#include #include #include #include "AnalogIn.h" using namespace AP_HAL_AVR; extern const AP_HAL::HAL& hal; /* CHANNEL_READ_REPEAT: how many reads on a channel before using the value. * This seems to be determined empirically */ #define CHANNEL_READ_REPEAT 2 /* Static variable instances */ ADCSource* AVRAnalogIn::_channels[AVR_INPUT_MAX_CHANNELS] = {NULL}; int AVRAnalogIn::_num_channels = 0; int AVRAnalogIn::_active_channel = 0; int AVRAnalogIn::_channel_repeat_count = 0; AVRAnalogIn::AVRAnalogIn() {} void AVRAnalogIn::_register_channel(ADCSource* ch) { if (_num_channels >= AVR_INPUT_MAX_CHANNELS) { for(;;) { hal.console->print_P(PSTR( "Error: AP_HAL_AVR::AVRAnalogIn out of channels\r\n")); hal.scheduler->delay(1000); } } _channels[_num_channels] = ch; /* Need to lock to increment _num_channels as it is used * by the interrupt to access _channels */ cli(); _num_channels++; sei(); if (_num_channels == 1) { /* After registering the first channel, we can enable the ADC */ PRR0 &= ~_BV(PRADC); ADCSRA |= _BV(ADEN); } } void AVRAnalogIn::_timer_event(uint32_t t) { if (ADCSRA & _BV(ADSC)) { /* ADC Conversion is still running - this should not happen, as we * are called at 1khz. */ return; } if (_num_channels == 0) { /* No channels are registered - nothing to be done. */ return; } _channel_repeat_count++; if (_channel_repeat_count < CHANNEL_READ_REPEAT) { /* Start a new conversion, throw away the current conversion */ ADCSRA |= _BV(ADSC); return; } else { _channel_repeat_count = 0; } /* Read the conversion registers. */ uint8_t low = ADCL; uint8_t high = ADCH; uint16_t sample = low | (((uint16_t)high) << 8); /* Give the active channel a new sample */ _channels[_active_channel]->new_sample( sample ); /* Move to the next channel */ _active_channel = (_active_channel + 1) % _num_channels; /* Setup the next channel's conversion */ _channels[_active_channel]->setup_read(); /* Start conversion */ ADCSRA |= _BV(ADSC); }