#include <AP_WheelEncoder/AP_WheelRateControl.h> extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AP_WheelRateControl::var_info[] = { // @Param: _ENABLE // @DisplayName: Wheel rate control enable/disable // @Description: Enable or disable wheel rate control // @Values: 0:Disabled,1:Enabled // @User: Standard AP_GROUPINFO_FLAGS("_ENABLE", 1, AP_WheelRateControl, _enabled, 0, AP_PARAM_FLAG_ENABLE), // @Param: _RATE_MAX // @DisplayName: Wheel max rotation rate // @Description: Wheel max rotation rate // @Units: rad/s // @Range: 0 200 // @User: Standard AP_GROUPINFO("_RATE_MAX", 2, AP_WheelRateControl, _rate_max, AP_WHEEL_RATE_MAX_DEFAULT), // @Param: _RATE_FF // @DisplayName: Wheel rate control feed forward gain // @Description: Wheel rate control feed forward gain. Desired rate (in radians/sec) is multiplied by this constant and output to output (in the range -1 to +1) // @Range: 0.100 2.000 // @User: Standard // @Param: _RATE_P // @DisplayName: Wheel rate control P gain // @Description: Wheel rate control P gain. Converts rate error (in radians/sec) to output (in the range -1 to +1) // @Range: 0.100 2.000 // @User: Standard // @Param: _RATE_I // @DisplayName: Wheel rate control I gain // @Description: Wheel rate control I gain. Corrects long term error between the desired rate (in rad/s) and actual // @Range: 0.000 2.000 // @User: Standard // @Param: _RATE_IMAX // @DisplayName: Wheel rate control I gain maximum // @Description: Wheel rate control I gain maximum. Constrains the output (range -1 to +1) that the I term will generate // @Range: 0.000 1.000 // @User: Standard // @Param: _RATE_D // @DisplayName: Wheel rate control D gain // @Description: Wheel rate control D gain. Compensates for short-term change in desired rate vs actual // @Range: 0.000 0.400 // @User: Standard // @Param: _RATE_FILT // @DisplayName: Wheel rate control filter frequency // @Description: Wheel rate control input filter. Lower values reduce noise but add delay. // @Range: 1.000 100.000 // @Units: Hz // @User: Standard AP_SUBGROUPINFO(_rate_pid0, "_RATE_", 3, AP_WheelRateControl, AC_PID), // @Param: 2_RATE_FF // @DisplayName: Wheel rate control feed forward gain // @Description: Wheel rate control feed forward gain. Desired rate (in radians/sec) is multiplied by this constant and output to output (in the range -1 to +1) // @Range: 0.100 2.000 // @User: Standard // @Param: 2_RATE_P // @DisplayName: Wheel rate control P gain // @Description: Wheel rate control P gain. Converts rate error (in radians/sec) to output (in the range -1 to +1) // @Range: 0.100 2.000 // @User: Standard // @Param: 2_RATE_I // @DisplayName: Wheel rate control I gain // @Description: Wheel rate control I gain. Corrects long term error between the desired rate (in rad/s) and actual // @Range: 0.000 2.000 // @User: Standard // @Param: 2_RATE_IMAX // @DisplayName: Wheel rate control I gain maximum // @Description: Wheel rate control I gain maximum. Constrains the output (range -1 to +1) that the I term will generate // @Range: 0.000 1.000 // @User: Standard // @Param: 2_RATE_D // @DisplayName: Wheel rate control D gain // @Description: Wheel rate control D gain. Compensates for short-term change in desired rate vs actual // @Range: 0.000 0.400 // @User: Standard // @Param: 2_RATE_FILT // @DisplayName: Wheel rate control filter frequency // @Description: Wheel rate control input filter. Lower values reduce noise but add delay. // @Range: 1.000 100.000 // @Units: Hz // @User: Standard AP_SUBGROUPINFO(_rate_pid1, "2_RATE_", 4, AP_WheelRateControl, AC_PID), AP_GROUPEND }; AP_WheelRateControl::AP_WheelRateControl(const AP_WheelEncoder &wheel_encoder_ref) : _wheel_encoder(wheel_encoder_ref) { AP_Param::setup_object_defaults(this, var_info); } // returns true if a wheel encoder and rate control PID are available for this instance bool AP_WheelRateControl::enabled(uint8_t instance) { // sanity check instance if ((instance > 1) || (_enabled == 0)) { return false; } // wheel encoder enabled return _wheel_encoder.enabled(instance); } // get throttle output in the range -100 to +100 given a desired rate expressed as a percentage of the rate_max (-100 to +100) // instance can be 0 or 1 float AP_WheelRateControl::get_rate_controlled_throttle(uint8_t instance, float desired_rate_pct, float dt) { if (!enabled(instance)) { return 0; } // determine which PID instance to use AC_PID& rate_pid = (instance == 0) ? _rate_pid0 : _rate_pid1; // set PID's dt rate_pid.set_dt(dt); // check for timeout uint32_t now = AP_HAL::millis(); if (now - _last_update_ms > AP_WHEEL_RATE_CONTROL_TIMEOUT_MS) { rate_pid.reset_filter(); rate_pid.reset_I(); _limit[instance].lower = false; _limit[instance].upper = false; } _last_update_ms = now; // convert desired rate as a percentage to radians/sec float desired_rate = desired_rate_pct / 100.0f * get_rate_max_rads(); // get actual rate from wheeel encoder float actual_rate = _wheel_encoder.get_rate(instance); // calculate rate error and pass to pid controller float rate_error = desired_rate - actual_rate; rate_pid.set_input_filter_all(rate_error); // store desired and actual for logging purposes rate_pid.set_desired_rate(desired_rate); rate_pid.set_actual_rate(actual_rate); // get ff float ff = rate_pid.get_ff(desired_rate); // get p float p = rate_pid.get_p(); // get i unless we hit limit on last iteration float i = rate_pid.get_integrator(); if (((is_negative(rate_error) && !_limit[instance].lower) || (is_positive(rate_error) && !_limit[instance].upper))) { i = rate_pid.get_i(); } // get d float d = rate_pid.get_d(); // constrain and set limit flags float output = ff + p + i + d; // set limits for next iteration _limit[instance].upper = output >= 100.0f; _limit[instance].lower = output <= -100.0f; return output; } // get pid objects for reporting AC_PID& AP_WheelRateControl::get_pid(uint8_t instance) { if (instance == 0) { return _rate_pid0; } else { return _rate_pid1; } }