/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-

#include <AP_HAL.h>
#include "AP_InertialSensor_MPU6000.h"

extern const AP_HAL::HAL& hal;

// MPU6000 accelerometer scaling
#define MPU6000_ACCEL_SCALE_1G    (GRAVITY_MSS / 4096.0f)

// MPU 6000 registers
#define MPUREG_XG_OFFS_TC                               0x00
#define MPUREG_YG_OFFS_TC                               0x01
#define MPUREG_ZG_OFFS_TC                               0x02
#define MPUREG_X_FINE_GAIN                              0x03
#define MPUREG_Y_FINE_GAIN                              0x04
#define MPUREG_Z_FINE_GAIN                              0x05
#define MPUREG_XA_OFFS_H                                0x06    // X axis accelerometer offset (high byte)
#define MPUREG_XA_OFFS_L                                0x07    // X axis accelerometer offset (low byte)
#define MPUREG_YA_OFFS_H                                0x08    // Y axis accelerometer offset (high byte)
#define MPUREG_YA_OFFS_L                                0x09    // Y axis accelerometer offset (low byte)
#define MPUREG_ZA_OFFS_H                                0x0A    // Z axis accelerometer offset (high byte)
#define MPUREG_ZA_OFFS_L                                0x0B    // Z axis accelerometer offset (low byte)
#define MPUREG_PRODUCT_ID                               0x0C    // Product ID Register
#define MPUREG_XG_OFFS_USRH                     0x13    // X axis gyro offset (high byte)
#define MPUREG_XG_OFFS_USRL                     0x14    // X axis gyro offset (low byte)
#define MPUREG_YG_OFFS_USRH                     0x15    // Y axis gyro offset (high byte)
#define MPUREG_YG_OFFS_USRL                     0x16    // Y axis gyro offset (low byte)
#define MPUREG_ZG_OFFS_USRH                     0x17    // Z axis gyro offset (high byte)
#define MPUREG_ZG_OFFS_USRL                     0x18    // Z axis gyro offset (low byte)
#define MPUREG_SMPLRT_DIV                               0x19    // sample rate.  Fsample= 1Khz/(<this value>+1) = 200Hz
#       define MPUREG_SMPLRT_1000HZ                             0x00
#       define MPUREG_SMPLRT_500HZ                              0x01
#       define MPUREG_SMPLRT_250HZ                              0x03
#       define MPUREG_SMPLRT_200HZ                              0x04
#       define MPUREG_SMPLRT_100HZ                              0x09
#       define MPUREG_SMPLRT_50HZ                               0x13
#define MPUREG_CONFIG                                           0x1A
#define MPUREG_GYRO_CONFIG                                      0x1B
// bit definitions for MPUREG_GYRO_CONFIG
#       define BITS_GYRO_FS_250DPS                              0x00
#       define BITS_GYRO_FS_500DPS                              0x08
#       define BITS_GYRO_FS_1000DPS                             0x10
#       define BITS_GYRO_FS_2000DPS                             0x18
#       define BITS_GYRO_FS_MASK                                0x18    // only bits 3 and 4 are used for gyro full scale so use this to mask off other bits
#       define BITS_GYRO_ZGYRO_SELFTEST                 0x20
#       define BITS_GYRO_YGYRO_SELFTEST                 0x40
#       define BITS_GYRO_XGYRO_SELFTEST                 0x80
#define MPUREG_ACCEL_CONFIG                             0x1C
#define MPUREG_MOT_THR                                  0x1F    // detection threshold for Motion interrupt generation.  Motion is detected when the absolute value of any of the accelerometer measurements exceeds this
#define MPUREG_MOT_DUR                                  0x20    // duration counter threshold for Motion interrupt generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit of 1 LSB = 1 ms
#define MPUREG_ZRMOT_THR                                0x21    // detection threshold for Zero Motion interrupt generation.
#define MPUREG_ZRMOT_DUR                                0x22    // duration counter threshold for Zero Motion interrupt generation. The duration counter ticks at 16 Hz, therefore ZRMOT_DUR has a unit of 1 LSB = 64 ms.
#define MPUREG_FIFO_EN                                  0x23
#define MPUREG_INT_PIN_CFG                              0x37
#       define BIT_INT_RD_CLEAR                                 0x10    // clear the interrupt when any read occurs
#       define BIT_LATCH_INT_EN                                 0x20    // latch data ready pin 
#define MPUREG_INT_ENABLE                               0x38
// bit definitions for MPUREG_INT_ENABLE
#       define BIT_RAW_RDY_EN                                   0x01
#       define BIT_DMP_INT_EN                                   0x02    // enabling this bit (DMP_INT_EN) also enables RAW_RDY_EN it seems
#       define BIT_UNKNOWN_INT_EN                               0x04
#       define BIT_I2C_MST_INT_EN                               0x08
#       define BIT_FIFO_OFLOW_EN                                0x10
#       define BIT_ZMOT_EN                                              0x20
#       define BIT_MOT_EN                                               0x40
#       define BIT_FF_EN                                                0x80
#define MPUREG_INT_STATUS                               0x3A
// bit definitions for MPUREG_INT_STATUS (same bit pattern as above because this register shows what interrupt actually fired)
#       define BIT_RAW_RDY_INT                                  0x01
#       define BIT_DMP_INT                                              0x02
#       define BIT_UNKNOWN_INT                                  0x04
#       define BIT_I2C_MST_INT                                  0x08
#       define BIT_FIFO_OFLOW_INT                               0x10
#       define BIT_ZMOT_INT                                             0x20
#       define BIT_MOT_INT                                              0x40
#       define BIT_FF_INT                                               0x80
#define MPUREG_ACCEL_XOUT_H                             0x3B
#define MPUREG_ACCEL_XOUT_L                             0x3C
#define MPUREG_ACCEL_YOUT_H                             0x3D
#define MPUREG_ACCEL_YOUT_L                             0x3E
#define MPUREG_ACCEL_ZOUT_H                             0x3F
#define MPUREG_ACCEL_ZOUT_L                             0x40
#define MPUREG_TEMP_OUT_H                               0x41
#define MPUREG_TEMP_OUT_L                               0x42
#define MPUREG_GYRO_XOUT_H                              0x43
#define MPUREG_GYRO_XOUT_L                              0x44
#define MPUREG_GYRO_YOUT_H                              0x45
#define MPUREG_GYRO_YOUT_L                              0x46
#define MPUREG_GYRO_ZOUT_H                              0x47
#define MPUREG_GYRO_ZOUT_L                              0x48
#define MPUREG_USER_CTRL                                0x6A
// bit definitions for MPUREG_USER_CTRL
#       define BIT_USER_CTRL_SIG_COND_RESET             0x01            // resets signal paths and results registers for all sensors (gyros, accel, temp)
#       define BIT_USER_CTRL_I2C_MST_RESET              0x02            // reset I2C Master (only applicable if I2C_MST_EN bit is set)
#       define BIT_USER_CTRL_FIFO_RESET                 0x04            // Reset (i.e. clear) FIFO buffer
#       define BIT_USER_CTRL_DMP_RESET                  0x08            // Reset DMP
#       define BIT_USER_CTRL_I2C_IF_DIS                 0x10            // Disable primary I2C interface and enable hal.spi->interface
#       define BIT_USER_CTRL_I2C_MST_EN                 0x20            // Enable MPU to act as the I2C Master to external slave sensors
#       define BIT_USER_CTRL_FIFO_EN                    0x40            // Enable FIFO operations
#       define BIT_USER_CTRL_DMP_EN                             0x80            // Enable DMP operations
#define MPUREG_PWR_MGMT_1                               0x6B
#       define BIT_PWR_MGMT_1_CLK_INTERNAL              0x00            // clock set to internal 8Mhz oscillator
#       define BIT_PWR_MGMT_1_CLK_XGYRO                 0x01            // PLL with X axis gyroscope reference
#       define BIT_PWR_MGMT_1_CLK_YGYRO                 0x02            // PLL with Y axis gyroscope reference
#       define BIT_PWR_MGMT_1_CLK_ZGYRO                 0x03            // PLL with Z axis gyroscope reference
#       define BIT_PWR_MGMT_1_CLK_EXT32KHZ              0x04            // PLL with external 32.768kHz reference
#       define BIT_PWR_MGMT_1_CLK_EXT19MHZ              0x05            // PLL with external 19.2MHz reference
#       define BIT_PWR_MGMT_1_CLK_STOP                  0x07            // Stops the clock and keeps the timing generator in reset
#       define BIT_PWR_MGMT_1_TEMP_DIS                  0x08            // disable temperature sensor
#       define BIT_PWR_MGMT_1_CYCLE                             0x20            // put sensor into cycle mode.  cycles between sleep mode and waking up to take a single sample of data from active sensors at a rate determined by LP_WAKE_CTRL
#       define BIT_PWR_MGMT_1_SLEEP                             0x40            // put sensor into low power sleep mode
#       define BIT_PWR_MGMT_1_DEVICE_RESET              0x80            // reset entire device
#define MPUREG_PWR_MGMT_2                               0x6C            // allows the user to configure the frequency of wake-ups in Accelerometer Only Low Power Mode
#define MPUREG_BANK_SEL                                 0x6D            // DMP bank selection register (used to indirectly access DMP registers)
#define MPUREG_MEM_START_ADDR                   0x6E            // DMP memory start address (used to indirectly write to dmp memory)
#define MPUREG_MEM_R_W                                  0x6F            // DMP related register
#define MPUREG_DMP_CFG_1                                0x70            // DMP related register
#define MPUREG_DMP_CFG_2                                0x71            // DMP related register
#define MPUREG_FIFO_COUNTH                              0x72
#define MPUREG_FIFO_COUNTL                              0x73
#define MPUREG_FIFO_R_W                                 0x74
#define MPUREG_WHOAMI                                   0x75


// Configuration bits MPU 3000 and MPU 6000 (not revised)?
#define BITS_DLPF_CFG_256HZ_NOLPF2              0x00
#define BITS_DLPF_CFG_188HZ                             0x01
#define BITS_DLPF_CFG_98HZ                              0x02
#define BITS_DLPF_CFG_42HZ                              0x03
#define BITS_DLPF_CFG_20HZ                              0x04
#define BITS_DLPF_CFG_10HZ                              0x05
#define BITS_DLPF_CFG_5HZ                               0x06
#define BITS_DLPF_CFG_2100HZ_NOLPF              0x07
#define BITS_DLPF_CFG_MASK                              0x07

// Product ID Description for MPU6000
// high 4 bits  low 4 bits
// Product Name	Product Revision
#define MPU6000ES_REV_C4                        0x14    // 0001			0100
#define MPU6000ES_REV_C5                        0x15    // 0001			0101
#define MPU6000ES_REV_D6                        0x16    // 0001			0110
#define MPU6000ES_REV_D7                        0x17    // 0001			0111
#define MPU6000ES_REV_D8                        0x18    // 0001			1000
#define MPU6000_REV_C4                          0x54    // 0101			0100
#define MPU6000_REV_C5                          0x55    // 0101			0101
#define MPU6000_REV_D6                          0x56    // 0101			0110
#define MPU6000_REV_D7                          0x57    // 0101			0111
#define MPU6000_REV_D8                          0x58    // 0101			1000
#define MPU6000_REV_D9                          0x59    // 0101			1001


/*
 *  RM-MPU-6000A-00.pdf, page 33, section 4.25 lists LSB sensitivity of
 *  gyro as 16.4 LSB/DPS at scale factor of +/- 2000dps (FS_SEL==3)
 */
const float AP_InertialSensor_MPU6000::_gyro_scale = (0.0174532 / 16.4);

/* pch: I believe the accel and gyro indicies are correct
 *      but somone else should please confirm.
 *
 * jamesjb: Y and Z axes are flipped on the PX4FMU
 */
const uint8_t AP_InertialSensor_MPU6000::_gyro_data_index[3]  = { 5, 4, 6 };
const uint8_t AP_InertialSensor_MPU6000::_accel_data_index[3] = { 1, 0, 2 };

const int8_t AP_InertialSensor_MPU6000::_gyro_data_sign[3]   = { 1, 1, -1 };
const int8_t AP_InertialSensor_MPU6000::_accel_data_sign[3]  = { 1, 1, -1 };

const uint8_t AP_InertialSensor_MPU6000::_temp_data_index = 3;

/*
 *  RM-MPU-6000A-00.pdf, page 31, section 4.23 lists LSB sensitivity of
 *  accel as 4096 LSB/mg at scale factor of +/- 8g (AFS_SEL==2)
 *
 *  See note below about accel scaling of engineering sample MPU6k
 *  variants however
 */

AP_InertialSensor_MPU6000::AP_InertialSensor_MPU6000() : 
	AP_InertialSensor(),
    _mpu6000_product_id(AP_PRODUCT_ID_NONE),
    _drdy_pin(NULL),
    _temp(0),
    _initialised(false)
{
}

uint16_t AP_InertialSensor_MPU6000::_init_sensor( Sample_rate sample_rate )
{
    if (_initialised) return _mpu6000_product_id;
    _initialised = true;

    _spi = hal.spi->device(AP_HAL::SPIDevice_MPU6000);
    _spi_sem = _spi->get_semaphore();

    /* Pin 70 defined especially to hook
       up PE6 to the hal.gpio abstraction.
       (It is not a valid pin under Arduino.) */
    _drdy_pin = hal.gpio->channel(70);

    hal.scheduler->suspend_timer_procs();

    uint8_t tries = 0;
    do {
        bool success = hardware_init(sample_rate);
        if (success) {
            hal.scheduler->delay(5+2);
            if (_data_ready()) {
                break;
            } else {
                hal.console->println_P(
                        PSTR("MPU6000 startup failed: no data ready"));
            }
        }
        if (tries++ > 5) {
            hal.scheduler->panic(PSTR("PANIC: failed to boot MPU6000 5 times")); 
        }
    } while (1);

    hal.scheduler->resume_timer_procs();
    

    /* read the first lot of data.
     * _read_data_transaction requires the spi semaphore to be taken by
     * its caller. */
    _last_sample_time_micros = hal.scheduler->micros();
    _read_data_transaction();

    // start the timer process to read samples
    hal.scheduler->register_timer_process(reinterpret_cast<AP_HAL::TimedProc>(&AP_InertialSensor_MPU6000::_poll_data), this);

#if MPU6000_DEBUG
    _dump_registers();
#endif
    return _mpu6000_product_id;
}

// accumulation in ISR - must be read with interrupts disabled
// the sum of the values since last read
static volatile int32_t _sum[7];

// how many values we've accumulated since last read
static volatile uint16_t _count;

/*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */

void AP_InertialSensor_MPU6000::wait_for_sample()
{
    uint32_t tstart = hal.scheduler->micros();
    while (sample_available() == false) {
        uint32_t now = hal.scheduler->micros();
        uint32_t dt = now - tstart;
        if (dt > 50000) {
            hal.scheduler->panic(
                    PSTR("PANIC: AP_InertialSensor_MPU6000::update "
                        "waited 50ms for data from interrupt"));
        }
    }
}

bool AP_InertialSensor_MPU6000::update( void )
{
    int32_t sum[7];
    float count_scale;
    Vector3f accel_scale = _accel_scale.get();

    // wait for at least 1 sample
    wait_for_sample();

    // disable timer procs for mininum time
    hal.scheduler->suspend_timer_procs();
    /** ATOMIC SECTION w/r/t TIMER PROCESS */
    {
        for (int i=0; i<7; i++) {
            sum[i] = _sum[i];
            _sum[i] = 0;
        }

        _num_samples = _count;
        _count = 0;
    }
    hal.scheduler->resume_timer_procs();

    count_scale = 1.0f / _num_samples;

    _gyro  = Vector3f(_gyro_data_sign[0] * sum[_gyro_data_index[0]],
                      _gyro_data_sign[1] * sum[_gyro_data_index[1]],
                      _gyro_data_sign[2] * sum[_gyro_data_index[2]]);
    _gyro.rotate(_board_orientation);
    _gyro *= _gyro_scale * count_scale;
    _gyro -= _gyro_offset;

    _accel   = Vector3f(_accel_data_sign[0] * sum[_accel_data_index[0]],
                        _accel_data_sign[1] * sum[_accel_data_index[1]],
                        _accel_data_sign[2] * sum[_accel_data_index[2]]);
    _accel.rotate(_board_orientation);
    _accel *= count_scale * MPU6000_ACCEL_SCALE_1G;
    _accel.x *= accel_scale.x;
    _accel.y *= accel_scale.y;
    _accel.z *= accel_scale.z;
    _accel -= _accel_offset;

    _temp    = _temp_to_celsius(sum[_temp_data_index] * count_scale);

    if (_last_filter_hz != _mpu6000_filter) {
        if (_spi_sem->take(10)) {
            _set_filter_register(_mpu6000_filter, 0);
            _spi_sem->give();
        }
    }

    return true;
}

/*================ HARDWARE FUNCTIONS ==================== */

/**
 * Return true if the MPU6000 has new data available for reading.
 *
 * We use the data ready pin if it is available.  Otherwise, read the
 * status register.
 */
bool AP_InertialSensor_MPU6000::_data_ready()
{
    if (_drdy_pin) {
        return _drdy_pin->read() != 0;
    }

    if (hal.scheduler->in_timerprocess()) {
        bool got = _spi_sem->take_nonblocking();
        if (got) {
            uint8_t status = _register_read(MPUREG_INT_STATUS);
            _spi_sem->give();
            return (status & BIT_RAW_RDY_INT) != 0;
        } else {
            return false;
        }
    } else {
        bool got = _spi_sem->take(10);
        if (got) {
            uint8_t status = _register_read(MPUREG_INT_STATUS);
            _spi_sem->give();
            return (status & BIT_RAW_RDY_INT) != 0;
        } else {
            hal.scheduler->panic(
                PSTR("PANIC: AP_InertialSensor_MPU6000::_data_ready failed to "
                     "take SPI semaphore synchronously"));
        }
    }
    return false;
}

/**
 * Timer process to poll for new data from the MPU6000.
 */
void AP_InertialSensor_MPU6000::_poll_data(void)
{
    if (_data_ready()) {
        if (hal.scheduler->in_timerprocess()) {
            _read_data_from_timerprocess();
        } else {
            /* Synchronous read - take semaphore */
            bool got = _spi_sem->take(10);
            if (got) {
                _last_sample_time_micros = hal.scheduler->micros();
                _read_data_transaction(); 
                _spi_sem->give();
            } else {
                hal.scheduler->panic(
                        PSTR("PANIC: AP_InertialSensor_MPU6000::_poll_data "
                             "failed to take SPI semaphore synchronously"));
            }
        }
    }
}

/*
 *  this is called from the _poll_data, in the timer process context.
 *  when the MPU6000 has new sensor data available and add it to _sum[] to
 *  ensure this is the case, these other devices must perform their spi reads
 *  after being called by the AP_TimerProcess.
 */
void AP_InertialSensor_MPU6000::_read_data_from_timerprocess()
{
    if (!_spi_sem->take_nonblocking()) {
        /*
          the semaphore being busy is an expected condition when the
          mainline code is calling sample_available() which will
          grab the semaphore. We return now and rely on the mainline
          code grabbing the latest sample.
         */
        return;
    }   

    _last_sample_time_micros = hal.scheduler->micros();
    _read_data_transaction();

    _spi_sem->give();
}

void AP_InertialSensor_MPU6000::_read_data_transaction() {
    /* one resister address followed by seven 2-byte registers */
    uint8_t tx[15];
    uint8_t rx[15];
    memset(tx,0,15);
    tx[0] = MPUREG_ACCEL_XOUT_H | 0x80;
    _spi->transaction(tx, rx, 15);

    for (uint8_t i = 0; i < 7; i++) {
        _sum[i] += (int16_t)(((uint16_t)rx[2*i+1] << 8) | rx[2*i+2]);
    }   
    
    _count++;
    if (_count == 0) {
        // rollover - v unlikely
        memset((void*)_sum, 0, sizeof(_sum));
    }
}

uint8_t AP_InertialSensor_MPU6000::_register_read( uint8_t reg )
{
    uint8_t addr = reg | 0x80; // Set most significant bit

    uint8_t tx[2];
    uint8_t rx[2];

    tx[0] = addr;
    tx[1] = 0;
    _spi->transaction(tx, rx, 2);

    return rx[1];
}

void AP_InertialSensor_MPU6000::register_write(uint8_t reg, uint8_t val)
{
    uint8_t tx[2];
    uint8_t rx[2];

    tx[0] = reg;
    tx[1] = val;
    _spi->transaction(tx, rx, 2);
}

/*
  set the DLPF filter frequency. Assumes caller has taken semaphore
 */
void AP_InertialSensor_MPU6000::_set_filter_register(uint8_t filter_hz, uint8_t default_filter)
{
    uint8_t filter = default_filter;
    // choose filtering frequency
    switch (filter_hz) {
    case 5:
        filter = BITS_DLPF_CFG_5HZ;
        break;
    case 10:
        filter = BITS_DLPF_CFG_10HZ;
        break;
    case 20:
        filter = BITS_DLPF_CFG_20HZ;
        break;
    case 42:
        filter = BITS_DLPF_CFG_42HZ;
        break;
    case 98:
        filter = BITS_DLPF_CFG_98HZ;
        break;
    }

    if (filter != 0) {
        _last_filter_hz = filter_hz;

        register_write(MPUREG_CONFIG, filter);
    }
}


bool AP_InertialSensor_MPU6000::hardware_init(Sample_rate sample_rate)
{
    if (!_spi_sem->take(100)) {
        hal.scheduler->panic(PSTR("MPU6000: Unable to get semaphore"));
    }

    // Chip reset
    uint8_t tries;
    for (tries = 0; tries<5; tries++) {
        register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_DEVICE_RESET);
        hal.scheduler->delay(100);

        // Wake up device and select GyroZ clock. Note that the
        // MPU6000 starts up in sleep mode, and it can take some time
        // for it to come out of sleep
        register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_CLK_ZGYRO);
        hal.scheduler->delay(5);

        // check it has woken up
        if (_register_read(MPUREG_PWR_MGMT_1) == BIT_PWR_MGMT_1_CLK_ZGYRO) {
            break;
        }
#if MPU6000_DEBUG
        _dump_registers();
#endif
    }
    if (tries == 5) {
        hal.console->println_P(PSTR("Failed to boot MPU6000 5 times"));
        _spi_sem->give();
        return false;
    }

    register_write(MPUREG_PWR_MGMT_2, 0x00);            // only used for wake-up in accelerometer only low power mode
    hal.scheduler->delay(1);

    // Disable I2C bus (recommended on datasheet)
    register_write(MPUREG_USER_CTRL, BIT_USER_CTRL_I2C_IF_DIS);
    hal.scheduler->delay(1);

    uint8_t default_filter;

    // sample rate and filtering
    // to minimise the effects of aliasing we choose a filter
    // that is less than half of the sample rate
    switch (sample_rate) {
    case RATE_50HZ:
        // this is used for plane and rover, where noise resistance is
        // more important than update rate. Tests on an aerobatic plane
        // show that 10Hz is fine, and makes it very noise resistant
        default_filter = BITS_DLPF_CFG_10HZ;
        _sample_shift = 2;
        break;
    case RATE_100HZ:
        default_filter = BITS_DLPF_CFG_20HZ;
        _sample_shift = 1;
        break;
    case RATE_200HZ:
    default:
        default_filter = BITS_DLPF_CFG_20HZ;
        _sample_shift = 0;
        break;
    }

    _set_filter_register(_mpu6000_filter, default_filter);

    // set sample rate to 200Hz, and use _sample_divider to give
    // the requested rate to the application
    register_write(MPUREG_SMPLRT_DIV, MPUREG_SMPLRT_200HZ);
    hal.scheduler->delay(1);

    register_write(MPUREG_GYRO_CONFIG, BITS_GYRO_FS_2000DPS);  // Gyro scale 2000ยบ/s
    hal.scheduler->delay(1);

    // read the product ID rev c has 1/2 the sensitivity of rev d
    _mpu6000_product_id = _register_read(MPUREG_PRODUCT_ID);
    //Serial.printf("Product_ID= 0x%x\n", (unsigned) _mpu6000_product_id);

    if ((_mpu6000_product_id == MPU6000ES_REV_C4) || (_mpu6000_product_id == MPU6000ES_REV_C5) ||
        (_mpu6000_product_id == MPU6000_REV_C4)   || (_mpu6000_product_id == MPU6000_REV_C5)) {
        // Accel scale 8g (4096 LSB/g)
        // Rev C has different scaling than rev D
        register_write(MPUREG_ACCEL_CONFIG,1<<3);
    } else {
        // Accel scale 8g (4096 LSB/g)
        register_write(MPUREG_ACCEL_CONFIG,2<<3);
    }
    hal.scheduler->delay(1);

    // configure interrupt to fire when new data arrives
    register_write(MPUREG_INT_ENABLE, BIT_RAW_RDY_EN);
    hal.scheduler->delay(1);

    // clear interrupt on any read, and hold the data ready pin high
    // until we clear the interrupt
    register_write(MPUREG_INT_PIN_CFG, BIT_INT_RD_CLEAR | BIT_LATCH_INT_EN);
    hal.scheduler->delay(1);

    _spi_sem->give();

    return true;
}

float AP_InertialSensor_MPU6000::_temp_to_celsius ( uint16_t regval )
{
    /* TODO */
    return 20.0;
}

// return the MPU6k gyro drift rate in radian/s/s
// note that this is much better than the oilpan gyros
float AP_InertialSensor_MPU6000::get_gyro_drift_rate(void)
{
    // 0.5 degrees/second/minute
    return ToRad(0.5/60);
}

// return true if a sample is available
bool AP_InertialSensor_MPU6000::sample_available()
{
    _poll_data();
    return (_count >> _sample_shift) > 0;
}


#if MPU6000_DEBUG
// dump all config registers - used for debug
void AP_InertialSensor_MPU6000::_dump_registers(void)
{
    hal.console->println_P(PSTR("MPU6000 registers"));
    for (uint8_t reg=MPUREG_PRODUCT_ID; reg<=108; reg++) {
        uint8_t v = _register_read(reg);
        hal.console->printf_P(PSTR("%02x:%02x "), (unsigned)reg, (unsigned)v);
        if ((reg - (MPUREG_PRODUCT_ID-1)) % 16 == 0) {
            hal.console->println();
        }
    }
    hal.console->println();
}
#endif


// get_delta_time returns the time period in seconds overwhich the sensor data was collected
float AP_InertialSensor_MPU6000::get_delta_time() 
{
    // the sensor runs at 200Hz
    return 0.005 * _num_samples;
}