/* AP_MotorsMatrix.cpp - ArduCopter motors library Code by RandyMackay. DIYDrones.com This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. */ #include "AP_MotorsMatrix.h" // Init void AP_MotorsMatrix::Init() { int8_t i; // setup the motors setup_motors(); // double check that opposite motor definitions are ok for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) { if( opposite_motor[i] <= 0 || opposite_motor[i] >= AP_MOTORS_MAX_NUM_MOTORS || !motor_enabled[opposite_motor[i]] ) opposite_motor[i] = AP_MOTORS_MATRIX_MOTOR_UNDEFINED; } // enable fast channels or instant pwm set_update_rate(_speed_hz); } // set update rate to motors - a value in hertz or AP_MOTORS_SPEED_INSTANT_PWM for instant pwm void AP_MotorsMatrix::set_update_rate( uint16_t speed_hz ) { uint32_t fast_channel_mask = 0; int8_t i; // record requested speed _speed_hz = speed_hz; // initialise instant_pwm booleans. they will be set again below instant_pwm_force01 = false; instant_pwm_force23 = false; instant_pwm_force67 = false; // check each enabled motor for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) { if( motor_enabled[i] ) { // set-up fast channel mask fast_channel_mask |= _BV(_motor_to_channel_map[i]); // add to fast channel map // and instant pwm if( _motor_to_channel_map[i] == 0 || _motor_to_channel_map[i] == 1 ) instant_pwm_force01 = true; if( _motor_to_channel_map[i] == 2 || _motor_to_channel_map[i] == 3 ) instant_pwm_force23 = true; if( _motor_to_channel_map[i] == 6 || _motor_to_channel_map[i] == 7 ) instant_pwm_force67 = true; } } // enable fast channels if( _speed_hz != AP_MOTORS_SPEED_INSTANT_PWM ) { _rc->SetFastOutputChannels(fast_channel_mask, _speed_hz); } } // set frame orientation (normally + or X) void AP_MotorsMatrix::set_frame_orientation( uint8_t new_orientation ) { // return if nothing has changed if( new_orientation == _frame_orientation ) { return; } // call parent AP_Motors::set_frame_orientation( new_orientation ); // setup the motors setup_motors(); // enable fast channels or instant pwm set_update_rate(_speed_hz); } // enable - starts allowing signals to be sent to motors void AP_MotorsMatrix::enable() { int8_t i; // enable output channels for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) { if( motor_enabled[i] ) { _rc->enable_out(_motor_to_channel_map[i]); } } } // output_min - sends minimum values out to the motors void AP_MotorsMatrix::output_min() { int8_t i; // fill the motor_out[] array for HIL use and send minimum value to each motor for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) { if( motor_enabled[i] ) { motor_out[i] = _rc_throttle->radio_min; _rc->OutputCh(_motor_to_channel_map[i], motor_out[i]); } } // Force output if instant pwm if( _speed_hz == AP_MOTORS_SPEED_INSTANT_PWM ) { if( instant_pwm_force01 ) _rc->Force_Out0_Out1(); if( instant_pwm_force23 ) _rc->Force_Out2_Out3(); if( instant_pwm_force67 ) _rc->Force_Out6_Out7(); } } // output_armed - sends commands to the motors void AP_MotorsMatrix::output_armed() { int8_t i; int16_t out_min = _rc_throttle->radio_min; int16_t out_max = _rc_throttle->radio_max; //int16_t yaw_contribution = 0; // Throttle is 0 to 1000 only _rc_throttle->servo_out = constrain(_rc_throttle->servo_out, 0, _max_throttle); if(_rc_throttle->servo_out > 0) out_min = _rc_throttle->radio_min + _min_throttle; // capture desired roll, pitch, yaw and throttle from receiver _rc_roll->calc_pwm(); _rc_pitch->calc_pwm(); _rc_throttle->calc_pwm(); _rc_yaw->calc_pwm(); // mix roll, pitch, yaw, throttle into output for each motor for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) { if( motor_enabled[i] ) { /*yaw_contribution = _rc_yaw->pwm_out*_yaw_factor[i]; if (yaw_contribution > 0 ){ yaw_contribution *= 0.7; }else{ yaw_contribution *= 1.42; }*/ motor_out[i] = _rc_throttle->radio_out + _rc_roll->pwm_out * _roll_factor[i] + _rc_pitch->pwm_out * _pitch_factor[i] + _rc_yaw->pwm_out*_yaw_factor[i]; } } // stability patch for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) { if( motor_enabled[i] && motor_out[i] > out_max ) { if( opposite_motor[i] != AP_MOTORS_MATRIX_MOTOR_UNDEFINED ) { motor_out[opposite_motor[i]] -= motor_out[i] - out_max; } motor_out[i] = out_max; } } // ensure motors are not below the minimum for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) { if( motor_enabled[i] ) { motor_out[i] = max(motor_out[i], out_min); } } #if CUT_MOTORS == ENABLED // if we are not sending a throttle output, we cut the motors if(_rc_throttle->servo_out == 0){ for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) { if( motor_enabled[i] ) { motor_out[i] = _rc_throttle->radio_min; } } } #endif // send output to each motor for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) { if( motor_enabled[i] ) { _rc->OutputCh(_motor_to_channel_map[i], motor_out[i]); } } // InstantPWM if( _speed_hz == AP_MOTORS_SPEED_INSTANT_PWM ) { if( instant_pwm_force01 ) _rc->Force_Out0_Out1(); if( instant_pwm_force23 ) _rc->Force_Out2_Out3(); if( instant_pwm_force67 ) _rc->Force_Out6_Out7(); } } // output_disarmed - sends commands to the motors void AP_MotorsMatrix::output_disarmed() { if(_rc_throttle->control_in > 0){ // we have pushed up the throttle // remove safety for auto pilot _auto_armed = true; } // Send minimum values to all motors output_min(); } // output_disarmed - sends commands to the motors void AP_MotorsMatrix::output_test() { int8_t min_order, max_order; int8_t i,j; // find min and max orders min_order = test_order[0]; max_order = test_order[0]; for(i=1; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) { if( test_order[i] < min_order ) min_order = test_order[i]; if( test_order[i] > max_order ) max_order = test_order[i]; } // shut down all motors output_min(); // first delay is longer delay(4000); // loop through all the possible orders spinning any motors that match that description for( i=min_order; i<=max_order; i++ ) { for( j=0; j<AP_MOTORS_MAX_NUM_MOTORS; j++ ) { if( motor_enabled[j] && test_order[j] == i ) { // turn on this motor and wait 1/3rd of a second _rc->OutputCh(_motor_to_channel_map[j], _rc_throttle->radio_min + 100); delay(300); _rc->OutputCh(_motor_to_channel_map[j], _rc_throttle->radio_min); delay(2000); } } } // shut down all motors output_min(); } // add_motor void AP_MotorsMatrix::add_motor_raw(int8_t motor_num, float roll_fac, float pitch_fac, float yaw_fac, int8_t opposite_motor_num, int8_t testing_order) { // ensure valid motor number is provided if( motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS ) { // increment number of motors if this motor is being newly motor_enabled if( !motor_enabled[motor_num] ) { motor_enabled[motor_num] = true; _num_motors++; } // set roll, pitch, thottle factors and opposite motor (for stability patch) _roll_factor[motor_num] = roll_fac; _pitch_factor[motor_num] = pitch_fac; _yaw_factor[motor_num] = yaw_fac; // set opposite motor after checking it's somewhat valid if( opposite_motor_num == AP_MOTORS_MATRIX_MOTOR_UNDEFINED || (opposite_motor_num >=0 && opposite_motor_num < AP_MOTORS_MAX_NUM_MOTORS) ) { opposite_motor[motor_num] = opposite_motor_num; }else{ opposite_motor[motor_num] = AP_MOTORS_MATRIX_MOTOR_UNDEFINED; } // set order that motor appears in test if( testing_order == AP_MOTORS_MATRIX_ORDER_UNDEFINED ) { test_order[motor_num] = motor_num; }else{ test_order[motor_num] = testing_order; } } } // add_motor using just position and prop direction void AP_MotorsMatrix::add_motor(int8_t motor_num, float angle_degrees, int8_t direction, int8_t opposite_motor_num, int8_t testing_order) { // call raw motor set-up method add_motor_raw( motor_num, cos(radians(angle_degrees + 90)), // roll factor cos(radians(angle_degrees)), // pitch factor (float)direction, // yaw factor opposite_motor_num, testing_order); } // remove_motor - disabled motor and clears all roll, pitch, throttle factors for this motor void AP_MotorsMatrix::remove_motor(int8_t motor_num) { int8_t i; // ensure valid motor number is provided if( motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS ) { // if the motor was enabled decrement the number of motors if( motor_enabled[motor_num] ) _num_motors--; // disable the motor, set all factors to zero motor_enabled[motor_num] = false; _roll_factor[motor_num] = 0; _pitch_factor[motor_num] = 0; _yaw_factor[motor_num] = 0; opposite_motor[motor_num] = AP_MOTORS_MATRIX_MOTOR_UNDEFINED; } // if another motor has referred to this motor as it's opposite, remove that reference for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) { if( opposite_motor[i] == motor_num ) opposite_motor[i] = AP_MOTORS_MATRIX_MOTOR_UNDEFINED; } } // remove_all_motors - removes all motor definitions void AP_MotorsMatrix::remove_all_motors() { for( int8_t i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) { remove_motor(i); } _num_motors = 0; }