov[2] + _cov[1]; newCov[2] = ((dVelNoise)*(dVelNoise)) + _cov[2]; // store the predicted matrices memcpy(_state,newState,sizeof(_state)); memcpy(_cov,newCov,sizeof(_cov)); } // fuse the new sensor measurement into the EKF calculations // This is called whenever we have a new measurement available void PosVelEKF::fusePos(float pos, float posVar) { float newState[2]; float newCov[3]; // innovation_residual = new_sensor_readings - OldState const float innovation_residual = pos - _state[0]; /* Measurement matrix H = [1 0] since we are directly measuring pos only Innovation Covariance = S = H * P * H.Transpose + R Since this is a 1-D measurement, R = posVar, which is expected variance in postion sensor reading Post multiplication this becomes: */ const float innovation_covariance = _cov[0] + posVar; /* Next step involves calculating the kalman gain "K" K = P * H.transpose * S.inverse After solving, this comes out to be: K = | cov[0]/innovation_covariance | | cov[1]/innovation_covariance | Updated state estimate = OldState + K * innovation residual This is calculated and simplified below */ newState[0] = _cov[0]*(innovation_residual)/(innovation_covariance) + _state[0]; newState[1] = _cov[1]*(innovation_residual)/(innovation_covariance) + _state[1]; /* Updated covariance matrix = (I-K*H)*P This is calculated and simplified below. Again, this is converted to upper triangular matrix (because of symmetry) */ newCov[0] = _cov[0] * posVar / innovation_covariance; newCov[1] = _cov[1] * posVar / innovation_covariance; newCov[2] = -_cov[1] * _cov[1] / innovation_covariance + _cov[2]; memcpy(_state,newState,sizeof(_state)); memcpy(_cov,newCov,sizeof(_cov)); } // Returns normalized innovation squared float PosVelEKF::getPosNIS(float pos, float posVar) { // NIS = innovation_residual.Transpose * Innovation_Covariance.Inverse * innovation_residual const float innovation_residual = pos - _state[0]; const float innovation_covariance = _cov[0] + posVar; const float NIS = (innovation_residual*innovation_residual)/(innovation_covariance); return NIS; }